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sed difluoroolefination of benzyl
tosylates toward the synthesis of gem-difluoro-2-
trifluromethyl styrene derivatives†

Jie Xu,a Jiangjun Liu,a Gang Chen,a Baojian Xiong,b Xuemei Zhangb

and Zhong Lian *ab

We have presented an efficient method to access gem-difluoro-2-trifluromethyl styrene derivatives via

palladium catalysis. This method features mild reaction conditions, broad substrate scope and good

product yields. Moreover, gram–scale reactions demonstrated the robustness and potential of this

method. Control experiments revealed that the –CF3 group was essential to the success of this

transformation. Finally, the practicality of this method was successfully proven by three synthetic

applications.
Introduction

Fluorinated compounds have found wide applications in
various elds due to their unique properties.1 Among them,
gem-diuorostyrenes have been frequently used in the design of
potential enzyme inhibitors.2 Introducing a –CF3 group into
gem-diuoroolens could not only retain its high electrophi-
licity towards many nucleophiles at the terminal carbon, but
also increase the biological activity of the molecules (Fig. 1a).3

Compared with considerable efforts devoted to the devel-
opment of gem-diuorostyrenes,4,5 the synthesis of gem-
diuoro-2-triuromethyl styrenes is less investigated. The most
common method is Wittig gem-diuoroolenation of tri-
uoroacetophenone (Fig. 1b(1)).6 Another pathway is a multi-
step strategy involving nucleophilic addition of an aryl metallic
reagent to chloropentauoroacetone, SN2 type substitution of
chloride anions and dechlorination with Zn (Fig. 1b(2)).7

However, stochiometric phosphine oxide as a by-product,
utilization of organometallic reagents and multistep operation
have greatly restricted substrate scope and applications of the
methods above. Therefore, it is of great signicance to develop
a complementary method for the synthesis of gem-diuoro-2-
triuromethyl styrenes.

On the other hand, transition-metal catalysis plays an irre-
placeable role in modern organic synthesis.8 We hypothesize
that a method including two elementary reactions to access
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gem-diuoro-2-triuromethyl styrenes from triuoromethyl-
substituted benzyl tosylate by transition metal catalysis could
be developed (Fig. 1c). From the perspective of elementary
reactions, the oxidative addition of palladium catalyst into
Csp3–O bond9 and b–F elimination of palladium complex10 have
been realized in different transformations in the reported work
respectively. Therefore, the key to success of this strategy is to
nd a suitable catalyst system which is compatible with the two
elementary reactions above.
Fig. 1 Importance of gem-difluoro-2-trifluoromethyl olefins and
synthetic strategy.
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Results and discussion

To demonstrate our hypothesis, we began the study by evalu-
ating gem-diuoroolenation of triuoromethyl-substituted
benzyl tosylate (1a) via palladium catalysis (Table 1).
Compound 1a could be easily synthesized from corresponding
aryl carboxylic acid.11 Aer evaluation of all reaction parame-
ters, reaction conditions which could provide a high yield of 2a
was identied. The optimum reaction conditions consisted of
PdI2 (5 mol%) with bidentate ligand DPPP (5 mol%) as catalyst,
zinc (2.0 equiv.) as reductant, and DMA as solvent at 80 �C (entry
1). Using other palladium sources as catalyst resulted in lower
yields (entries 2–5). Variation of monodentate and other
bidentate phosphine ligands from DPPP led to moderate yields
of 2a (entries 6–11), while nitrogen ligands would inhibit the
reaction with the majority of 1a unconverted (entries 12–13).
Solvents screening revealed that DMA was the best choice for
this transformation (entries 14–18). Lastly, reaction tempera-
ture investigation suggested that the desired product 2a could
be formed in the highest yield at 80 �C, although the yield was
acceptable at 40 �C (entries 19–21).

With the optimized conditions in hand, the substrate scope
of this transformation was investigated and the results are
summarized in Scheme 1. Initially, substrates with electron-
Table 1 Optimization of the reaction conditionsa

Entry Variation from std. conditions Yield of 2ab

1 None 93% (90%)c

2 Pd(dba)2 instead of PdI2 60%
3 PdCl2 instead of PdI2 61%
4 Pd(acac)2 instead of PdI2 86%
5 Pd(PPh3)2Cl2 instead of PdI2 82%
6 PPh3 instead of DPPP 64%
7 PCy3 instead of DPPP 68%
8 (n-Bu)P(ad)2 instead of DPPP 65%
9 DPEPhos instead of DPPP 27%
10 DPPF instead of DPPP 43%
11 XantPhos instead of DPPP 73%
12 1,10-Phenanthroline instead of DPPP 9%
13 2,2-Bipyridine instead of DPPP 20%
14 DMF instead of DMA 54%
15 MeCN instead of DMA 57%
16 THF instead of DMA 34%
17 Toluene instead of DMA 29%
18 1,4-Dioxane instead of DMA 31%
19 100 �C instead of 80 �C 85%
20 60 �C instead of 80 �C 86%
21 40 �C instead of 80 �C 75%

a Standard reaction conditions: 1a (0.2 mmol), PdI2 (5 mol%), DPPP
(5 mol%), Zn (2 equiv.), DMA (1.0 mL), 80 �C, 12 h. b Yields were
determined by GC analysis using dodecane as an internal standard.
c Isolated yield in the parenthesis.

Scheme 1 Substrate scope. aThe temperature is 100 �C and PdI2
(10 mol%), DPPP (10 mol%) were used.

12984 | RSC Adv., 2022, 12, 12983–12987
neutral aryl groups, such as naphthalene ring and benzene
ring, were examined. The reactions proceeded smoothly and
produced the corresponding gem-diuoroolens in excellent
© 2022 The Author(s). Published by the Royal Society of Chemistry
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Scheme 3 Synthetic applications.
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yields (2b–2c). Benzene ring bearing a phenyl substituent at the
para and ortho position also afforded the corresponding prod-
ucts in good yields (2d–2e). In addition, vinyl group were also
well tolerated (2f). Next, compounds with electron-rich
substituents were evaluated. The usage of isopropyl-, methyl-,
methoxy-substituted substrates led the formation of corre-
sponding products inmoderated to good yields (2g–2k). Various
electron-poor substrates were also investigated. Compounds
containing halogen and triuoromethyl groups in para position
were adapted to the reactions and gave desired products in
moderate yields (2l–2o). The conguration of compound 2o was
conrmed by X-ray crystallography.12 Notably, aryl ring bearing
bromide at the ortho position had positive hindrance effect on
the reaction, resulting in good yields (2p–2q). In addition, both
Boc- and sulfonamide-substituted tosylates were tolerated,
giving the corresponding products 2r and 2s in 70% and 87%
yields respectively. Aryl ring containing methoxy at the meta
position (2t) obtained 85% yield, while substrate with an ester
group (2u–2v) led to a lower yield. Pleasingly, the reaction was
compatible with a range of heterocycles, as demonstrated by the
excellent yields obtained for a series of substrates containing
pyridine, furan and quinoline ring (2w–2z). Lastly, diary-
ltriuoromethyl tosylate could also be converted to corre-
sponding gem-diuorostyrene (2aa) in moderate yield.
Unfortunately, nitro (2ab), amino (2ac) and cyano (2ad) groups
were found to unsuitable for the reaction.
Scheme 2 Gram-scale reactions and control experiments.

© 2022 The Author(s). Published by the Royal Society of Chemistry
The robustness and potential of this method have also been
successfully demonstrated by 2a (88% yield) and 2c (72% yield)
in gram–scale reactions (Scheme 2a). Next, the effect of –CF3
group was investigated (Scheme 2b). Mono–CF3–substituted
benzyl tosylate 3 was subjected to the standard conditions,
resulting in b-F elimination product 3a (10%), b-H elimination
product 3b (36%) and protonated product 3c (28%). To gain
more insight into the mechanism, a control experiment was
carried out (Scheme 2c). The reaction was carried out in the
presence of D2O (2.0 equiv.) or CD3OD (2.0 equiv.) under the
standard conditions, leading to the formation of protonated
product D-4 or D-4’. This result indicated that Pd(0) was
oxidatively added into C–OTs bond rather than C–F bond.

To illustrate synthetic utility of this methodology, previously
synthesized 2a was subjected to subsequent transformations
(Scheme 3). Firstly, the reaction of compound 2a with imidazole
in the presence of K3PO4 could provide the N-(a-uorovinyl)
azole product 5.13,15 Likewise, treatment of 2a with sodium
phenyl thiolate in THF at room temperature for 12 h resulted in
the formation of vinyl sulde 6 (Z : E ¼ 7 : 1) in 75% yield.14,15

Lastly, in the presence of palladium catalyst, allylic alkylation
between 2a and allyl tert-butyl carbonate 7 could take place, in
which the nucleophilic addition of external uoride onto gem-
diuoroalkenes was the initial step.16
Conclusions

In conclusion, we have developed an efficient pathway to access
gem-diuoro-2-triuromethyl styrene derivatives via palladium
catalysis. This transformation features mild reaction condi-
tions, broad functional group tolerance and good yields. Gram-
scale reactions have demonstrated the robustness and potential
of this method, and various synthetic applications have proved
the practicality of this strategy.
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