

Cite this: *RSC Adv.*, 2022, **12**, 19265

Received 10th April 2022
Accepted 27th June 2022

DOI: 10.1039/d2ra02314h
rsc.li/rsc-advances

***Cs₂CO₃* catalyzed direct aza-Michael addition of azoles to α,β -unsaturated malonates†**

Zi-Yu Jiang, Zhe-Yao Huang, Hong Yang, Lin Zhou, * Qing-Han Li and Zhi-Gang Zhao

A highly efficient method for the synthesis of azole derivatives *via* a direct aza-Michael addition of azoles to α,β -unsaturated malonates using Cs_2CO_3 as a catalyst, has been successfully developed. A series of azole derivatives have been obtained in up to 94% yield and the reaction could be amplified to gram scale in excellent yield in the presence of 10 mol% of Cs_2CO_3 .

Introduction

Azoles and their derivatives are important heterocyclic scaffolds which have been widely found in many natural products, bioactive compounds, and drug candidates.^{1,2} Particularly, the pyrazole constitutes the structural core featured in numerous pharmacologically active molecules.³ For example, the β -pyrazolyl acid **A** has activity toward human GPR40 G-protein coupled receptor (Fig. 1).⁴ A prominent example is the Janus kinase (JAK) inhibitor Ruxolitinib (INC018424), which has been used in the treatment of myelofibrosis (Fig. 1).⁵ Therefore, in the past two decades, continuous efforts have been directed towards the development of efficient methods for accessing such pyrazole structures in medicinal chemistry and organic synthesis.^{6–11} To date, numerous concise and robust synthetic methods, mainly including *N*-nucleophilic substitutions,⁶ C–N cross-couplings^{7,8} and aza-Michael additions,^{9,10} have been established. Among them, the direct aza-Michael addition of pyrazole has attracted more attention as a highly efficient method for construction of pyrazole derivatives.^{10,11}

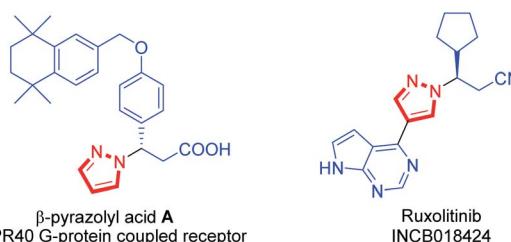
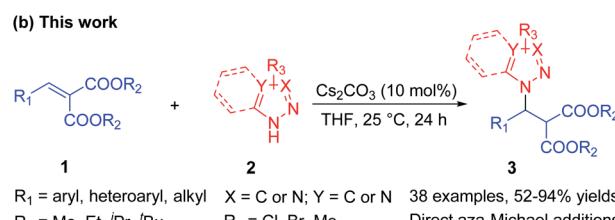
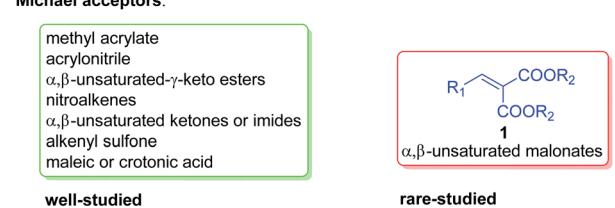
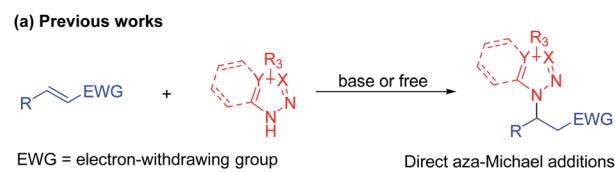





Fig. 1 Biologically pyrazole compounds.

Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, P. R. China. E-mail: zhoulm@swun.edu.cn

† Electronic supplementary information (ESI) available. See <https://doi.org/10.1039/d2ra02314h>

As we all know, the pyrazoles *via* *N*-deprotonation generating active *N*-nucleophiles under base-catalysis,¹² could react with all kinds of Michael receptors to afford pyrazole derivatives. These Michael receptors in aza-Michael addition of pyrazole mainly include methyl acrylate,^{10c,d,j,k} acrylonitrile,^{10c,j} β,γ -unsaturated- α -keto esters,^{10f} nitroalkenes,^{10e} α,β -unsaturated ketones^{10a–c} or imides¹⁰ⁱ and maleic or crotonic acid^{10g,h} (Scheme 1a). Specially, several catalytic asymmetric aza-Michael additions of pyrazoles had been successfully realized in which the optically active pyrazole derivatives were obtained.¹¹ Nevertheless, the development of alternative receptor in aza-Michael addition of azole will be remain as a highly desirable work, owing to their easy accessing other valuable pyrazole derivatives. To the best of our

Scheme 1 Commonly encountered aza-Michael addition of azoles.

knowledge, the α,β -unsaturated malonates, which had been used as Michael receptors in numerous transformations, had their potential in the construction of azole derivatives *via* direct aza-Michael addition of azoles.¹³ Herein, we describe a Cs_2CO_3 catalyzed direct aza-Michael addition of azoles **2** to α,β -unsaturated malonates **1** to afford azole derivatives **3** (Scheme 1b).

Results and discussion

In the initial study, dimethyl 2-benzylidenemalonate **1a** and pyrazole **2a** were chosen as the model substrates for the synthesis of pyrazole derivatives *via* the direct aza-Michael addition. No product was observed without catalyst when stirring in THF at 25 °C for 24 h (Table 1, entry 1). Next, various bases as catalysts were surveyed in THF at 25 °C and trace amount of product **3aa** was observed in the presence of 100 mol% of organic base Et_3N (Table 1, entry 2). Meanwhile, DBU could afford pyrazole derivative **3aa** in lower yield (31%, Table 1, entry 3). When the reaction was performed with 100 mol% of inorganic bases, the acceptable yields of **3aa** were obtained (Table 1, entries 4–7). Comparatively, the Cs_2CO_3 exhibited a slight superiority in reactivity toward this aza-Michael addition compared with $\text{LiOH}\cdot\text{H}_2\text{O}$, $\text{K}_3\text{PO}_4\cdot 7\text{H}_2\text{O}$, and K_2CO_3 (Table 1, entries 6 vs. 4, 5 and 7). Further optimization of the reaction conditions was then aimed at exploring the efficiency of solvent. Unfortunately, the yield of **3aa**

decreased slightly in other types of solvents (CH_3OH , PhCH_3 , EtOAc , CH_2Cl_2 , Table 1, entries 6 vs. 8–11), and the THF was still the most suitable solvent for this reaction. The efficiency of temperature was also examined (Table 1, entries 6 and 12–13), and it was found that increasing the temperature to 40 °C had nearly no effect on the yield of **3aa** (Table 1, entry 12) but the yield of **3aa** decreased when reducing the temperature to 0 °C (Table 1, entry 13). Increasing the amount of pyrazole **2a** to 0.3 mmol could further improve the yield of **3aa** to 80% (Table 1, entry 14). We were delighted to find that reducing the amount of Cs_2CO_3 to 10 mol% had no effect on the yield of **3aa** (Table 1, entry 15), while the yield of **3aa** decreased significantly when reducing the amount of Cs_2CO_3 to 1 mol% (Table 1, entry 16). Reducing the amount of solvent THF to 0.20 mL, the yield of **3aa** increased slightly (Table 1, entry 17). The reaction was amplified to 0.50 mmol scale and also proceeded smoothly, affording **3a** in 84% yield (Table 1, entry 18). Therefore, the optimal conditions were identified as 10 mol% of Cs_2CO_3 in THF at 25 °C for 24 h.

Under the optimal conditions (Table 1, entry 17), various α,β -unsaturated malonates **1** were evaluated, affording the corresponding pyrazole derivatives **3** in moderate to excellent yields (up to 92%). As shown in Table 2, the reactivity of this direct aza-Michael addition was sensitive to the steric hindrance on the ester group of α,β -unsaturated malonates **1**. The substrates **1** containing bulkier ester groups ($-\text{CO}_2\text{Et}$, $-\text{CO}_2'\text{Pr}$, and $-\text{CO}_2'\text{Bu}$) gave lower yields than its with $-\text{CO}_2\text{Me}$ group (Table 2, entries 2–4 vs. 1). For the effects of substituents in the phenyl ring, the reactivity of the direct aza-Michael addition was sensitive to the steric hindrance rather than to the electronic property of α,β -unsaturated malonates **1**. The substrates **1** with ortho-substituents gave lower yields than those with para or meta ones (Table 2, entries 7 vs. 5 and 6, 10 vs. 8 and 9, 13 vs. 11 and 12, 17 vs. 15 and 16, 20 vs. 18 and 19). The substrates with 2-F, 2-Cl, 2-Br, 2-Me or 2-OMe substituents on phenyl ring (**1g**, **1j**, **1m**, **1q** and **1t**) were transformed into pyrazole derivatives **3ga**, **3ja**, **3ma**, **3qa** and **3ja** in moderate yields (Table 2, entries 7, 10, 13, 17 and 20). Meanwhile, the fused-ring substrates (**1u** and **1v**) were also tolerable, giving the desired products with 75% and 88% yields, respectively (Table 2, entries 21 and 22). For the thiienyl heteroaromatic substrates **1w** and **1x**, the reaction generated the desired products **3wa** and **3xa** in 84% and 88% yield (Table 2, entries 23 and 24), while the 2-furyl heteroaromatic substrate **1y** afforded the desired product **3ya** in 76% yield (Table 2, entry 25). At the same time, the alkyl substituted substrates **1z**, **1 α** , **1 β** and **1 γ** also gave the corresponding pyrazole derivatives **3za**, **3 α a**, **3 β a** and **3 γ a** in good yields (60–92%, Table 2, entries 26–29).

Next, the use of this catalytic system for aza-Michael addition of a variety of substituted pyrazoles **2** was explored, and the desired pyrazole derivatives **3** were obtained in moderate to excellent yields (up to 94%). As shown in Table 3, the electronic nature of the substituents in pyrazoles **2** had obvious effect on the efficiency of this reaction (Table 3, **3ab**–**3af**). The substrates **2** with electron-donating Me group gave higher yields than those with electron-withdrawing (Cl or Br) substituents (Table 3, **3ae**, **3af** vs. **3ab**, **3ac** and **3ad**). For indazole substrate **2g**, the aza-

Table 1 Optimization of the reaction conditions^a

Entry	Base	Solvent	T (°C)	Yield ^b (%)
1	—	THF	25	0
2	Et_3N	THF	25	Trace
3	DBU	THF	25	31
4	$\text{LiOH}\cdot\text{H}_2\text{O}$	THF	25	60
5	$\text{K}_3\text{PO}_4\cdot 7\text{H}_2\text{O}$	THF	25	58
6	Cs_2CO_3	THF	25	69
7	K_2CO_3	THF	25	53
8	Cs_2CO_3	CH_3OH	25	—
9	Cs_2CO_3	PhCH_3	25	62
10	Cs_2CO_3	EtOAc	25	48
11	Cs_2CO_3	CH_2Cl_2	25	61
12	Cs_2CO_3	THF	40	67
13	Cs_2CO_3	THF	0	50
14 ^c	Cs_2CO_3	THF	25	80
15 ^{c,d}	Cs_2CO_3	THF	25	79
16 ^{c,e}	Cs_2CO_3	THF	25	55
17 ^{c,e,f}	Cs_2CO_3	THF	25	83
18 ^g	Cs_2CO_3	THF	25	84

^a Reaction conditions: **1a** (0.20 mmol), **2a** (0.20 mmol), base (100 mol%), solvent (1.0 mL), 24 h. ^b Isolated yield. ^c 0.30 mmol of **2a** was used. ^d 10 mol% of Cs_2CO_3 was used. ^e 1 mol% of Cs_2CO_3 was used. ^f 0.2 mL of THF was used. ^g **1a** (0.50 mmol), **2a** (0.75 mmol), Cs_2CO_3 (10 mol%), THF (0.5 mL), 24 h.

Table 2 Substrate scope of α,β -unsaturated malonates^a

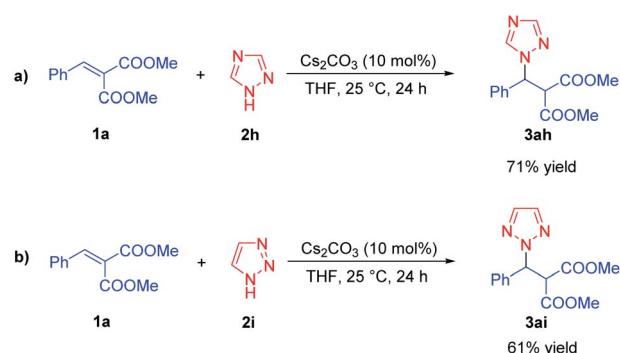
Entry	<i>R</i> ₁	<i>R</i> ₂	3	Yield ^b (%)
1	Ph	Me	3aa	84
2	Ph	Et	3ba	68
3	Ph	<i>i</i> Pr	3ca	67
4	Ph	<i>t</i> Bu	3da	69
5	4-FC ₆ H ₄	Me	3ea	84
6	3-FC ₆ H ₄	Me	3fa	73
7	2-FC ₆ H ₄	Me	3ga	66
8	4-ClC ₆ H ₄	Me	3ha	92
9	3-ClC ₆ H ₄	Me	3ia	87
10	2-ClC ₆ H ₄	Me	3ja	64
11	4-BrC ₆ H ₄	Me	3ka	74
12	3-BrC ₆ H ₄	Me	3la	71
13	2-BrC ₆ H ₄	Me	3ma	52
14	4-F ₃ CC ₆ H ₄	Me	3na	81
15	4-MeC ₆ H ₄	Me	3oa	63
16	3-MeC ₆ H ₄	Me	3pa	91
17	2-MeC ₆ H ₄	Me	3qa	55
18	4-MeOC ₆ H ₄	Me	3ra	77
19	3-MeOC ₆ H ₄	Me	3sa	87
20	2-MeOC ₆ H ₄	Me	3ta	65
21	2-Naphthyl	Me	3ua	75
22	1-Naphthyl	Me	3va	88
23	3-Thienyl	Me	3wa	84
24	2-Thienyl	Me	3xa	81
25	2-Furyl	Me	3ya	76
26	ⁿ Pr	Me	3za	85
27	ⁱ Pr	Me	3 ⁱ za	92
28	^t Bu	Me	3 ^t ba	60
29	ⁿ C ₉ H ₁₉	Me	3 ⁿ ga	74

^a Reaction conditions: 1 (0.50 mmol), 2 (0.75 mmol), Cs₂CO₃ (10 mol%), THF (0.5 mL), 25 °C, 24 h. ^b Isolated yield.

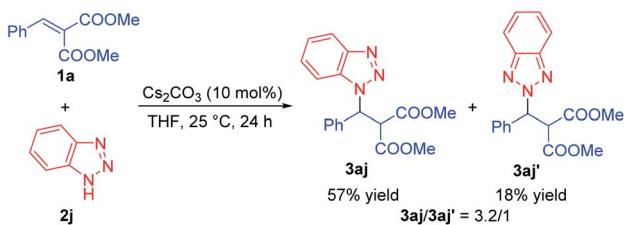
Michael addition generated the desired product 3ag in 52% yield (Table 3, entry 7).¹⁴

Then, the use of this catalytic system for the direct aza-Michael addition of triazoles 2 to dimethyl 2-benzylidenemalonate 1a was explored, and the desired *N*1-substituted triazole derivative 3ah was obtained in 71% yield for the 1,2,4-triazole 2h, while the *N*2-substituted triazole derivative 3ai was obtained in 61% yield for the 1,2,3-triazole 2i (Scheme 2). For the substrate 1*H*-benzotriazole 2j, the reaction generated triazole derivatives 3aj and 3aj' in 57% and 18% yields, simultaneously (3aj/3aj' = 3.2/1, based on the isolated yields, Scheme 3) under the optimal conditions.¹⁵ Besides, the direct aza-Michael additions of imidazole and pyrrole to dimethyl 2-benzylidene-malonate 1a were also explored, unfortunately, no desired products were observed under the optimal conditions.

On account of the synthetic potential of this method, the reaction was amplified to gram scale. As shown in Scheme 4, the direct aza-Michael addition of pyrazole 2a (1.02 g, 15.0 mmol) to methyl dimethyl 2-benzylidenemalonate 1a (2.20 g, 10.0 mmol) proceeded smoothly under the optimal conditions, affording


Table 3 Substrate scope of azoles.^{a,b}

1a	2	3


^a Reaction conditions: 1 (0.50 mmol), 2 (0.75 mmol), Cs₂CO₃ (10 mol%), THF (0.5 mL), 25 °C, 24 h. ^b Isolated yield.

the pyrazole derivative 3aa in 75% yield (Scheme 4a). Delightly, the yield of 3aa could be improved to 94% when the reaction concentration was increased twice as much in the gram scale synthesis (Scheme 4b).

According to the previous studies on the reactive properties of azoles in literatures,^{9,12} a reasonable catalytic cycle was proposed in Fig. 2. Because the *pK_a* value of *N*1–H in azole is less than that of H₂CO₃ [*pK_a* (*N*1–H) = 2.49, *pK_{a1}* (H₂CO₃) = 6.37], the *N*1-deprotonation of azoles 2 could be promoted by the conjugated base CO₃²⁻, which had been from the ionization of Cs₂CO₃. First, the active *N*-nucleophiles I and HCO₃⁻ were generated *via* the *N*1-deprotonation of azoles 2. Then the *N*-nucleophiles I attacked the α,β -unsaturated malonates 1 at β -positions, forming the enolate intermediates II. Next, the HCO₃⁻ transferred the H⁺ to the enolate oxygen of intermediates II due to that the *pK_a* value of HCO₃⁻ is less than that of enolates, providing the enol type azole derivatives 3'. Meanwhile, the CO₃²⁻ could regenerate and participate in the next round of catalytic cycle.

Scheme 2 Direct aza-Michael addition of triazoles 2h and 2i to dimethyl 2-benzylidenemalonate 1a.

Scheme 3 Direct aza-Michael addition of benzotriazole **2j** to dimethyl 2-benzylidene malonate **1a**.

Scheme 4 Preparative scale syntheses of selected compound.

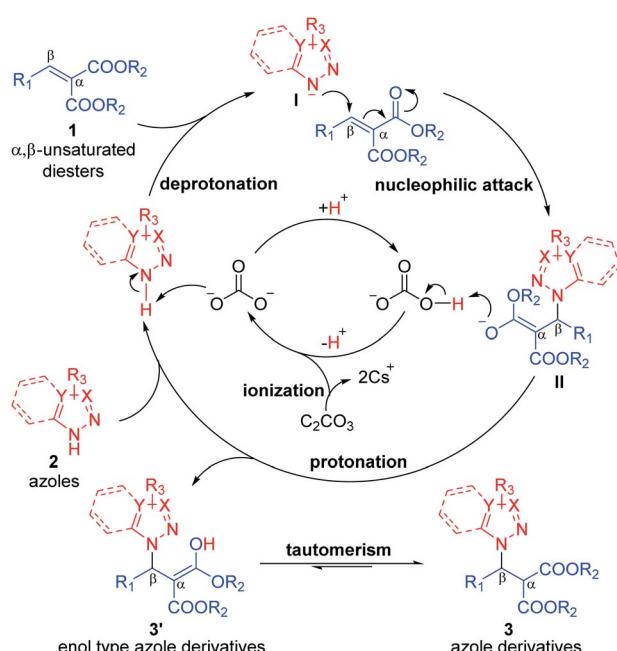


Fig. 2 Proposed catalytic cycle.

Finally, the azole derivatives **3** were obtained *via* the tautomerism of the enol type azole derivatives **3'**.

Conclusions

We have developed a highly efficient method for the synthesis of azole derivatives *via* a direct aza-Michael addition of azoles to α,β -unsaturated malonates using Cs_2CO_3 as catalyst. A series of azole derivatives (38 examples) have been obtained in up to 94% yield. The reaction could be amplified to gram scale in excellent yield (94%) in the presence of 10 mol% of Cs_2CO_3 , which had shown the potential value of the catalytic system for practical

synthesis. Further study on an enantioselective version of this direct aza-Michael addition is still in progress.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

We are grateful to the National Natural Science Foundation of China (No. 22001219), the Natural Science Foundation of Sichuan Province (No. 2022NSFSC1189) and the Fundamental Research Funds for the Central Universities, Southwest Minzu University (No. 2021PTJS25) for financial supports.

Notes and references

- For selected reviews, see: (a) S. D. Roughley and A. M. Jordan, *J. Med. Chem.*, 2011, **54**, 3451; (b) E. Vitaku, D. T. Smith and J. T. Njardarson, *J. Med. Chem.*, 2015, **57**, 10257; (c) R. J. D. Hatley, S. J. F. Macdonald, R. J. Slack, J. Le, S. B. Ludbrook and P. T. Lukey, *Angew. Chem., Int. Ed.*, 2018, **57**, 3298.
- (a) D. Patel, M. Jain, S. R. Shah, R. Bahekar, P. Jadav, B. Darji, Y. Siriki, D. Bandyopadhyay, A. Joharapurkar, S. Kshirsagar, H. Patel, M. Shaikh, K. V. V. M. Sairam and P. Patel, *ChemMedChem*, 2011, **6**, 1011; (b) G. Venkatesan, P. Paira, S. L. Cheong, K. Vamsikrishna, S. Federico, K.-N. Klotz, G. Spalluto and G. Pastorin, *Bioorg. Med. Chem.*, 2014, **22**, 1751; (c) M. Xin, X. Zhao, W. Huang, Q. Jin, G. Wu, Y. Wang, F. Tang and H. Xiang, *Bioorg. Med. Chem.*, 2015, **23**, 6250; (d) G. Venkatesan, P. Paira, S. L. Cheong, S. Federico, K. N. Klotz, G. Spalluto and G. Pastorin, *Eur. J. Med. Chem.*, 2015, **92**, 784; (e) Z. S. Cheruvallath, S. L. Gwaltney, M. Sabat, M. Tang, H. Wang, A. Jennings, D. Hosfield, B. Lee, Y. Wu, P. Halkowycz and C. E. Grimshaw, *Bioorg. Med. Chem. Lett.*, 2017, **27**, 2678; (f) M. Dawidowski, V. C. Kalel, V. Napolitano, R. Fino, K. Schorpp, L. Emmanouilidis, D. Lenhart, M. Ostertag, M. Kaiser, M. Kolonko, B. Tippler, W. Schliebs, G. Dubin, P. Mäser, I. Tetko, K. Hadian, O. Plettenburg, R. Erdmann, M. Sattler and G. M. Popowicz, *J. Med. Chem.*, 2020, **63**, 847.
- For selected reports, see: (a) J. J. Cui, M. Tran-Dube, H. Shen, M. Nambu, P.-P. Kung, M. Pairish, L. Jia, J. Meng, L. Funk, I. Botrous, M. McTigue, N. Grodsky, K. Ryan, E. Padrique, G. Alton, S. Timofeevski, Y. S. amazaki, Q. Li, H. Zou and J. Christensen, *J. Med. Chem.*, 2011, **54**, 6342; (b) M. Andrés, M. Bravo, M. A. Buil, M. Calbet, J. Castro, T. Domènech, P. Eichhorn, M. Ferrer, E. Gómez, M. D. Lehner, I. Moreno, R. S. Roberts and S. Sevilla, *Bioorg. Med. Chem. Lett.*, 2013, **23**, 3349; (c) S. Fuse, T. Morita, K. Johmoto, H. Uekusa and H. Tanaka, *Chem.-Eur. J.*, 2015, **21**, 14370; (d) B. Gopula, Y.-F. Tsai, T.-S. Kuo, P.-Y. Wu, J. P. Henschke and H.-L. Wu, *Org. Lett.*, 2015, **17**, 1142; (e) S. Patel, S. F. Harris, P. Gibbons, G. Deshmukh, A. Gustafson, T. Kellar, H. Lin, X. Liu, Y. Liu, Y. Liu, C. Ma, K. Scearce-Levie, A. S. Ghosh, Y. G. Shin, H. Solanoy,

J. Wang, B. Wang, J. Yin, M. Siu and J. W. Lewcock, *J. Med. Chem.*, 2015, **58**, 8182; (f) F. A. Romero, J. M. Murray, K. W. Lai, V. Tsui, B. K. Albrecht, L. An, M. H. Beresini, G. de L. Boenig, S. M. Bronner, E. W. Chan, K. X. Chen, Z. Chen, E. F. Choo, K. Clagg, K. Clark, T. D. Crawford, P. Cyr, D. D. A. Nagata, K. E. Gascoigne, J. L. Grogan, G. Hatzivassiliou, W. Huang, T. L. Hunsaker, S. Kauffman, S. G. Koenig, R. Li, Y. Li, X. Liang, J. Liao, W. Ly, J. Q. Liu, J. Maher, C. Masui, M. Merchant, Y. Ran, A. M. Taylor, J. S. Wai, F. Wang, X. Wei, D. Yu, B.-Y. Zhu, X. Zhu and S. R. Magnuson, *J. Med. Chem.*, 2017, **60**, 9162; (g) S. Varghese, R. Rahmani, S. Russell, G. S. Deora, L. Ferrins, A. Toynton, A. Jones, M. Sykes, A. Kessler, A. Eufrasio, A. T. Cordeiro, J. Sherman, A. Rodriguez, V. M. Avery, M. Piggott and J. B. Baell, *ACS Med. Chem. Lett.*, 2020, **11**, 278.

4 S. P. Brown, P. Dransfield, J. B. Houze, J. Liu, J. Liu, Z. Ma, J. C. Medina, V. Pattaropond, M. J. Schmitt, R. Sharma and Y. Wang, US Pat. 7687526B2, 2010.

5 R. A. Mesa, U. Yasothan and P. Kirkpatrick, *Nat. Rev. Drug Discovery*, 2012, **11**, 103.

6 For selected reports, see: (a) A. Huang, K. Wo, S. Y. C. Lee, N. Kneitschel, J. Chang, K. Zhu, T. Mello, L. Bancroft, N. Norman and S.-L. Zheng, *J. Org. Chem.*, 2017, **82**, 8864; (b) C. Pezzetta, D. Bonifazi and R. W. M. Davidson, *Org. Lett.*, 2019, **21**, 8957; (c) D. Xu, L. Frank, T. Nguyen, A. Stumpf, D. Russell, R. Angelaud and F. Gosselin, *Synlett*, 2020, **31**, 595.

7 For selected reports, see: (a) A. Correa and C. Bolm, *Angew. Chem., Int. Ed.*, 2007, **46**, 8862; (b) Y.-C. Teo, F.-F. Yong, C.-Y. Poh, Y.-K. Yana and G.-L. Chua, *Chem. Commun.*, 2009, 6258; (c) H. W. Lee, A. S. C. Chan and F. Y. Kwong, *Tetrahedron Lett.*, 2009, **50**, 5868; (d) Q. Yang, Y. Wang, D. Lin and M. Zhang, *Tetrahedron Lett.*, 2013, **54**, 1994; (e) A. M. Haydl, K. Xu and B. Breit, *Angew. Chem., Int. Ed.*, 2015, **54**, 7149; (f) F. Damkaci, A. Alawaed and E. Vik, *Tetrahedron Lett.*, 2016, **57**, 2197; (g) C. Yuan, Y. Zhao and L. Zheng, *Synlett*, 2019, **30**, 2173.

8 For selected reports, see: (a) M. L. Kantam, T. Ramani and L. Chakrapani, *Synth. Commun.*, 2008, **38**, 626; (b) Y.-C. Teo and G.-L. Chua, *Chem.-Eur. J.*, 2009, **15**, 3072; (c) Y.-S. Liu, Y. Liu, X.-W. Ma, P. Liu, J.-W. Xie and B. Dai, *Chin. Chem. Lett.*, 2014, **25**, 775; (d) T. Niwa, H. Ochiai, Y. Watanabe and T. Hosoya, *J. Am. Chem. Soc.*, 2015, **137**, 14313; (e) Q. Zhou, F. Du, Y. Chen, Y. Fu, W. Sun, Y. Wu and G. Chen, *J. Org. Chem.*, 2019, **84**, 8160; (f) A. Y. Jiu, H. S. Slocumb, C. S. Yeung, X.-H. Yang and V. M. Dong, *Angew. Chem., Int. Ed.*, 2021, **60**, 19660.

9 For selected review, see: M. G. Vinogradov, O. V. Turova and S. G. Zlotin, *Org. Biomol. Chem.*, 2019, **17**, 3670.

10 For selected reports, see: (a) L. Yang, L.-W. Xu, W. Zhou, L. Li and C.-G. Xia, *Tetrahedron Lett.*, 2006, **47**, 7723; (b) Y.-J. Wu, *Tetrahedron Lett.*, 2006, **47**, 8459; (c) J.-M. Xu, C. Qian, B.-K. Liu, Q. Wu and X.-F. Lin, *Tetrahedron*, 2007, **63**, 986; (d) C. Qian, J.-M. Xu, Q. Wu, D.-S. Lv and X.-F. Lin, *Tetrahedron Lett.*, 2007, **48**, 6100; (e) Y. Wu, J. Wang, P. Li and F. Y. Kwong, *Synlett*, 2012, **23**, 788; (f) J. Wang, P.-F. Li, S. H. Chan, A. S. C. Chan and F. Y. Kwong, *Tetrahedron Lett.*, 2012, **53**, 2887; (g) H. N. Khachatryan, S. S. Hayotsyana, K. S. Badalyana, H. S. Attaryana and G. V. Hasratyan, *Russ. J. Gen. Chem.*, 2015, **85**, 1982; (h) H. N. Khachatryan, *Russ. J. Gen. Chem.*, 2017, **87**, 572; (i) H. Zhou, X. Xiang, B. Ma, G. Wang, Z. Zhang and J. Yang, *Synthesis*, 2019, **51**, 3142; (j) K. Kodolitsch, F. Gobec and C. Slugovc, *Eur. J. Org. Chem.*, 2020, **2020**, 2973; (k) A. Gupta and M. L. Condakes, *J. Org. Chem.*, 2021, **86**, 17523; (l) V. Srinivasulu, M. A. A. Khanfar, H. A. Omar, R. ElAwady, S. M. Sieburth, A. Sebastian, D. M. Zaher, F. A. Marzooq, F. H and T. H. Al-Tel, *J. Org. Chem.*, 2019, **84**, 14476; (m) V. Srinivasulu, I. Shehadi, M. A. Khanfar, O. G. Malik, H. Tarazi, I. A. Abu-Yousef, A. Sebastian, N. Baniodeh, M. J. O'Connor and T. H. Al-Tel, *J. Org. Chem.*, 2019, **84**, 934; (n) V. Srinivasulu, P. Schilf, S. Ibrahim, M. A. Khanfar, S. M. Sieburth, H. Omar, A. Sebastian, R. A. AlQawasmeh, M. J. O'Connor and T. H. Al-Tel, *Nat. Commun.*, 2018, **9**, 4989.

11 For selected reports, see: (a) P. Diner, M. Nielsen, M. Marigo and K. A. Jørgensen, *Angew. Chem., Int. Ed.*, 2007, **46**, 1983; (b) Q. Lin, D. Meloni, Y. Pan, M. Xia, J. Rodgers, S. Shepard, M. Li, L. Galya, B. Metcalf, T.-Y. Yue, P. Liu and J. Zhou, *Org. Lett.*, 2009, **11**, 1999; (c) J. Zhang, Y. Zhang, X. Liu, J. Guo, W. Cao, L. Lin and X. M. Feng, *Adv. Synth. Catal.*, 2014, **356**, 3545; (d) P. Li, F. Fang, J. Chen and J. Wang, *Tetrahedron: Asymmetry*, 2014, **25**, 98; (e) S.-J. Lee, J.-Y. Bae and C.-W. Cho, *Eur. J. Org. Chem.*, 2015, **2015**, 6495.

12 F. Chevallier, Y. S. Halauko, C. Pecceu, I. F. Nassar, T. U. Dam, T. Roisnel, V. E. Matulis, O. A. Ivashkevich and F. Mongin, *Org. Biomol. Chem.*, 2011, **9**, 4671.

13 For selected reports, see: (a) I. Meskini, L. Toupet, M. Daoudi, A. Kerbal, B. Bennani, P. H. Dixneuf, Z. H. Chohan, A. C. L. Leite and T. B. Hadda, *J. Braz. Chem. Soc.*, 2010, **21**, 1129; (b) I. Meskini, L. Toupet, M. Daoudi, A. Kerbal, M. Akkurt, Z. H. Chohan and T. B. Hadda, *J. Chem. Crystallogr.*, 2010, **40**, 812; (c) L. Patalag, J. A. Ulrichs, P. G. Jones and D. B. Werz, *Org. Lett.*, 2017, **19**, 2090.

14 For selected reports, see: (a) F. Zigheimat, M. R. Islami and F. Nourmohammadian, *Synlett*, 2014, **25**, 229; (b) J. Yang, Y. Bao, H. Zhou, T. Li, N. Li and Z. Li, *Synthesis*, 2016, **48**, 1139.

15 For selected reports on the aza-Michael addition of 1*H*-benzotriazole, see: (a) G. Luo, S. Zhang, W. Duan and W. Wang, *Synthesis*, 2009, **9**, 1564; (b) J. Lv, H. Wu and Y. Wang, *Eur. J. Org. Chem.*, 2010, **2010**, 2073; (c) J. Wang, W. Wang, X. Liu, Z. Hou, L. Lin and X. M. Feng, *Eur. J. Org. Chem.*, 2011, **2011**, 2039; (d) S.-L. Xie, Y.-H. Hui, X.-J. Long, C.-C. Wang and Z.-F. Xie, *Chin. Chem. Lett.*, 2013, **24**, 28; (e) S.-W. Chen, G.-C. Zhang, Q.-X. Lou, W. Cui, S.-S. Zhang, W.-H. Hu and J.-L. Zhao, *ChemCatChem*, 2015, **7**, 1935; (f) Z. Li, T. Li, R. Fu and J. Yang, *Heterocycl. Commun.*, 2017, **23**, 287.

