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The MoS,/V,(Bz)g and graphene/V,(Bz)g vdW junctions are designed and the transport properties of their
four-terminal devices are comparatively investigated based on density functional theory (DFT) and the
nonequilibrium Green's function (NEGF) technique. The MoS, and graphene nanoribbons act as the
source-to-drain channel and the spin-polarized one-dimensional (1D) benzene-V multidecker complex
nanowire (V7(Bz)g) serves as the gate channel. Gate voltages applied on V5(Bz)g exert different influences
of electron transport on MoS,/V,(Bz)g and graphene/V,(Bz)g. In MoS,/V,(Bz)g, the interplay of source and
gate bias potentials could induce promising properties such as negative differential resistance (NDR)
behavior, output/input current switching, and spin-polarized currents. In contrast, the gate bias plays an

insignificant effect on the transport along graphene in graphene/V,(Bz)s. This dissimilarity is attributed to
Received Sth April 2022 the fact that the conductivity follows th f MoS, < V,(B2) hene. These t t
Accepted 6th June 2022 e fact that the conductivity follows the sequence of MoS, < V(Bz)g < graphene. These transpor

characteristics are examined by analyzing the conductivity, the currents, the local density of states
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1. Introduction

Two-dimensional (2D) materials have become the up-to-date
focal point of research in past decades owing their prominent
electronic, optical, and magnetism properties, which are used
in wide fields from field effect transistors (FETs),' optoelec-
tronics,*” to spintronics.*'® As the brightest star in the 2D
material family, graphene has attracted constant academic and
individual research interest and enthusiasm." Inspired by
these pioneering works, various kinds of 2D materials, for
example, 2D transition metal dichalcogenides (TMDs),'*** have
sprung up and become research hotspots. Among TMDs, MoS,
nanosheets have drawn special attention due to their high
stability, good semi-conductivity, large surface, etc., which are
desirable in nano electronic devices.”® In recent years,
numerous efforts have been devoted to fabricate van der Waals
(vdW) heterojunctions of 2D materials by stacking alien
components using various chemical techniques for engineering
expected and improved properties toward practical
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and the transmission spectra. These

results are valuable in designing multi-terminal

applications.>*** The carrier mobility of 2D materials can be
retained from vdW interactions, since it does not destroy the
bonding properties in intralayers. The interlayer coupling
between the two vdW-stacked 2D layers can result in novel
physical properties. Many theoretical works have focused on
studying the transport properties of these 2D heterojunctions
by constructing two-terminal devices. However, in experiments,
electron transport is usually measured using a four-probe
apparatus.®*®” On the other hand, for most practical applica-
tions, multi-terminal electronic devices are needed. Therefore,
it is highly necessary to theoretically investigate the transport
properties of multi-terminal devices, which is still less studied
to date.

Simultaneously, with the approaching physical limit of
silicon based transistors, seeking emerging device architectures
and new electronic materials has become an essential topic to
meet the Moore's law. Recently, spintronic devices have
received extensive attentions due to the combined merits of the
electron transporting, the magnetic moment, and the electron
spin. Therefore, introducing spin-polarized component into 2D
materials to construct vdW heterojunctions is anticipated to be
an effective strategy to explore novel functional materials with
desirable properties.**** However, as far as we know, studies on
the spin-polarized 2D vdW heterojunctions are still scarce from
both experimental and theoretical points of view. The one-
dimensional (1D) benzene-V multidecker complexes nano-
wire, V,(Bz),,, not only has been successfully synthesized from

© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Schematic plots of MoS,/V,(Bz)g and Graphene/V,(Bz)g four-terminal devices. Where lead-S, lead-D, and lead-G represent the source,
drain, and gate leads, respectively. Vs and Vg represent the bias voltage applied on lead-S and the gate voltage applied on lead-G, respectively.

reaction of laser-vaporized metal atoms with CsHg in a He
atmosphere, but also have been imaged or detected using
scanning tunneling microscopy (STM), UV-vis and IR, electron
paramagnetic resonance (EPR), time-of-flight mass spectros-
copies, and photoionization spectroscopies.”*** Experimental
works as well as theoretical studies have confirmed that the
unpaired electrons on the V atoms are coupled ferromagneti-
cally (FM), and also suggest that the ground state of V,(Bz),,
exhibits half-metallicity and spin filter effect.***¢

Further onward, stimulated by the splendor work on MoS,
transistors using a single-walled carbon nanotube as the gate
electrodes to tune the transport properties,” we construct four-
terminal devices for MoS, and graphene heterojunctions: MoS,
and graphene are connected to the source and drain leads,

while the spin polarized V,(Bz),, nanowire serves as gate
terminals. Bias voltages and gate voltages are applied on the
source lead and gate lead, respectively. The synergistic tuning
effects of the bias and gate voltages on transport properties of
MoS, and graphene are investigated by employing the density
functional theory (DFT) with non-equilibrium Green's function
(NEGF) methodology.

2. Models and computational
methods

Fig. 1 shows the structures of the four-terminal devices for
MoS,/V,(Bz)s and graphene/V,(Bz)s vdW heterojunctions. MoS,
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Fig.2 The calculated potential distribution of the buffers near the leads in the two four-terminal devices, (a) is that in MoS,/V(Bz)g device and (b)

is that in graphene/V,(Bz)g device.
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Fig. 3 Conductance for channel S-D, channel S—-G, channel D-G, and channel G-G as a function of Vg at fixed values of Vs = 0.0, 0.2, or 0.4 V

of the four-terminal MoS,/V(Bz)g and graphene/V,(Bz)g devices. (a and b) Are for the MoS,/V,(Bz)g and graphene/V,(Bz)g devices, respectively.

and graphene offer the source-to-drain scatter region, and
V,(Bz)g nanowire provides the gate channel. For the sake of
simplicity, the leads are denoted as lead-S, lead-D, and lead-G
for the source, drain, and gate leads, respectively. The source-
to-drain direction is defined as the z direction, and the gate to
gate direction is referred as the x direction. The MoS, and
graphene are placed in the x x z plane. The MoS, scatter region
contains 9-layered S and 8-layered Mo in the z direction, as well

17424 | RSC Adv, 2022, 12, 17422-17433

as 4-layered S and 3-layered Mo in the x direction, which extends
a 11.33 A x 21.90 A (x x z) plane. A similar size of graphene
ribbon in the x and z direction (11.07 A x 19.89 A) is tailored as
the scatter region, too. Such scatter region is long enough in the
z direction to ignore the interaction between lead-S and lead-D.
This can be confirmed by the small potential changes near the
electrodes (<0.1 eV) calculated for the two devices (Fig. 2). Every
dangling bonds at edges are saturated by H atoms to stabilize

© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Total currents for lead-S, lead-D, and lead-G as a function of Vg at fixed values of Vs = 0.0, 0.2, or 0.4 V of the four-terminal devices,
where (a) shows those in MoS,/V,(Bz)g devices, and (b) is in graphene/V(Bz)g.

the system. The V,(Bz)s nanowire overlies the center of MoS,
and graphene surfaces with a vdW distance from them, and its
longitudinal axis is parallel to the x direction and perpendicular
to the z direction. Each lead-G in MoS,/V,(Bz)s and graphene/
V,(Bz)g is modeled by a Au(100)-(3 x 3) surface with 8 layers.
The Au-C distance is set to be 2.05 A based on their covalent
radius.”® MoS, is semi-conductor, so we use Au(100)-(6 x 3)
surfaces with 5 layers as the lead-S and lead-D for MoS,/V,(Bz)s.
As the S atom has good affinity with the gold surface, dithiolate
derivatives have been used for the construction of metal/scatter
region/metal devices in general.*~* Therefore, in the present
work, we also use the S atom layer of MoS, to link the Au elec-
trodes. The S-Au distance was set as 2.34 A according to the
reported literature.®® To ensure that the bonds match well
between graphene and leads, we elongate the graphene addi-
tionally by 31.26 A as the lead-S and lead-D. Since graphene
nanoribbon is semi-conductor along the armchair direction, we
use the N atoms to dope the graphene lead-S and lead-D since
the N atoms can introduce additional 7 electrons to make the
two leads become conductor.”* A vacuum of 20 A in y direction
is involved to eliminate the coupling between adjacent images.

© 2022 The Author(s). Published by the Royal Society of Chemistry

The DFT method with generalized gradient approximation
(GGA) implemented in ATK package is employed to optimize
the four-terminal structures. For both MoS,/V,(Bz)s and gra-
phene/V;(Bz)g four-terminal devices, all the leads are frozen and
the scatter regions are optimized. The self-consistent total
energies are converged to 10~ * eV and the forces are converged
to 0.05 eV A~'. The optimized cartesian coordinates of all the
models are given in Tables S1 and S2 in the ESI.7 The optimized
distance is 2.11 A from MoS, to V,(Bz)s and 1.95 A from gra-
phene to V,(Bz)g, a typical vdW interaction. Then, the transport
properties of the optimized devices are calculated using DFT
with NEGF methodology within Nanodcal software package.*>**
The linear combination of atomic orbitals (LCAO) is employed
to expand physical parameters. The standard nonlocal norm-
conserving pseudopotentials is used to describe the atomic
core, and the double-zeta polarized (DZP) basis set is for valence
electronic orbitals.’”*® The exchange-correlation function is
considered by the local density approximation (LDA).***® The k-
point for the central region is meshed as 1 x 1 x 1 (x X y x 2),
and that is 1 x 1 x 100 for lead-S and lead-D, 100 x 1 x 1 for
lead-G. It is worth noting that, in all calculations the spin of V

RSC Adv, 2022, 12,17422-17433 | 17425
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Fig.5 Spin currents for lead-S, lead-D, and lead-G as a function of Vg at fixed values of Vs = 0.0, 0.2, or 0.4 V of the four-terminal MoS,/V,(Bz)g
device. (a) Depicts the spin-up states of MoS,/V5(Bz)g, and (b) depicts those for spin-down state, respectively.

atoms is considered by using LAD + U scheme, and the U-J is set
as 3.0 eV.** 160 Rydberg cutoff energy is applied.

The spin-dependent current in leads for multi-terminal
system can be obtained using the Landauer-Biittiker formula
(1):57,61,62

I=1 Zj AET4(E, Voo ) H(E) ~f(E)] ()
where f,, (f3) describes the Fermi distribution functions of lead-
o (lead-B). V,, (Vp) is the bias voltages applied on lead-a (lead-).
o = 1, | is the spin index. The transmission coefficient T,g
between lead-a. and lead-B is dependent on E, V,, and V. And
the total currentis I =11 +1].

Considering the multi-terminals, the conductance between
lead-a. and lead-p can be evaluated by formula (2):

82

Gup = 7

(2)

17426 | RSC Adv, 2022, 12, 17422-17433

3. Results and discussion

In this section, we mainly document on how the bias voltage
(Vs) and the gate voltage (V) synergistically influence the
transport properties of MoS,/V,(Bz)s and graphene/V,(Bz)g
vdW junctions from the aspects of conductance, currents,
LDOS, and transmission. The Vg is set as 0.0, 0.2, 0.4 V,
respectively. And at each certain Vs, the Vg ranges from 0.0 to
1.0 V by a step of 0.2 V.

3.1 Conductivity

To convenient description, the channels between any two
terminals are denoted as channel S-D, channel S-G, channel D-
G, and channel G-G.

Fig. 3 shows the calculated conductance of each channel of
MoS,/V,(Bz)g and graphene/V,(Bz)g devices with the variation of
Vs and Vg. For the sake of comparison, the scales of conduc-
tance in vertical-axle in Fig. 3 are the same for all the channels,
and Fig. S1t with adapted vertical-axis scales is supplied as

© 2022 The Author(s). Published by the Royal Society of Chemistry
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ESL{ The conductance is bigger than 0.8¢°/A, in the range of
0.5-1.0¢*/h, and smaller than 0.3¢*/h for graphene channel S-D,
V,(Bz)g channel G-G, and MoS, channel S-D, respectively. That
is, the conductivity follows the sequence of MoS, < V,(Bz)g <
graphene. Therefore, using V,(Bz)g as gate may play different
effects on tuning electron transporting through MoS, and gra-
phene. Since the V,(Bz)gz nanowire attaches to MoS, and gra-
phene via vdW interaction, the conductance of channels S-G
and D-G are very small (<0.03¢*/%). The potentials from gate and
from source couple in different degrees in MoS,/V,(Bz)s and
graphene/V,(Bz)s under various Vs and V. This integrates the
change of resistance from source to drain, which makes the
conductance goes up or down.

3.2 Current

To further understand the transport property of the four-
terminal devices, we calculated the total currents, Ig, Ip, and
I, passing through lead-S, lead-D, and lead-G, respectively.
Currents from lead to center region are input and defined as

© 2022 The Author(s). Published by the Royal Society of Chemistry

positive values, while those from center region to lead are
output and appointed as negative values.

Fig. 4 displays the total currents through the leads with the
variation of Vs and Vg applied on MoS,/V,(Bz)s and graphene/
V,(Bz)g devices. Multi-channels in four-terminal devices could
cause complicated transport properties aroused from the
intricacy of channel couplings. Actually, the magnitude of each
lead current comes from the synergistic action of all pathways.
For example, though lead-S current is directly related to chan-
nels S-D and S-G, channels S-D and S-G are simultaneously
influenced by channels D-G and G-G.

Now we consider the total currents, I, Ip, and Ig of MoS,/
V,(Bz)g device (Fig. 4a). With free gate voltage, a small amount of
current leaks off lead-G when applied Vs = 0.2 and 0.4 V, while the
lead-G current becomes input once Vg imposed, which could
exert considerable effect on the source-to-drain transporting. The
lead-D currents are always output owing to its low voltage
potential compared with other three leads. At Vg = 0.0 V, lead-S
and lead-D give output currents with the absolute values of Is <
1.0 pA and Ip < 0.5 pA, which are induced by the applied gate

RSC Adv, 2022,12,17422-17433 | 17427
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Table 1 Local density of states (LDOS) of the four-terminal MoS,/V,(Bz)g and graphene/V(Bz)g devices at various Vg exemplified by Vs = 0.2V

LDOS at Vs = 0.2 V

MoS,/V,(Bz)g device

Graphene/V,(Bz)s device

Ve (V) Spin-up

Spin-down

Spin-up

0.0

0.2

0.4

0.6

0.8

1.0

voltages. Interestingly, regardless of any Vs, the I, In, and Ig
curves present a pattern of up and down oscillation with the
changing of Vg, resulting in NDR peaks. Of course, the magni-
tude, the position, and the numbers of these NDR peaks are
different for different leads at various Vg and Vs. In fact,
conductivity, as a complicated phenomenon, relates to compre-
hensive factors such as scatter region structure, scatter region-
lead interaction, couplings between channels, changes of resis-
tance induced by voltages, etc. For example, the asymmetric
character of MoS, structure not only induces different resistance
for different channels, but also induces different left and right
MoS,-lead interactions. Therefore, at zero Vg bias, the Is and I
curves give different shapes. All these comprehensive factors may
also be responsible for the dissimilarity of the NDR behaviors of
Is, I, and Ig. When nonzero Vs is applied, as the Vg increases, the
input Is current decreases as a whole and could switches to output

17428 | RSC Adv, 2022, 12, 17422-17433

at certain Vg, e.g., at Vg = 0.6 V for V5 = 0.2 Vand at V; = 0.4 and
0.8 V for Vg = 0.4 V. Therefore, the currents across lead-S are
rather dependent on the interplay of Vg and V. At Vs = 0.2 and
0.4 V, the absolute values of I, rise comparing with Vs = 0.0 V.
This is a reasonable result from the higher potential injected into
the channel S-D. The magnitude of the output currents of lead-D
tends to be balanced around 1.0 pA. All these properties are much
desirable for designing functional devices with fascinating char-
acteristics such as NDR behavior and input/output switching.
As to the graphene/V,(Bz)g device, the total currents of Is, I,
and I; display a much different feature from MoS,/V,(Bz)g as
shown from Fig. 4b. Intuitively, the gate V plays a small role on
the carries transport via the graphene plane. This result can be
deduced from two phenomena: one is that the magnitudes of Is
and I, (10-40 pA) are much higher than I (<1.0 pA) under
applied Vg; another is that the input values of Ig are almost

© 2022 The Author(s). Published by the Royal Society of Chemistry
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state in MoS,/V,(Bz)g device, and (b) is that for graphene/V,(Bz)g device.

equal to the output data of I, at given Vg and Vg, indicating that
the injected Is almost arrives to the lead-D completely. No
evident NDR behavior is observed for graphene/V,(Bz)s. In
addition, unlike in MoS,/V,(Bz)s which there exists input/
output switching of lead-S, the current of lead-S in graphene/
V,(Bz)s is always input within the considered gate bias. The
reason for these different phenomena between MoS,/V,(Bz)s
and graphene/V,(Bz)g lies in the fact that graphene has higher
conductivity than MoS,.

To investigate how the spin-polarized character of V,(Bz)g
influence the transport property of MoS,/V,(Bz)g and graphene/
V,(Bz)g, we computed the spin-up currents, Iss, Int, and Ig as
well as the spin-down currents, Is |, In |, and I |, for lead-S, lead-
D, and lead-G, respectively. The results are plotted in Fig. 5 and
6 as a function of Vg at a given Vs.

As expected, for V;(Bz)g in both two devices, the I remains
nearly zero, while the I, possesses the same magnitude to the
total Ig. This thoroughly inherits the intrinsic spin-polarized
feature of pure V,(Bz)s.°**® Quite significantly, the spin polar-
ized feature of V,(Bz)s induces different polarized transport
property from MoS,/V,(Bz)s to graphene/V,(Bz)s. In the case of
MoS,/V,(Bz)s, spin-up and spin-down channels of lead-S and
lead-G are split by the polarization property of V,(Bz)s. At Vg =
0.0 V, the spin-up paths of both lead-S and lead-D of MoS,/
V,(Bz)g are closed with almost zero current, and the total
currents Is and I, entirely come from the spin-down I, and I .
This is mainly due to the fact that the spin-up channel of V,(Bz)g

© 2022 The Author(s). Published by the Royal Society of Chemistry

is almost closed and hence cannot cause perturbation on the
spin-up pathway of MoS,. On the contrary, the spin-down state
of V,(Bz)g dominates electron transporting, enabling strong
coupling with the spin-down channel of MoS,. Under nonzero
Vs, the currents through lead-S and lead-D in MoS,/V,(Bz)g are
polarized by a large extent. For the spin-up state, the currents of
Is; are all input and those of I, are all output. Both Is; and Iy
curves of MoS,/V;(Bz)s change smoothly in a small scale of 0.0-
0.5 pA along the variation of V. In striking contrast, the spin-
down currents of Is; and Ip; fluctuate significantly with the
changing of Vg, with a large range of from 1.0 to —0.5 pA for Ig
and from 0.0 to —1.7 pA for I, | . Observed carefully, one can find
that the changing trends of Is; and I, curves are roughly
analogous to those of the total Is and I;,. The NDR behavior and
the input/output switch character of MoS,/V,(Bz)s are mainly
dominated by the spin-down state. Now turn to graphene/
V,(Bz)s, quite different from MoS,/V,(Bz)g, no matter what Vg
and Vg applied, the spin-up currents are almost equivalent to
spin-down values for both lead-S and lead-D. Though the
polarized characteristic of V,(Bz)g is preserved in graphene/
V,(Bz)g, its conductivity is too much weaker than graphene that
can not exert valid influence on channel S-D.

3.3 Local density of states

Table 1 displays the computed local density of states (LDOS)
results of two devices under Vg = 0.2 V, where the even LDOS
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distribution suggests an effective transport channel. The
scenario of the polarized transport behavior of MoS,/V,(Bz)s
leads becomes more obvious by analyzing the LDOS distribu-
tions. As representative example, it is clear that the LDOS of the
spin-down state of V,(Bz)g delocalizes stronger than the spin-up
state, which could bring about coupling with the spin-down
state of MoS,, and consequently, lead to the spin-polarized
splitting of MoS,/V,(Bz)s. The electronic potential on the
whole system changes along with the relative magnitude of Vg
and Vg, as can be reflected from the LDOS distributions. Clearly,
charge carries in the spin-up state of either channel S-D or
channel G-G are blocked more seriously than the spin-down
state. As for the graphene/V,(Bz)s device, the spin-down
passage of V,(Bz)g is open with uniform LDOS distribution
while the spin-up path is closed with almost no LDOS. Despite
of the maintained polarized character of V,(Bz)s, spin-up and
spin-down channels along graphene has nearly identical LDOS
spreading. This again demonstrates the unpolarized character
of lead-S and lead-D currents.

3.4 Transmission coefficients and spectra

To further shed light on how the gate bias tune the transport
property of MoS,/V,(Bz)s and graphene/V,(Bz)s devices, we
computed spin polarized transmission coefficients (TC) of each

Vs=0.0v

O
| I\

Transmission

pa——

Transmission
NSIESSS

Transmission

(@) MoS,/V4+(B2)s

Transmis s'iun

View Article Online
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channel at the case of Vg = 0.0 V and V; from 0.0 to 1.0 V, and
the results are shown in Fig. 7.

Evidently, in both MoS,/V,(Bz)s and graphene/V,(Bz)g
devices, spin-down channel G-G composed of V,(Bz)g has much
higher TC than other channels, again demonstrating the
preserved striking half-metallic character of V,(Bz)s. One can
find that, in MoS,/V,(Bz)s, the main channel S-D consisting of
MoS, can not be largely influenced by the spin polarized char-
acter of the gate V,(Bz)s, as can be clearly seen from the
comparable spin-up and spin-down TC. However, the spin
polarized V,(Bz)g directly consists of channels S-G and D-G,
and thereby, it could induce spin split of channels S-G and D-G
and generate larger spin-down TC than spin-up TC. Therefore,
the spin polarized transport character of MoS,/V,(Bz)g mainly
derives from the perturbation of the spin-down state of V,(Bz)g
upon the channels S-G and D-G. Regarding graphene/V,(Bz)g,
charge carriers can easily flow from lead-S to lead-D since
channel S-D has large TC, while other channels are almost
closed with nearly zero TC except the spin-down channel G-G.
In addition, spin-up and spin-down states of channel S-D
display the same TC curves, illustrating the ignoring polariza-
tion influence of V,(Bz)s on graphene.

Furtherly, we calculated the transmission spectra (TS) of the
main channel S-D for MoS,/V,(Bz)s and graphene/V,(Bz)g

Transmissjon

Transmiss 'Eon

(b) graphene/V;(B2)g

Fig. 8 Transmission spectra of channel S-D in MoS,/V,(Bz)g and graphene/V,(Bz)g device with variational Vg from 0.0 to 1.0 V at a certain Vs,
where (a) depicts the case in MoS,/V5(Bz)g, and (b) is that for graphene/V#(Bz)g, respectively.
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devices at each Vs and Vg, as plotted in Fig. 8. In the case of MoS,/
V,(Bz)g, at Vs = 0.0 V and Vi = 0.0 V, TS peak located above the E¢
mainly arises from the native MoS,. When adding Vs merely, an
extra peak appears near the Ef owing to the gate carries injection
into the channel S-D of MoS,/V,(Bz)s. Once adding Vs together
with Vg, only one peak exists below the E¢ due to the suppression
effect of the incoming Vs potential upon the Vg. Furthermore,
with the increasing of Vg, such suppression effect in MoS,/
V,(Bz)s becomes more significant, as the TS peak moves farer
away from the E;. In contrast, regardless of Vs and Vg, lots of TS
peaks of channel S-D appear around the E; of graphene/V,(Bz)g,
again indicating the high conductivity of graphene.

4. Conclusion

The MoS,/V,(Bz)s and graphene/V,(Bz)g; vdW junctions are
designed and the transport properties of their four-terminal
devices are comparatively investigated based on the DFT and
NEGF techniques. The MoS, and graphene nanoribbons act as
the source-to-drain channel and the spin-polarized V,(Bz)g
nanowire serves as the gate channel. The transport character-
istic is explored by investigating the conductance, currents,
LDOS, and transmission spectra. Gate voltages applied on
V,(Bz)g exert different influences of electron transporting on
MoS,/V,(Bz)s and graphene/V,(Bz)s. The interplay of source and
gate bias potentials generates a pronounced influence on the
transport property of MoS,/V,(Bz)s. Evident NDR behavior,
input/output current switches, as well as spin-polarized
currents are found for MoS,/V,(Bz)s. In contrast, the gate bias
plays insignificant effect on the transporting along graphene.
These results are promising in designing multi-terminal nano-
electronic devices.
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