



Cite this: RSC Adv., 2022, 12, 12253

 Received 18th March 2022  
 Accepted 7th April 2022

 DOI: 10.1039/d2ra01772e  
[rsc.li/rsc-advances](http://rsc.li/rsc-advances)

## Light-driven oxidation of CH<sub>4</sub> to C<sub>1</sub> chemicals catalysed by an organometallic Ru complex with O<sub>2</sub>†

Tatsuya Nakano,<sup>a</sup> Tsukasa Abe,<sup>Id, b</sup> Takahiro Matsumoto,<sup>Id, \*acd</sup> Kento Kimura,<sup>a</sup> Genta Nakamura,<sup>a</sup> Shinya Hayami,<sup>Id, e</sup> Yoshihito Shiota,<sup>Id, \*b</sup> Kazunari Yoshizawa,<sup>Id, \*bc</sup> and Seiji Ogo,<sup>Id, \*ac</sup>

CH<sub>4</sub> conversion is one of the most challenging chemical reactions due to its inertness in terms of physical and chemical properties. We have achieved photo-induced C–H bond breaking of CH<sub>4</sub> and successive C–O bond formation to form CH<sub>3</sub>OH concomitant with HCHO by an organometallic Ru complex with O<sub>2</sub>.

CH<sub>4</sub> is one of the most promising resources of energy and materials because it has high affinity with renewable energy, and has become capable of being easily and abundantly obtained in biomethane form from biomass by means of recent technological developments.<sup>1,2</sup> In order to use CH<sub>4</sub> in industrial processes instead of naphtha, innovative and useful transformation methods are now strongly demanded. However, its inertness in view of its physical and chemical properties makes CH<sub>4</sub> one of the most unreactive molecules.<sup>3</sup> To date, there have been three type of catalysts, *i.e.*, enzymatic, heterogeneous and homogeneous, found for the direct oxidation of CH<sub>4</sub> to CH<sub>3</sub>OH with O<sub>2</sub> as an oxidant.<sup>4–7</sup> Soluble and particulate methane monooxygenases (sMMOs and pMMOs) are well-known enzymes that oxidise CH<sub>4</sub> to CH<sub>3</sub>OH with O<sub>2</sub> under ambient conditions. Their active sites are constructed from Fe and Cu centres for sMMOs and pMMOs, respectively.<sup>4</sup> They cleave the unreactive C–H bond of CH<sub>4</sub> with subsequent C–O bond formation, proposed to be promoted by the Fe and Cu oxido species. By mimicking the active-site structure of sMMOs and pMMOs, heterogeneous catalysts<sup>5,6</sup> and homogeneous Cu catalysts<sup>7</sup> have been developed to catalyse aerobic CH<sub>4</sub> oxidation to CH<sub>3</sub>OH. The heterogeneous zeolite catalysts need high temperature, and the homogeneous Cu catalysts need H<sub>2</sub>O<sub>2</sub> as

a reductant for the catalytic reaction. These catalysts may possess metal oxido cores that can promote C–H bond activation like MMOs. In addition to the MMO-inspired catalysts, a homogeneous inorganic compound of ClO<sub>2</sub> works as a light-triggered oxidizing reagent to convert CH<sub>4</sub> to CH<sub>3</sub>OH and HCOOH with O<sub>2</sub> in a non-catalytic system.<sup>8</sup> Homogeneous organometallic complexes other than CH<sub>4</sub>-to-CH<sub>3</sub>OH catalysts have also been designed for the conversion of CH<sub>4</sub> to various significant compounds, capitalizing on the flexible and designable tuning of the ligand environment surrounding the metal centre(s).<sup>9</sup> Recently, various heterogeneous catalysts have also been developed for CH<sub>4</sub> conversion.<sup>6</sup> While many efforts have been made to date for catalytic CH<sub>4</sub> conversion, the direct catalytic conversion of CH<sub>4</sub> to C<sub>1</sub> chemicals of CH<sub>3</sub>OH and HCHO by a homogeneous organometallic catalyst with light irradiation has not yet been reported. Here, we report aerobic CH<sub>4</sub> oxidation to CH<sub>3</sub>OH and HCHO catalysed by a homogeneous Ru complex in water with input of light energy. Most photocatalysts of organometallic complexes have been developed for redox reactions that mean single electron transfer between metal complexes and external electron donors/acceptors.<sup>10</sup> Recently, charge transfers, such as ligand-to-metal or metal-to-ligand originating from organometallic complexes, have been utilized for chemical reactions such as material transformations apart from single-electron transfer reactions.<sup>9g,11</sup> This advanced method should expand the possibility of photo-induced organometallic catalysis. We have developed a novel photo-driven C–H activating catalyst by means of charge transfer derived from a homogenous Ru complex.

<sup>a</sup>Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan. E-mail: matsumoto.takahiro.236@m.kyushu-u.ac.jp

<sup>b</sup>Institute for Materials Chemistry and Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan

<sup>c</sup>International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan

<sup>d</sup>Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Kawaguchi 332-0012, Japan

<sup>e</sup>Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan

† Electronic supplementary information (ESI) available. See <https://doi.org/10.1039/d2ra01772e>



Fig. 1 Synthesis of bis(μ-oxido)  $\text{Ru}_2^{IV}$  complex 2 from oxygenation of mononuclear  $\text{Ru}^{II}$  triaqua complex 1 in  $\text{H}_2\text{O}$ .

environment. Density functional theory (DFT) calculations indicated that 2 was stabilized in  $\text{H}_2\text{O}$  but destabilized under vacuum conditions relative to the corresponding starting  $\text{Ru}^{II}$  triaqua complex 1 (Fig. S1†). The oxygenated species 2 is stable in  $\text{H}_2\text{O}$  at ambient temperature unlike bis(μ-oxido)  $\text{Fe}_2$  species that are generally unstable at ambient temperature.<sup>12</sup> Its stability gave us a chance to irradiate 2 with light to form a highly active excited state.

The structure of 2 was estimated by electrospray ionization-mass spectrometry (ESI-MS) (Fig. S2 and S3†) and DFT calculations (Fig. 2). The positive-ion ESI mass spectrum of 2 in  $\text{H}_2\text{O}$  shows a prominent signal at  $m/z$  521.9 that corresponds to  $[2 + \text{OH}]^+$ , and a characteristic isotopic distribution that matches well with the calculated isotopic distribution (Fig. S2a–c†). It can be strongly suggested that complex 2 bears oxido ligands by isotope-labelling experiments using  $\text{O}_2$  in  $\text{H}_2^{18}\text{O}$  and  $^{18}\text{O}_2$  in  $\text{H}_2\text{O}$  during oxygenation of 1. The positive-ion ESI mass spectrum obtained from the reaction of 1 with  $\text{O}_2$  in  $\text{H}_2^{18}\text{O}$  shows a prominent signal at  $m/z$  527.9 that corresponds to  $[^{18}\text{O}\text{-labeled } 2 + \text{OH}]^+$  (Fig. S2d†), while the positive-ion ESI mass spectrum obtained from the reaction of 1 with  $^{18}\text{O}_2$  in  $\text{H}_2\text{O}$  shows a prominent signal at  $m/z$  521.9 that corresponds to  $[2 + \text{OH}]^+$  (Fig. S2e†). These labelling experiments clearly reveal the presence of water-exchangeable ligands in 2 (Fig. S3†), which means that the oxido ligands should be coordinated to the  $\text{Ru}^{IV}$  centre. It is well known that oxido ligand(s) coordinating to metal centre(s) can be easily exchanged by external water.<sup>13</sup> The high-valent metal centre is likely to bind an oxido ligand rather than a hydroxido ligand because such an oxido ligand has little ability to accept a proton to form a hydroxido ligand, caused by the Lewis basicity of the oxido ligand necessarily being lowered by delocalizing the electron density of the electron-rich oxido ligand toward the electron-deficient high-valent metal centre.<sup>12,14</sup>



Fig. 2 Optimized structure of bis(μ-oxido)  $\text{Ru}_2^{IV}$  complex 2. The structure of 2 in the ground singlet state was optimized by DFT calculations. Units are in Å. The italicized values represent the spin densities of the Ru and O atoms. H atoms are omitted for clarity.

DFT calculations indicated that the optimized structure of 2 contains a bis(μ-oxido)  $\text{Ru}_2^{IV}$  core rather than a (μ-peroxido)  $\text{Ru}_2^{III}$  core, as shown in Fig. 2. Multinuclear Ru (hydr)oxido complexes have been reported, which are structurally similar to the  $\text{Ru}_2(\mu\text{-O})_2$  centre of 2.<sup>15</sup> The electron-donating  $\eta^5\text{-C}_5\text{Me}_5$  ligand allows the dinuclear Ru centre to access high-valent oxidation states of IV and the steric hindrance of the methyl groups of the  $\eta^5\text{-C}_5\text{Me}_5$  ligand creates a small cavity around the Ru atoms for the arrangement of only two oxido ligands. The  $\text{Ru}_2^{IV}(\mu\text{-O})_2$  structure seems to be characteristic of this ligand environment system. Changing ligand environments with respect to electronic effects and steric hindrance can provide various  $\text{Ru}^x_2\{\mu\text{-O}(\text{H}_y)\}_z$  structures ( $x = \text{III–VI}$ ,  $y = 0\text{–}1$ , and  $z = 1\text{–}3$ ).<sup>15</sup> The distances of the two Ru centres and the two O atoms in 2 were calculated to be 2.44 and 2.96 Å (Fig. 2), respectively, which correspond to the interacting dinuclear Ru centres and the cleavage of the O–O bond. Spin density analysis indicates each  $\text{Ru}^{IV}$  centre has  $S = 1$  and an interatomic interaction of two  $\text{Ru}^{IV}$  centres with the antiferromagnetic exchange interaction results in  $S = 0$  in the ground state of 2 (⁴R, Table S1†), which is consistent with the experimental observation with a superconducting quantum interference device (SQUID) that the bis(μ-oxido)  $\text{Ru}_2^{IV}$  complex 2 is diamagnetic. On the basis of experimental and DFT results, the bis(μ-oxido)  $\text{Ru}_2^{IV}$  species 2 can be generated from four-electron reduction of  $\text{O}_2$  by two  $\text{Ru}^{II}$  centres *via* O–O bond breaking.

An ultraviolet-visible (UV-vis) spectral change from 1 to 2 by oxygenation in  $\text{H}_2\text{O}$  shows a decrease in absorption bands around 330 nm ( $\epsilon = 900 \text{ M}^{-1} \text{ cm}^{-1}$ ) and 400 nm ( $\epsilon = 1300 \text{ M}^{-1} \text{ cm}^{-1}$ ) derived from 1 and an increase in a broad band around 290 nm ( $\epsilon = 3800 \text{ M}^{-1} \text{ cm}^{-1}$ ) derived from 2 (Fig. S4†). Since the characteristic absorption band of 2 is observed in the UV region, we irradiated 2 with UV light for excitation. Time-dependent (TD)-DFT calculations are consistent with the experimental UV-vis spectra of 1 and 2 (Fig. S5†). The TD-DFT calculations of 2 show an absorption band at 263 nm, assigned to the charge transfer from the ground singlet state to the excited triplet state (Fig. S5b†). While the oxido ligands in 2 show little radical character with a spin density of almost zero (⁴R, Table S1†), the oxido ligands in the excited triplet state are capable of showing a radical character (⁴R\*, Table S1†), described below in detail. This radical character must originate in the abstraction of an H atom from  $\text{CH}_4$  in the initiation step.

Following spectroscopic, mass-spectrometric and DFT analyses of 2, we investigated its photo-induced oxidation of  $\text{CH}_4$  in  $\text{H}_2\text{O}$ . An aqueous solution of 2 under a  $\text{CH}_4/\text{O}_2$  atmosphere (partial pressures of  $\text{CH}_4$  and  $\text{O}_2 = 4$  and 2 MPa, respectively) was irradiated by UV light (250–385 nm, 15 mW  $\text{cm}^{-2}$ ) for 5 h. Subsequently, the resulting aqueous solution was analysed by gas chromatography-mass spectrometry (GC-MS) after removing Ru complex(es) by passage through a silica gel column.  $\text{CH}_3\text{OH}$  and  $\text{HCHO}$  were observed by GC-MS analysis (Fig. S6†), with their retention times and fragment patterns clearly corresponding to those of authentic  $\text{CH}_3\text{OH}$  and  $\text{HCHO}$ . No  $\text{HCOOH}$  was observed by GC-MS. Control experiments were conducted without 2, UV light,  $\text{CH}_4$ , or  $\text{O}_2$ , all showing no product formation. When visible light (385–740 nm) was used

instead of UV light, no reaction occurred. We determined the TONs of  $\text{CH}_3\text{OH}$  and  $\text{HCHO}$  as 1.1 and 3.0, respectively; thus, the total TON was estimated to be 4.1. Considering that  $\text{CH}_3\text{OH}$  was formed by 2-electron oxidation of  $\text{CH}_4$  with 2-electron oxidant 2 and  $\text{CH}_3\text{OH}$  was 2-electron oxidized to form  $\text{HCHO}$  by 2, we calculated the TONs as follows: (mol of  $\text{CH}_3\text{OH}$ )/(mol of 2) for  $\text{CH}_3\text{OH}$  and (mol of  $\text{HCHO}$ )  $\times$  2/(mol of 2) for  $\text{HCHO}$ . Although the order of these TON values is the same as those of trinuclear Cu oxide systems that catalysed  $\text{CH}_4$  oxidation to  $\text{CH}_3\text{OH}$  by  $\text{O}_2$  using  $\text{H}_2\text{O}_2$  as reductant (TON = 1.4 or  $\sim$ 6),<sup>7</sup> our system needs only  $\text{O}_2$ . We also determined the yields of  $\text{CH}_3\text{OH}$  and  $\text{HCHO}$  based on  $\text{CH}_4$  to be 0.12 and 0.17%, respectively. We confirmed that photo-induced  $\text{CH}_3\text{OH}$  oxidation yielded  $\text{HCHO}$  with 2 under the same conditions as the photo-induced  $\text{CH}_4$  oxidation. No  $\text{HCOOH}$  was also detected in the  $\text{CH}_3\text{OH}$  oxidation. In order to confirm the origin of the oxygen atom of  $\text{CH}_3\text{OH}$ , we conducted an isotope labelling experiment of photo-induced oxidation of  $\text{CH}_4$  by 2 with  $^{16}\text{O}_2$  in  $\text{H}_2^{18}\text{O}$ . No  $^{18}\text{O}$ -incorporated methanol ( $\text{CH}_3^{18}\text{OH}$ ) was formed, but  $\text{CH}_3^{16}\text{OH}$  was observed. This result indicates that in the process of C–H bond activation of  $\text{CH}_4$ , coupling of a  $\text{CH}_3$  radical with  $\text{O}_2$  occurs prior to OH rebound to the  $\text{CH}_3$  radical. After the C–H bond cleavage of  $\text{CH}_4$ , DFT calculations indicate that the interaction of the  $\text{CH}_3$  radical with the OH ligand coordinating to the Ru centre is energetically higher than a transition state corresponding to the release of a  $\text{CH}_3$  radical from the ( $\mu$ -hydroxido)( $\mu$ -oxido)  $\text{Ru}_2^{III,IV}$  core (Fig. S7†). The insights, benefitting from the reports of activation of weaker C–H bonds in hydrocarbons rather than  $\text{CH}_4$  by metal oxido species without light irradiation, also permit us to propose H atom abstraction from the C–H bond of  $\text{CH}_4$ .<sup>12,14,16</sup>

We followed the reaction of bis( $\mu$ -oxido)  $\text{Ru}_2^{IV}$  species 2 with  $\text{CH}_4$  and  $\text{O}_2$  under light irradiation by ESI-MS (Fig. S8†). The ESI-MS results indicate that the main signal derived from 2 decreased as a signal at  $m/z$  371.1, assignable to a tetramethylfulvene-coordinating  $\text{Ru}^{II}$  complex  $[\text{Ru}^{II}(\text{tetramethylfulvene})(\eta^5\text{-C}_5\text{Me}_5)]^+$ , and unidentified signals increased. The formation of tetramethylfulvene complex indicates that the methyl group of  $\eta^5\text{-C}_5\text{Me}_5$  was oxidized.<sup>17</sup>

Photo-driven oxidation of  $\text{C}_2\text{H}_6$  by using 2 with  $\text{O}_2$  (partial pressures of  $\text{C}_2\text{H}_6$  and  $\text{O}_2$  = 2 and 1 MPa, respectively) also occurs as in the case with  $\text{CH}_4$  oxidation. The products of  $\text{C}_2\text{H}_5\text{OH}$  and  $\text{CH}_3\text{CHO}$  were observed by GC-MS (Fig. S9†), where their TONs were determined to be 0.31 and 0.46, respectively, based on the same calculation protocol as for  $\text{CH}_4$  oxidation. The total TON was calculated as 0.77. A trace amount of  $\text{CH}_3\text{COOH}$  was observed in the  $\text{C}_2\text{H}_6$  oxidation. The TON of  $\text{C}_2\text{H}_6$  oxidation is slightly lower than that of the  $\text{CH}_4$  oxidation, which suggests that the oxidation reaction with 2 is relevant to the molecular size of the external substrate. The ten methyl groups of two  $\eta^5\text{-C}_5\text{Me}_5$  ligands seem to protect the bis( $\mu$ -oxido)  $\text{Ru}_2^{IV}$  core, which allows a smaller molecule to access the active bis( $\mu$ -oxido) centre.

DFT calculations indicate that photo-excitation of 2 is required to cause H atom abstraction from  $\text{CH}_4$  (Fig. 3), which is consistent with the experimental result that 2 shows no reactivity toward  $\text{CH}_4$  without light irradiation. Fig. 3 shows the



Fig. 3 Computed energy surfaces for the C–H bond activation of  $\text{CH}_4$  by 2 in the ground state  $S_0$  and the three excited states  $T_1$ ,  $T_{27}$  and  $S_{39}$ . R: reactant complex, TS: transition state and P: product complex. The values in parentheses are relative energies from R in each state. Distances and energies are given in units of Å and  $\text{kcal mol}^{-1}$ , respectively.

computed energy surfaces for the C–H bond activation by 2 in the open-shell singlet and triplet states. To obtain reaction coordinates of the C–H bond dissociation, we performed intrinsic reaction coordinate (IRC) calculations in the ground state. The potential energy surfaces of the excited states were obtained by a single-point calculation using the TD-DFT method along the reaction coordinate. The reactions involve the interaction of the oxido ligand with the H atom, followed by H atom abstraction from  $\text{CH}_4$  to generate a  $\text{CH}_3$  radical with the ( $\mu$ -hydroxido)( $\mu$ -oxido)  $\text{Ru}_2^{III,IV}$  species. Calculated activation energies for the C–H bond cleavage of  $\text{CH}_4$  by the catalyst are 33.4  $\text{kcal mol}^{-1}$  in the ground state  $S_0$  and 19.6  $\text{kcal mol}^{-1}$  in the triplet excited state  $T_{27}$ . These results lead us to conclude that  $\text{CH}_4$  activation with 2 is likely to occur in the transition state in the potential energy surface of the excited state.

Spin density analysis shows the oxido ligands of the reactant complex in the ground singlet state  $^1\text{R}$  have little radical character ( $\text{O}_1$ : 0.01;  $\text{O}_2$ : 0.03), while those in the excited triplet state  $^3\text{R}^*$  have a more radical character ( $\text{O}_1$ : 0.23;  $\text{O}_2$ : 0.24) (Table S1†). The increase in the spin densities of the  $\mu$ -oxido ligands in the bis( $\mu$ -oxido)dicopper complexes enhances the reactivity for H atom abstraction from  $\text{CH}_4$ .<sup>18</sup> Therefore, it is considered that the increase in the spin densities in the  $\mu$ -oxido moieties diminishes the activation energy of H atom abstraction from  $\text{CH}_4$ . We considered this the reason why the spin densities in the  $\mu$ -oxido moieties increase by irradiation with UV light. Since the two unpaired electrons in the Ru centres are antiferromagnetically coupled in the ground singlet state of 2, the delocalized electrons of the  $\mu$ -oxido moieties are cancelled. In contrast, UV light irradiation induces metal-to-metal charge transfer (MMCT) (Fig. S5†) to cause the spin inversion of an unpaired electron in the Ru centre. Therefore, the delocalized electrons of the  $\mu$ -oxido moieties are enhanced, resulting in the



radical character of the  $\mu$ -oxido moieties. In the transition state (TS), the C atom of the  $\text{CH}_3$  radical increases in radical character with H atom migration, while the spin density of the Ru centre decreases. Thus, O–H bond formation and  $\text{CH}_3$  radical formation occur simultaneously.

On the basis of experimental analyses and DFT calculations, we propose a reaction mechanism of photo-induced  $\text{CH}_4$  oxidation by the Ru complex with  $\text{O}_2$  (Fig. 4). The bis( $\mu$ -oxido)  $\text{Ru}_2^{\text{IV}}$  species **2** is excited by UV light to generate the excited species **3**. The highly active excited species **3** is able to abstract an H atom from  $\text{CH}_4$  to afford ( $\mu$ -hydroxido)( $\mu$ -oxido)  $\text{Ru}_2^{\text{III,IV}}$  species **4** with the  $\text{CH}_3$  radical. The  $\text{CH}_3$  radical reacts with  $\text{O}_2$  to form a  $\text{CH}_3\text{OO}$  radical, which can be coupled intermolecularly to generate a  $\text{CH}_3\text{OOOCH}_3$  species. This releases  $\text{O}_2$  to form a  $\text{CH}_3\text{O}$  radical,<sup>19</sup> which abstracts an H atom from **4** to afford  $\text{CH}_3\text{OH}$  together with regeneration of **2**. Based on thermodynamic energy calculations for  $\text{CH}_4$  oxidation to  $\text{CH}_3\text{OH}$  with **2** in the ground state in  $\text{H}_2\text{O}$  at standard temperature (eqn (1)–(4)), the energies are corrected by zero-point vibrational energies and Gibbs free energies at 298.15 K, the process of H atom abstraction from  $\text{CH}_4$  to a  $\text{CH}_3$  radical is an endergonic reaction ( $\Delta G = 28.0 \text{ kcal mol}^{-1}$ ), although the processes of  $\text{CH}_3$  radical with  $\text{O}_2$  ( $\Delta G = -27.0 \text{ kcal mol}^{-1}$ ) and  $\text{CH}_3\text{O}$  radical with **2** ( $\Delta G = -24.9 \text{ kcal mol}^{-1}$ ) are exergonic reactions. The overall reaction of  $\text{CH}_4$  with  $\text{O}_2$  to  $\text{CH}_3\text{OH}$  is exergonic ( $\Delta G = -23.9 \text{ kcal mol}^{-1}$ ). Because only the first step of H atom abstraction by **2** needs external energy, we must input light energy into this system.



(1) + (2) + (3):



In conclusion, we have succeeded in the photo-induced conversion of  $\text{CH}_4$  to  $\text{C}_1$  chemicals of  $\text{CH}_3\text{OH}$  and  $\text{HCHO}$  catalysed by the water-soluble bis( $\mu$ -oxido)  $\text{Ru}_2^{\text{IV}}$  complex with  $\text{O}_2$ .



Fig. 4 A proposed mechanism for the photo-induced oxidation of  $\text{CH}_4$  to  $\text{CH}_3\text{OH}$  by Ru complex with  $\text{O}_2$  in  $\text{H}_2\text{O}$ .

This is the first case of catalytic oxidation of  $\text{CH}_4$  to  $\text{CH}_3\text{OH}$  and  $\text{HCHO}$  with a homogeneous catalyst by using only  $\text{O}_2$ . The light-triggered radical character of the oxido ligands enables the activation of the unreactive C–H bond of  $\text{CH}_4$ , as evidenced by experimental results and DFT calculations. We think it will be possible to apply such a photo-excited metal complex to the activation of various unactivated molecules.

## Conflicts of interest

There are no conflicts to declare.

## Acknowledgements

The authors gratefully acknowledge funding from JST PRESTO Grant Number JPMJPR17S9, JST CREST Grant Numbers JPMJCR15P5 and JPMJCR18R2, Japan and the World Premier International Research Center Initiative (WPI), Japan. The computations were mainly carried out using the computer facilities at the Research Institute for Information Technology, Kyushu University.

## References

- 1 R. Singh, P. K. Mishra, N. Srivastava, A. Shrivastav and K. R. Srivastava, in *Bioenergy Research: Evaluating Strategies for Commercialization and Sustainability*, ed., N. Srivastava and M. Srivastava, Wiley-VCH, Weinheim, 2021, pp. 245–254.
- 2 G. D. Saratale, J. Damaraja, S. Shobana, R. G. Saratale, S. Periyasamy, G. Zhen and G. Kumar, in *Green Energy to Sustainability: Strategies for Global Industries*, ed., A. A. Vertes, N. Qureshi, H. P. Blaschek and H. Yukawa, Wiley-VCH, Weinheim, 2020, pp. 447–459.
- 3 (a) R. H. Crabtree and A. Lei, *Chem. Rev.*, 2017, **117**, 8481–9520; (b) J. A. Labinger and J. E. Bercaw, *Nature*, 2002, **471**, 507–514; (c) *Activation and Catalytic Reactions of Saturated Hydrocarbons in the Presence of Metal Complexes*, ed., A. E. Shilov and G. B. Shul'pin, Kluwer Academic Publishers, Dordrecht, 2000; (d) B. A. Arndtsen, R. G. Bergman, T. A. Mobley and T. H. Peterson, *Acc. Chem. Res.*, 1995, **28**, 154–162; (e) R. H. Crabtree, *Chem. Rev.*, 1995, **95**, 987–1007.
- 4 (a) R. Banerjee, J. C. Jones and J. D. Lipscomb, *Annu. Rev. Biochem.*, 2019, **88**, 409–431; (b) M. O. Ross and A. C. Rosenzweig, *J. Biol. Inorg. Chem.*, 2017, **22**, 307–319; (c) V. C.-C. Wang, S. Maji, P. P.-Y. Chen, H. K. Lee, S. S.-F. Yu and S. I. Chan, *Chem. Rev.*, 2017, **117**, 8574–8621; (d) C. E. Tinberg and S. J. Lippard, *Acc. Chem. Res.*, 2011, **44**, 280–288.
- 5 (a) S. L. Scott, *Science*, 2021, **373**, 277–278; (b) D. Kiani, S. Sourav, Y. Tang, J. Baltrusaitis and I. E. Wachs, *Chem. Soc. Rev.*, 2021, **50**, 1251–1268; (c) J. Meyet, A. P. van Bavel, A. D. Horton, J. A. van Bokhoven and C. Copéret, *Catal. Sci. Technol.*, 2021, **11**, 5484–5490; (d) M. H. Mahyuddin, Y. Shiota and K. Yoshizawa, *Catal. Sci. Technol.*, 2019, **9**, 1744–1768; (e) V. L. Sushkevich, D. Palagin, M. Ranocchiari and J. A. van Bokhoven, *Science*, 2017, **356**, 523–527; (f) B. E. R. Snyder, P. Vanelderen, M. L. Bols, S. D. Hallaert,

L. H. Böttger, L. Ungur, K. Pierloot, R. A. Schoonheydt, B. F. Sels and E. I. Solomon, *Nature*, 2016, **536**, 317–321.

6 (a) M. Yovanovich, A. J. da Silva, R. F. B. de Souza, V. Ussui, A. O. Neto and D. R. R. Lazar, *Int. J. Electrochem. Sci.*, 2021, **16**, 210735; (b) X. Cai, S. Fang and Y. H. Hu, *J. Mater. Chem. A*, 2021, **9**, 10796–10802; (c) N. Feng, H. Lin, H. Song, L. Yang, D. Tang, F. Deng and J. Ye, *Nat. Commun.*, 2021, **12**, 4652; (d) B. Li, X. Song, S. Feng, Q. Yuan, M. Jiang, L. Yan and Y. Ding, *Appl. Catal. B*, 2021, **293**, 120208; (e) H. Song, X. Meng, S. Wang, W. Zhou, X. Wang, T. Kako and J. Ye, *J. Am. Chem. Soc.*, 2019, **141**, 20507–20515.

7 (a) E. Moharreri, T. Jafari, D. Rathnayake, H. Khanna, C.-H. Kuo, S. L. Suib and P. Nandi, *Sci. Rep.*, 2021, **11**, 19175; (b) S. I. Chan, Y.-J. Lu, P. Nagababu, S. Maji, M.-C. Hung, M. M. Lee, I.-J. Hsu, P. D. Minh, J. C.-H. Lai, K. Y. Ng, S. Ramalingam, S. S.-F. Yu and M. K. Chan, *Angew. Chem., Int. Ed.*, 2013, **52**, 3731–3735.

8 K. Ohkubo and K. Hirose, *Angew. Chem., Int. Ed.*, 2018, **57**, 2126–2129.

9 (a) A. E. Shilov and G. B. Shul'pin, *Russ. Chem. Rev.*, 1987, **56**, 442–464; (b) R. A. Periana, *Science*, 1998, **280**, 560–564; (c) Y. Yamada, K. Morita, N. Mihara, K. Igawa, K. Tomooka and K. Tanaka, *New J. Chem.*, 2019, **43**, 11477–11482; (d) A. B. Sorokin, E. V. Kudrik and D. Bouchu, *Chem. Commun.*, 2008, 2562–2564; (e) A. K. Cook, S. D. Schimler, A. J. Matzger and M. S. Sanford, *Science*, 2016, **351**, 1421–1424; (f) K. T. Smith, S. Berritt, M. González-Moreiras, S. Ahn, M. R. Smith III, M.-H. Baik and D. J. Mindiola, *Science*, 2016, **351**, 1424–1427; (g) A. Hu, J.-J. Guo, H. Pan and Z. Zuo, *Science*, 2018, **361**, 668–672.

10 (a) N. Holmberg-Douglas and D. A. Nicewicz, *Chem. Rev.*, 2022, **122**, 1925–2016; (b) M. H. Shaw, J. Twilton and D. W. C. MacMillan, *J. Org. Chem.*, 2016, **81**, 6898–6926.

11 (a) Y. Ueda, Y. Masuda, T. Iwai, K. Imaeda, H. Takeuchi, K. Ueno, M. Gao, J. Hasegawa and M. Sawamura, *J. Am. Chem. Soc.*, 2022, **144**, 2218–2224; (b) Y. Park, L. Tian, S. Kim, T. P. Pabst, J. Kim, G. D. Scholes and P. J. Chirik, *JACS Au*, 2022, **2**, 407–418; (c) Y. Park, S. Kim, L. Tian, H. Zhong, G. D. Scholes and P. J. Chirik, *Nat. Chem.*, 2021, **13**, 969–976.

12 (a) L. Que, Jr., *Acc. Chem. Res.*, 2007, **40**, 493–500; (b) M. Costas, J.-U. Rohde, A. Stubna, R. Y. N. Ho, L. Quaroni, E. Münck and L. Que, Jr., *J. Am. Chem. Soc.*, 2001, **123**, 12931–12932; (c) L. Que, Jr. and W. B. Tolman, *Angew. Chem., Int. Ed.*, 2002, **41**, 1114–1137.

13 (a) R. Tagore, R. H. Crabtree and G. W. Brudvig, *Inorg. Chem.*, 2007, **46**, 2193–2203; (b) R. Tagore, H. Chen, R. H. Crabtree and G. W. Brudvig, *J. Am. Chem. Soc.*, 2006, **128**, 9457–9465; (c) K. Chen, M. Costas and L. Que, Jr., *J. Chem. Soc., Dalton Trans.*, 2002, 672–679.

14 (a) J. A. Halfen, S. Mahapatra, E. C. Wilkinson, S. Kaderli, V. G. Young, Jr., L. Que, Jr., A. D. Zuberbühler and W. B. Tolman, *Science*, 1996, **271**, 1397–1400; (b) S. Mahapatra, J. A. Halfen and W. B. Tolman, *J. Am. Chem. Soc.*, 1996, **118**, 11575–11586; (c) S. Mahapatra, J. A. Halfen, E. C. Wilkinson, G. Pan, X. Wang, V. G. Young, Jr., C. J. Cramer, L. Que, Jr. and W. B. Tolman, *J. Am. Chem. Soc.*, 1996, **118**, 11555–11574; (d) B. M. T. Lam, J. A. Halfen, V. G. Young, Jr., J. R. Hagadorn, P. L. Holland, A. Lledós, L. Cucurull-Sánchez, J. J. Novoa, S. Alvarez and W. B. Tolman, *Inorg. Chem.*, 2000, **39**, 4059–4072.

15 (a) T. Suzuki, Y. Suzuki, T. Kawamoto, R. Miyamoto, S. Nanbu and H. Nagao, *Inorg. Chem.*, 2016, **55**, 6830–6832; (b) A. C. Dengel, A. M. El-Hendawy, W. P. Griffith, C. A. O'Mahoney and D. J. Williams, *J. Chem. Soc., Dalton Trans.*, 1990, 737–742; (c) P. Neubold, B. S. P. C. D. Vedova, K. Wieghardt, B. Nuber and J. Weiss, *Inorg. Chem.*, 1990, **29**, 3355–3363; (d) J. M. Power, K. Evertz, L. Henling, R. Marsh, W. P. Schaefer, J. A. Labinger and J. E. Bercaw, *Inorg. Chem.*, 1990, **29**, 5058–5065; (e) P. Neubold, B. S. P. C. D. Vedova, K. Wieghardt, B. Nuber and J. Weiss, *Angew. Chem., Int. Ed.*, 1989, **28**, 763–765; (f) R. P. Tooze, G. Wilkinson, M. Motavalli and M. B. Hursthouse, *J. Chem. Soc., Dalton Trans.*, 1986, 2711–2720.

16 (a) X.-S. Xue, P. Ji, B. Zhou and J.-P. Cheng, *Chem. Rev.*, 2017, **117**, 8622–8648; (b) A. Gunay and K. H. Theopold, *Chem. Rev.*, 2010, **110**, 1060–1081; (c) H. Kotani, H. Shimomura, K. Ikeda, T. Ishizuka, Y. Shiota, K. Yoshizawa and T. Kojima, *J. Am. Chem. Soc.*, 2020, **142**, 16982–16989; (d) J. Kaizer, E. J. Klinker, N. Y. Oh, J.-U. Rohde, W. J. Song, A. Stubna, J. Kim, E. Münck, W. Nam and L. Que, Jr., *J. Am. Chem. Soc.*, 2004, **126**, 472–473.

17 (a) L. Fan, M. L. Turner, M. B. Hursthouse, K. M. A. Malik, O. V. Gusev and P. M. Maitlis, *J. Am. Chem. Soc.*, 1994, **116**, 385–386; (b) M. E. N. Clemente, P. J. Saavedra, M. C. Vásquez, M. A. Paz-Sandoval, A. M. Arif and R. D. Ernst, *Organometallics*, 2002, **21**, 592–605; (c) C. Gemel, K. Mereiter, R. Schmid and K. Kirchner, *Organometallics*, 1997, **16**, 5601–5603.

18 Y. Shiota and K. Yoshizawa, *Inorg. Chem.*, 2009, **48**, 838–845.

19 Y. Hori, T. Abe, Y. Shiota and K. Yoshizawa, *Bull. Chem. Soc. Jpn.*, 2019, **92**, 1840–1846.

