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tion of lambda-cyhalothrin
residues on Chinese cabbage based on MIR
spectroscopy and a Gustafson–Kessel noise
clustering algorithm

Jun Zheng,a Zhe Gong,a Shaojie Yin,a Wei Wang,a Meng Wang,a Peng Lin,a

Haoxiang Zhou *ab and Yangjian Yanga

Pesticide residues exceeding the standard in Chinese cabbage is harmful to human health. In order to

quickly, non-destructively and effectively qualitatively analyze lambda-cyhalothrin residues on Chinese

cabbage, a method involving a Gustafson–Kessel noise clustering (GKNC) algorithm was proposed to

cluster the mid-infrared (MIR) spectra. A total of 120 Chinese cabbage samples with three different

lambda-cyhalothrin residue levels (no lambda-cyhalothrin, and cases where the ratios of lambda-

cyhalothrin and water were 1 : 500 and 1 : 100) were scanned using an Agilent Cary 630 FTIR

spectrometer for collecting the MIR spectra. Next, multiple scatter correction (MSC) was employed to

eliminate the effects of light scattering. Furthermore, principal component analysis (PCA) and linear

discriminant analysis (LDA) were utilized to reduce the dimensionality and extract the feature information

from the MIR spectra. Finally, fuzzy c-means (FCM) clustering, Gustafson–Kessel (GK) clustering, noise

clustering (NC) and the GKNC algorithm were applied to cluster the MIR spectral data, respectively. The

experimental results showed that the GKNC algorithm gave the best classification performance

compared against the other three fuzzy clustering algorithms, and its highest clustering accuracy

reached 93.3%. Therefore, the GKNC algorithm coupled with MIR spectroscopy is an effective method

for detecting lambda-cyhalothrin residues on Chinese cabbage.
1. Introduction

Chinese cabbage, originating in China, is a major cash crop.1

Chinese cabbage is enjoyed by people all over the world and is
widely planted.2–4 Chinese cabbage is rich in multiple nutri-
tional components and has a high medicinal value, and there-
fore it occupies an important position in many vegetable
markets.5 Due to it containing protein, crude bre, multivita-
mins and minerals (such as calcium, phosphorus and iron),
Chinese cabbage can prevent cardiovascular disease, scurvy and
cancer.6 However, insect pests are the main reason hindering
the normal growth of Chinese cabbage during the whole
planting process. In order to increase production, many farmers
commonly use high-concentration lambda-cyhalothrin as an
insecticide.7 However, the long-term intake of Chinese cabbage
with high lambda-cyhalothrin residue levels may lead to several
chronic diseases, and even death.8–11 As food safety is gradually
being taken more seriously, many countries have imposed strict
ineering, Research Institute of Zhejiang

ineering, Jiangsu University, Zhenjiang

the Royal Society of Chemistry
limits on pesticide residues in vegetables and fruits.12

Consumers have a high demand for high-quality and pollution-
free Chinese cabbage, but many markets lack effective ways to
detect lambda-cyhalothrin residues. Therefore, a fast, conve-
nient, effective and non-destructive method is urgently required
to identify lambda-cyhalothrin residues on Chinese cabbage.

Chemical analysis techniques have been widely applied to
accurately detect pesticide residues in fruits and vegetables. For
instance, Sivaperumal et al. used ultrahigh-performance liquid
chromatography/time-of-ight mass spectrometry (UHPLC/
TOF-MS) to sensitively identify and quantify 60 pesticide resi-
dues, and proved the reliability of the method for such detec-
tion in various food samples.13 Li et al. developed gas
chromatography-tandem mass spectrometry (GC-MS/MS)
coupled with a modied QuEChERS method, which illus-
trated a good applicability, recovery and repeatability for the
detection of 133 pesticide residues in chenpi.14 Yang et al.
utilized gas chromatography combined with an electron capture
detector (GC-ECD) to accurately screen and quantitatively
analyze 15 pesticide residues in various leafy vegetables.15 Sun
et al. developed a method involving ultrahigh-performance
liquid chromatography coupled with diode array detection
(UHPLC-DAD) for the simultaneous identication of E/Z-
RSC Adv., 2022, 12, 18457–18465 | 18457
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uoxastrobins, and extended its application to 160 kinds of
vegetables and fruits.16 Laura et al. adopted an accurate and
sensitive method involving an ion chromatography-tandem
mass spectrometry system (IC-MS/MS) to determine 9 highly
polar anionic pesticides.17 However, due to their typically
complicated operation, high cost, time-consuming and
polluting nature, it is difficult to promote the large-scale
application of chemical analysis techniques for the detection
of pesticide residues.

At present, infrared (IR) spectroscopy technology is consid-
ered a quite mature technique with the emergence of several
new types of spectral instruments. The characteristic informa-
tion of hydrogen groups in organic molecules can be obtained
by scanning samples by IR spectroscopy.18 Due to the advan-
tages in terms of convenience, rapidity, non-destructivity,
accuracy and efficiency, IR spectroscopy technology has been
widely applied in many elds, such as food production,19–21

agricultural product classication,22–24 environment moni-
toring25 and medical safety.26–28 Especially for the detection of
pesticide residues, researchers have achieved great success
through utilizing IR spectroscopy technology. Sun et al.
combined a series of methods, such as competitive adaptive
reweighted sampling (CARS), iteratively retaining informative
variables (IRIV), gravitational search algorithm (GSA) and
support vector machine (SVM) approaches, to analyze the
collected near-infrared (NIR) spectral data of lettuce leaves, and
the detection accuracy for pesticide residues was up to
98.33%.29 Jamshidi et al. used partial least squares (PLS) and
partial least squares-discriminant analysis (PLS-DA) to establish
an NIR spectral data model for cucumber, so as to be able to
quickly analyze the safety of samples.30 Yazici et al. developed
a non-destructive detection method based on NIR spectroscopy
to determine multiple pesticide residues on strawberry fruits.31

Jamshidi et al. collected the visible/near-infrared (Vis/NIR)
spectra of cucumber at a range of 450–1000 nm, and then
applied PLS-DA to accurately classify samples with different
concentrations of diazinon residue.32 Xue et al. used both
particle swarm optimization (PSO) and a PLS model to predict
the dichlorvos residue on the surface of navel orange with Vis/
NIR spectroscopy.33 However, MIR spectroscopy technology
combined with fuzzy clustering algorithms has rarely been re-
ported as applied to detect pesticide residues in vegetables and
fruits.34

Fuzzy clustering analysis belongs to unsupervised machine
learning method. Fuzzy clustering algorithms can determine
a sample's attributes by clustering and modelling unlabelled
sample data.35,36 Since the concept of fuzzy partitioning was rst
put forward, fuzzy clustering algorithms have been continu-
ously extended. Among many fuzzy clustering algorithms, fuzzy
c-means (FCM) clustering is the most widely applied and
successful app.37,38 FCM obtains the fuzzy membership of each
sample point by optimizing the objective function, and then
correctly determines the class of sample points. However, FCM
is sensitive to noise data and prone to local optimization. In
order to overcome the shortcomings of FCM, researchers have
made a series of improvements. Gustafson and Kessel proposed
a new fuzzy clustering algorithm called Gustafson–Kessel (GK)
18458 | RSC Adv., 2022, 12, 18457–18465
clustering.39,40 Not only that, to solve the noise sensitivity
problem of FCM, Noise clustering (NC) algorithm relaxes the
noise distance to optimize the objective function.41 The
proposed GKNC algorithm is a derivation of GK clustering and
the NC algorithm, and uses the Mahalanobis distance as a new
distance measure to accurately cluster the analyzed data points
with a high-dimensional, non-spherical or elliptical distribu-
tion. Therefore, GKNC can cluster MIR spectra with a compli-
cated data structure and has shown good robustness.

In this paper, the Gustafson–Kessel noise clustering (GKNC)
algorithm combined with MIR spectroscopy technology was
proposed to quickly identify lambda-cyhalothrin residues on
Chinese cabbage. The MIR spectra of Chinese cabbage were
collected using an Agilent Cary 630 FTIR spectrometer. Then,
multiple scatter correction (MSC) was used to reduce the MIR
spectral scattering and noise effects. Furthermore, principal
component analysis (PCA) and linear discriminant analysis
(LDA) were applied to reduce the dimensions and extract the
identication information, respectively. Finally, an optimal
method for clusteringMIR spectral data of Chinese cabbage was
veried by running the FCM, GK, NC and GKNC algorithms.
2. Materials and methods
2.1 Samples preparation

In this experiment, fresh Chinese cabbage (Brassica rapa,
Chinese group) were purchased from the same supermarket.42

In total, 120 Chinese cabbage leaf samples were collected under
similar growth conditions. All the samples were washed
adequately with water (45 �C), which removed pesticide residues
on the surface of the samples effectively. Then, the samples
were stored in sealed bags.

Lambda-cyhalothrin (5% EC, Shandong Shenda Crop
Science Co. Ltd, Shouguang, China) was selected as the exper-
imental pesticide. The 120 cabbage leaves were randomly and
evenly divided into three groups, so each group had 30 leaves.
Lambda-cyhalothrin and clear water were mixed made into two
different concentrations of solution, with ratios of 1 : 500 and
1 : 100 respectively. Group A were sprayed with water as the
control group. Two different concentrations of lambda-
cyhalothrin solution were sprayed on the surface of groups B
and C, respectively, striving to maintain a uniform and
comprehensive spraying.

In order to reduce the effect of water, all the prepared
samples were placed in a cool and ventilated place for 24 h.
Before MIR spectra collection, the samples of Chinese cabbage
leaves were made into 2 mm � 2 mm small samples.
2.2 MIR spectra collection

An Agilent Cary 630 FTIR spectrometer (Agilent Technologies
Co., USA) was utilized to collect the MIR spectral data of
Chinese cabbage. Micro lab PC and Resolutions Pro were used
as the data collection soware. During the whole collection
process, the experimental temperature and relative humidity
were kept at about 25 �C and 50–60%, respectively. The spec-
trometer adopted an ATR (attenuated total reectance) adapter
© 2022 The Author(s). Published by the Royal Society of Chemistry
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to scan the Chinese cabbage samples 64 times. The resolution
ratio of the Agilent Cary 630 FTIR spectrometer was 8 cm�1, and
the background scanning was set to 64 times. The wavenumber
range of the collected MIR spectra was 4000–400 cm�1. Also, the
dimensionality of the collected spectral data was 971.

2.3 MIR spectra preprocessing

The collected MIR spectral data contained light scatter infor-
mation, such as noise, baseline shi and translation. At the
same time, light scattering was also affected by the sample size
and the external environment. Due to the existence of light
scattering information in the original spectral data, the results
from the direct classication were unsatisfactory. Multiple
scatter correction (MSC) was utilized as an effective and
common spectral data preprocessing method.24 Therefore, MSC
preprocessed the MIR spectral data of Chinese cabbage to
eliminate the light scattering effectively and to enhance the
spectral absorption information related to the contents of the
components.

2.4 Feature extraction and dimension reduction methods

The collected MIR spectra represented the high-dimensional
data (the dimensionality of the MIR spectra was 971), so they
also contained redundant information and noisy data. Not only
that, the high-dimensional data caused the curse of dimen-
sionality. In order to reduce the huge amount of computation
required and to improve the modelling accuracy, feature
extraction and dimension reduction methods were used to
process the MIR spectra of the Chinese cabbage leaves. Prin-
cipal component analysis (PCA) was used to map the high-
dimensional data to the low-dimensional space to reduce the
dimensionality of the MIR spectra while retaining the largest
variance information.43 Linear discriminant analysis (LDA) was
used as a feature extraction and dimension reduction method
based on scatter matrixes.44 With the LDA process, the spectral
data were transformed and the data belonging to different
classes were separated as much as possible so as to accurately
classify Chinese cabbage samples with three different lambda-
cyhalothrin residue levels in the low-dimensional data. In this
paper, PCA and LDA were applied to reduce the dimensionality
of the MIR spectra and extract the feature information from the
MIR spectra.

2.5 Gustafson–Kessel noise clustering (GKNC) algorithm

In this paper, a new clustering algorithm called Gustafson–
Kessel noise clustering (GKNC) was proposed which uses the
combination of GK clustering and the NC algorithm while
including their advantages. GKNC adopted the Mahalanobis
distance to replace the original Euclidean distance. Therefore,
GKNC expanded the range of data to be clustered. The GKNC
was able to accurately perform cluster analysis on the non-
spherical or elliptical data by automatically adjusting the
distance measures. The detailed description of the GKNC
algorithm is as follows.

Given an unlabelled data set X ¼ {x1, x2, ., xn} 3 R p, the
objective function of the GKNC algorithm is dened as:
© 2022 The Author(s). Published by the Royal Society of Chemistry
JGKNCðX ;U ;VÞ ¼
Xc
i¼1

Xn
k¼1

uik
mD2

ik þ
Xc
i¼1

Xn
k¼1

d2ik

 
1�

Xc
i¼1

uik

!m

(1)

where c is the number of sample categories, n is the number of
sample data, X is an unlabelled data set, U is the fuzzy
membership matrix and is set as U ¼ [uik]c�n, uik is the fuzzy
membership value of the data point xk belonging to the ith
cluster centre vi, V ¼ {v1, v2,., vi} is the cluster centre matrix, vi
is the ith cluster centre, m is the fuzzy weight parameter, D2

ik is
distance norm matrix, and d2ik is the parameter. The equations
of D2

ik and d2ik are dened as:

Sfi ¼
Pn
k¼1

uik
mðxk � viÞðxk � viÞT

Pn
k¼1

uikm
; 1# i# c (2)

D2
ik ¼ (xk � vi)

TSfi(xk � vi), 1 # i # c, 1 # k # n (3)

d2ik ¼
��Sfi

��
2
664X

c

j¼1

 
D2

ik

D2
jk

! 1
m�1

3
775

�1

; 1# i# c; 1# k# n (4)

where S is the fuzzy covariance matrix of the ith cluster centre.
The constraint conditions of the GKNC algorithm are: the fuzzy
membership value uik ˛ [0, 1] and the fuzzy weight parameter m
> 1 and 1 < c < n. The fuzzy membership matrix U and the cluster
centre's matrix V are calculated by minimizing the objective
function of the GKNC algorithm under constraint conditions.

uik ¼
�
d2ikD

�2
ik

� 1
m�1

1þPc
j¼1

�
d2jkD

�2
jk

� 1
m�1

; 1# i# c; 1# k# n (5)

vi ¼
Pn
k¼1

uik
mxk

Pn
k¼1

uikm
; 1# i# c (6)

The initialization of the GKNC algorithm is performed
described as follows:

(1) Assign values to parameters such as m, c, n and 3. The
fuzzy weight parameter m > 1, the threshold 3 > 0 and 1 < c < n.

(2) Set the maximum number of iteration rmax and the
number of initial iteration r0 ¼ 1.

(3) The terminal fuzzy membership and the terminal cluster
centres of FCM are used as the initial fuzzy membership u(0)ik and
the initial cluster centre v(0)i of the GKNC algorithm.

(4) The terminal fuzzy membership and the terminal cluster
centres of FCM are utilized to calculate the constant d2ik by eqn
(2)–(4);

The iteration steps of the GKNC algorithm are:
Step 1: Calculate the norm matrix D2

ik by eqn (2) and (3).
Step 2: Update the fuzzy membership value u(r)ik by eqn (5).
Step 3: Update the typical value v(r)i by eqn (6).
RSC Adv., 2022, 12, 18457–18465 | 18459
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Fig. 2 MIR spectra preprocessed by MSC.
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Step 4: Add the number of iterations r.
The termination condition of (kv(r)i � v(r�1)

i k < 3) or r > rmax is
then judged. If the termination condition is met, the iteration
ends.

The GKNC algorithm uses the terminal fuzzy membership
values and the terminal cluster centres to identify the Chinese
cabbage samples with four pesticide residue levels.

2.6 Soware

MSC, PCA, LDA and fuzzy clustering algorithms, such as FCM,
GK, NC and GKNC, were run on Matlab 2016a (Mathworks Co.,
USA) under the Windows 10 system. The computer processor
was an i7 core.

3. Results and discussion
3.1 Spectral analysis

In this study, the wavenumber range of the collected MIR
spectra was 4000–400 cm�1. The MIR spectra contained a lot of
characteristic functional group information as shown in Fig. 1.
Fresh Chinese cabbage contains plenty of water, so the MIR
spectra were greatly affected by water. The three main absorp-
tion peaks in the 3600–3200 cm�1, 1700–1500 cm�1, and 1100–
900 cm�1 regions were due to the specic absorption of water.
Not only that, the chemical bonds, such as C–O and P–O
stretching vibrations, ranged from 1200 to 1100 cm�1. The
region of 1500–1200 cm�1 mainly contained the C–H, N–H
distortion vibrations and the N–O, N]O stretching vibrations.
Because Chinese cabbage with different lambda-cyhalothrin
residue levels had different functional group information, the
MIR spectra were able to accurately express all the samples.

In order to eliminate the inuence of noise interference and
instrument detection on the original spectral data, it was
necessary to preprocess the data. The MIR spectral data were
preprocessed by MSC in Fig. 2.

3.2 PCA analysis

For further analysis, PCA was applied to reduce the dimen-
sionality of the MIR spectra data. In this study, because the rst
22 principal components explained 98.9% of the total variance
Fig. 1 Raw spectra of the Chinese cabbage samples.

18460 | RSC Adv., 2022, 12, 18457–18465
and fully retained the characteristic information of the spectral
data, PCA mapped 971-dimensional spectral data to the 22-
dimensional feature space, and the dimensions were reduced
from 971 to 22. The rst 22 eigenvalues were as follows: l1 ¼
2.070, l2 ¼ 1.230, l3 ¼ 0.830, l4 ¼ 0.410, l5 ¼ 0.224, l6 ¼ 0.135,
l7 ¼ 0.082, l8 ¼ 0.062, l9 ¼ 0.061, l10 ¼ 0.032, l11 ¼ 0.029, l12 ¼
0.028, l13 ¼ 0.021, l14 ¼ 0.018, l15 ¼ 0.016, l16 ¼ 0.012, l17 ¼
0.011, l18 ¼ 0.010, l19 ¼ 0.008, l20 ¼ 0.007, l21 ¼ 0.006, l22 ¼
0.005. The rst 22 principal components were directly clustered
by four fuzzy clustering algorithms, and the highest clustering
accuracy of GKNC was only 63.3%. In order to visualize the
spectral data information processed by PCA, the scores plot of
the rst two principal components were drawn. As shown in
Fig. 3, the MIR spectral data of the Chinese cabbage had no
unique feature areas and severely overlapped. Due to the exis-
tence of redundant data, it was difficult for the fuzzy clustering
algorithms to identify the Chinese cabbage samples. In order to
accurately classify the Chinese cabbage samples, the MIR
spectral data needed to be further processed.
3.3 LDA analysis

LDA, as a supervised dimensionality reduction algorithm, is
commonly used to extract discrimination information from data.
PCA was rst applied to reduce the dimensionality of the high-
dimension data while avoiding the problem of small samples
Fig. 3 PCA scores plot of the vectors with PC1 and PC2.

© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 LDA scores plot of the vectors with DV1 and DV2.
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when LDA extracted discriminant information. In this study, LDA
extracted the feature vectors from the 22-dimensional spectral
data. The Chinese cabbage samples were divided into the training
set and the test set. The number of the training samples was 90
and the number of the test samples was 30. Due to the Chinese
cabbage samples being classied according to three lambda-
cyhalothrin residue levels, the training set was processed to
produce two optimal discriminant vectors (DV1 and DV2). The 22-
dimensional spectral data of the 30 test samples were projected to
DV1 and DV2, so they were transformed into two-dimensional
data. Fig. 4 shows the scores plot of the two optimal discrimi-
nant vectors. As shown in Fig. 4, the MIR spectral data of the
Chinese cabbage samples with three different lambda-
cyhalothrin residue levels had good distribution areas.
3.4 Classication results of the FCM clustering algorithm

In this section, fuzzy c-means (FCM) clustering was applied to
cluster the MIR spectral data of the test samples aer PCA
dimension reduction and LDA feature information extraction. All
the relevant parameters needed to be reset before running FCM
clustering. The parameters were as follows: threshold value 3 ¼
0.00001, fuzzy weight parameter m ¼ 3, number of sample cat-
egories c¼ 3, number of test samples n¼ 30, maximum number
of iterations rmax ¼ 100 and the initial number of iterations r0 ¼
1. The initial cluster centres were the average values of the
Fig. 5 Terminal fuzzy membership values of FCM.

© 2022 The Author(s). Published by the Royal Society of Chemistry
Chinese cabbage sample data of each concentration aer LDA, so
the initial cluster centres of FCM were:

V ð0Þ ¼

2
6664
v
ð0Þ
1

v
ð0Þ
2

v
ð0Þ
3

3
7775 ¼

2
664

�0:0222 0:0012
0:0007 0:0234

�0:0004 0:0090

3
775 (7)

The terminal cluster centres were obtained by running FCM
aer 15 iterations. The terminal fuzzy membership values are
shown in Fig. 5. Therefore, the terminal cluster centres of FCM
were determined according to eqn (8).

V ð15Þ ¼

2
6664
v
ð15Þ
1

v
ð15Þ
2

v
ð15Þ
3

3
7775 ¼

2
664

�0:0137 �0:0154
�0:0061 0:0132
0:0177 �0:0078

3
775 (8)

In this experiment, the average values for the Chinese cabbage
training samples were: group A x1 ¼ ½�0:0053 0:0140 �, group B
x2 ¼ ½ 0:0192 �0:0028 � and group C x3 ¼ ½�0:0140 �0:0091 �.
The Euclidean distances between v(15)i and xi were calculated, so
as to determine which variety v(15)i belonged to. Therefore, the
Euclidean distances were: kvð15Þ1 � x1k ¼ 0:0306,
kvð15Þ1 � x2k ¼ 0:0352, and kvð15Þ1 � x3k ¼ 0:0063. Due to the
Euclidean distance between v(15)1 and x3 being the smallest,
v(15)1 belonged to the group C. Not only that, the varieties of
v(15)2 and v(15)3 were determined in the same way. v(15)2 and
v(15)3 belonged to groups A and B, respectively.

The terminal fuzzy membership values of FCM were also
used to classify the Chinese cabbage test samples. If the
terminal fuzzy membership value uik that was produced by the
kth test sample xk was the biggest, xk belonged to vi. For
instance, u(15)15 ¼ 0.0977, u(15)25 ¼ 0.8165 and u(15)35 ¼ 0.0858, so
u(15)25 > u(15)15 > u(15)35 . Due to x5 belonging to v(15)2 , x5 belonged to
group A. Moreover, the classication accuracy of FCM was 80%.

3.5 Classication results of the GK clustering algorithm

GK clustering based on the Mahalanobis distance was utilized
to cluster the MIR spectral data of the test samples. Before
running GK, the parameters such as 3, m, c, n, r0 and rmax were
set the same as for the FCM. Aer 100 iterations, the terminal
fuzzy membership values were determined and are shown in
Fig. 6. The terminal cluster centres of GK were:

V ð100Þ ¼

2
6664
v
ð100Þ
1

v
ð100Þ
2

v
ð100Þ
3

3
7775 ¼

2
664
�0:0024 �0:0148
�0:0108 0:0117
0:0156 �0:0042

3
775 (9)

Like FCM clustering, the terminal cluster centres and the
terminal fuzzy membership values that were produced by GK
were used to identify the Chinese cabbage varieties. The
terminal cluster centres v(100)1 , v(100)2 and v(100)3 were determined
in terms of which variety they belonged to by calculating the
distances between v(100)i and xi. Therefore, the terminal cluster
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Fig. 6 Terminal fuzzy membership values of GK.
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centres v(100)1 , v(100)2 and v(100)3 belonged to groups C, A and B,
respectively. Not only that, the terminal fuzzy membership
values of the 5th test sample were: u(100)15 ¼ 0.0514, u(100)25 ¼
0.8364 and u(100)35 ¼ 0.1122. Therefore, sample x5 was classied
into group A. The classication accuracy of GK reached 73.3%.

3.6 Classication results of the NC algorithm

NC was applied to classify the Chinese cabbage varieties by the
terminal fuzzy membership values. Like FCM, some parameters
needed to be reset before running NC. Therefore, some
parameters were: threshold 3 ¼ 0.00001, fuzzy weight value m ¼
3, class number c ¼ 3, amount of test set n ¼ 30 and the
maximum number of iterations rmax ¼ 100. The initial cluster
centres of NC came from the terminal cluster centres of FCM.
Therefore, the terminal fuzzy membership values of NC are
illustrated in Fig. 7. The terminal cluster centres of NC were:

V ð10Þ ¼

2
6664
v
ð10Þ
1

v
ð10Þ
2

v
ð10Þ
3

3
7775 ¼

2
664
�0:0104 �0:0149
�0:0075 0:0145
0:0183 �0:0074

3
775 (10)
Fig. 7 Terminal fuzzy membership values of NC.
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For clustering results analysis, the terminal cluster centres
v(10)1 , v(10)2 and v(10)3 belonged to groups C, A and B, respectively.
On the other hand, the terminal fuzzy membership values of the
third Chinese cabbage test sample were: u(10)15 ¼ 0.0050, u(10)25 ¼
0.8455 and u(10)35 ¼ 0.0026. The Chinese cabbage test sample x5
belonged to v(10)2 ; that is to say, x5 belonged to group A. As
a result, the classication accuracy of NC was 90%.
3.7 Classication results of the GKNC algorithm

Unlike NC, GKNC adopted the Mahalanobis distance to replace
the Euclidean distance. GKNC also offered the terminal fuzzy
membership values to classify the Chinese cabbage samples.
Some parameters of the GKNC program were: class number c ¼
3, threshold value 3 ¼ 0.00001, fuzzy weight value m ¼ 3,
number of test samples n¼ 30, and the maximum iteration rmax

¼ 100. d2ik was calculated by the terminal fuzzy membership
values of FCM and the terminal cluster centres of FCM. Not only
that, the terminal cluster centres of FCMwere used as the initial
cluster centres of GKNC. Aer one iteration, the terminal fuzzy
membership values of GKNC were determined, as shown in
Fig. 8. Therefore, the terminal cluster centres of GKNC were:

V ð1Þ ¼

2
6664
v
ð1Þ
1

v
ð1Þ
2

v
ð1Þ
3

3
7775 ¼

2
664
�0:0141 �0:0155
�0:0060 0:0129
0:0171 �0:0086

3
775 (11)

The terminal fuzzy membership values provided by GKNC
had the same classication principle as FCM, GK and NC. The
clustering accuracy of GKNC was 93.3%. Furthermore, the
classication accuracy of GKNC was higher than that of FCM,
GK and NC.
3.8 Selection of the optimal fuzzy weight value and test
samples

Four fuzzy clustering algorithms, namely FCM, GK, NC and
GKNC, were applied to cluster the test samples. Therefore, the
fuzzy membership values generated by four fuzzy clustering
algorithms were able to classify the Chinese cabbage samples
Fig. 8 Terminal fuzzy membership values of GKNC.
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Table 1 Clustering accuracies of FCM, GK, NC and GKNC with
different fuzzy weight values (m)

m FCM GK NC GKNC

2.3 80% 53.3% 90% 93.3%
2.5 80% 50% 90% 93.3%
2.8 80% 70% 90% 93.3%
3 80% 73.3% 90% 93.3%
3.3 80% 73.3% 90% 93.3%
3.5 80% 80% 90% 93.3%
3.8 80% 83.3% 90% 93.3%
4 83.3% 86.7% 86.7% 93.3%

Table 4 Clustering accuracies of the four algorithms with different
fuzzy weight values (m) and training samples

m n_training n_test FCM GK NC GKNC

2 90 30 80% 53.3% 85.8% 93.3%
2.5 87 33 80.3% 73.5% 86.4% 93.2%
3 84 36 80.6% 70.1% 86.1% 92.4%
3.5 78 42 82.9% 73.2% 86% 93.3%
4 75 45 83.3% 73.3% 90% 93.3%
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with three different lambda-cyhalothrin residue levels.
However, the fuzzy weight value (m) and the number of test
samples (n_test) were important factors to change the fuzzy
membership values. Before running the four fuzzy clustering
algorithms, the fuzzy weight value (m) was changed and the
remaining parameters remained unchanged (especially the
number of training samples n_training ¼ 90 and the number of
test samples n_test ¼ 30). The clustering accuracy also changed
owing to the change of the fuzzy weight value (m). From Table 1,
the fuzzy membership values from GKNC produced the
maximum classication accuracy compared to the other fuzzy
clustering algorithms.

On the other hand, the number of training samples and
training samples were changed, and the fuzzy weight value (m)
was set as m ¼ 3. The clustering results are shown in Table 2,
and the classication accuracies of GKNC can be seen to be
obviously higher than for the others.

In order to compare the clustering accuracies of the four
fuzzy clustering algorithms under different conditions, the
fuzzy weight value (m) and the number of training samples were
modied at the same time. The clustering accuracies are shown
in Table 3. As shown in Table 3, the classication accuracies of
GKNC had the highest clustering accuracies, reaching 93.3%.
Table 2 Clustering accuracies of FCM, GK, NC and GKNC with
different numbers of test samples and training samples

n_training n_test FCM GK NC GKNC

90 30 80% 73.3% 90% 93.3%
84 36 80.6% 47.2% 86.1% 91.7%
75 45 84.4% 42.2% 86.7% 93.3%
72 48 85.4% 43.8% 87.5% 91.7%

Table 3 Clustering accuracies of FCM, GK, NC and GKNC with
different fuzzy weight values (m) and training samples

m n_training n_test FCM GK NC GKNC

2 90 30 80% 53.3% 86.7% 93.3%
2.5 87 33 80.8% 73.7% 87.8% 92.9%
3 84 36 78.7% 71.3% 87% 92.6%
3.5 78 42 83.3% 73% 86.5% 92.9%
4 75 45 83.7% 73.3% 89.6% 93.3%

© 2022 The Author(s). Published by the Royal Society of Chemistry
3.9 Selection of different numbers of concentration levels

In order to further prove the superior performance of the GKNC
algorithm, a new concentration level (the ratio of lambda-
cyhalothrin and water was 1 : 20) was added. FCM, GK, NC
and GKNC were used to identify and classify the four different
lambda-cyhalothrin concentrations of Chinese cabbage
samples. The clustering accuracies of the four algorithms are
shown in Table 4. The clustering accuracies of GKNC were
signicantly higher than that of FCM, GK and NC.
4. Conclusions

To qualitatively determine lambda-cyhalothrin residues in
Chinese cabbage quickly, non-destructively and effectively,
the Gustafson–Kessel noise clustering (GKNC) algorithm
coupled with MIR spectroscopy was proposed. The GKNC
algorithm is a derivation of Gustafson–Kessel (GK) clustering
and noise clustering (NC). The MIR spectral data were
collected for 120 Chinese cabbage samples of three lambda-
cyhalothrin residue levels using an Agilent Cary 630 FTIR
spectrometer. MIR spectra were processed by multiple scatter
correction (MSC), principal component analysis (PCA) and
linear discriminant analysis (LDA). Finally, four fuzzy clus-
tering algorithms, namely fuzzy c-means (FCM) clustering,
Gustafson–Kessel (GK) clustering, noise clustering (NC) and
GKNC, were used to cluster the spectral data. GKNC was able
to identify and classify the lambda-cyhalothrin concentration
of Chinese cabbage accurately and had the highest classi-
cation accuracies compared to the other three fuzzy clustering
algorithms. The experimental results proved that the GKNC
algorithm coupled with MIR spectroscopy was superior in the
identication of lambda-cyhalothrin residues on Chinese
cabbage.
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