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n in thin polymeric films via
electrohydrodynamic patterning

Guowei Lv, ab Hongmiao Tian,c Jinyou Shaoc and Demei Yu *a

The free surface of a thin polymeric film is often unstable and deforms into various micro-/nano-patterns

under an externally applied electric field. This paper reviews a recent patterning technique,

electrohydrodynamic patterning (EHDP), a straightforward, cost-effective and contactless bottom-up

method. The theoretical and numerical studies of EHDP are shown. How the characteristic wavelength

and the characteristic time depend on both the external conditions (such as voltage, film thickness,

template-substrate spacing) and the initial polymer properties (such as rheological property, electrical

property and surface tension) is theoretically and experimentally discussed. Various possible strategies

for fabricating high-aspect-ratio or hierarchical patterns are theoretically and experimentally reviewed.

Aligning and ordering of the anisotropic polymers by EHDP is emphasized. A perspective, including

novelty and limitations of the methods, particularly in comparison to some conventional patterning

techniques, and a possible future direction of research, is presented.
1 Origin of EHDP

Over the past few decades, the urgent need of micro- and nano-
structures for manufacturing high-performance devices, such
as integrated circuits, optoelectronic devices, and sensor arrays,
has motivated the development of new patterning tech-
niques.1–5 In 1999, Chou et al. observed that a periodic pillar
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array with a micrometer scale was formed in a thin polymer
lm.6–14 Although without the external electric eld, the key
driving force for the formation of the micro-/nano-structures is
the internal localized electrical eld generated between the
contactor and the polymer lm. In 2000, Schaffer et al. reported
a straightforward, cost-effective and contactless (positive
replica) patterning technique, electrohydrodynamic patterning
(EHDP), that creates and replicates lateral hierarchical struc-
tures with a submicrometre length scale on various kinds of
materials (e.g. thermoplastic polymer,15–22 thermosetting poly-
mer,23–29 photocurable resin,30–34 ceramic,35–37 and so on) under
an externally applied electric eld.38–47 Especially, the capability
of EHDP with a featureless template to fast and economically
create large-scale three-dimensional micro-scale structures,
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Fig. 1 The diagrammatic sketch of EHDP with (a) a featureless template and (b) a patterned template. Reproduced with permission.66 Copyright
2013, Springer International Publishing Switzerland.
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even though no long range order, is particularly attractive
because the difficulty, time, and cost in designing and making
pre-patterned templates limit the exibility and wide applica-
tion of conventional lithography, especially when large
numbers of different patterns are to be fabricated.48 It is worth
noting that a higher value of f (h/H, the ratio of the polymer lm
thickness to the template-substrate spacing) leads to a denser
packing of the polymer columns and to an enhanced electro-
static repulsion between the equally charged columns, resulting
in columns with a perfect hexagonal symmetry and, however, an
accelerating coarsening.,15 a lower value of f leads to the
suppression of coarsening.49,50 Hence, the highly ordered arrays
of columns only can be obtained in a very narrow f range.51 In
addition, EHDP just need a minimized external force to main-
tain a proper air gap between the liquid polymer and the
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template, avoiding a poor geometrical integrity of the dupli-
cated micro-/nano-structure or even to an irreversible damage
of the substrate and the template.52

The diagrammatic sketch of EHDP is shown in Fig. 1.53

Firstly, a thin lm of the polymer is spin-coated on a conductive
substrate (bottom electrode). Then a template (top electrode) is
put on the top of the polymer lm, leaving an air gap. Secondly,
the assembly is then thermally maintained above the glass
transition temperature (Tg) of the polymer, and then an external
voltage is applied between the bottom and top electrode. This
applied voltage causes a destabilizing electrostatic force due to
the mismatch of the dielectric constant or the electrical
conductivity between polymer and air. Once the destabilizing
electrostatic force overcomes the stabilizing surface tension and
the viscous resistance, the at polymer surface will be
Demei Yu received her PhD
degree from Xi'an Jiaotong
University, Xi'an, China, in
1998. She joined Xi'an Jiaotong
University in 1984, and served
as professor and founding chair
of the Department of Applied
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micro-/nano-composites with high performance (electrical, thermal
and mechanical properties); (4) polymer processing and polymer
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Fig. 2 EHDP of PMMA2K-air. (a) Plot of the characteristic wavelength
l vs. the applied voltage. (b) An optical micrograph of pillars formed at
10 V. Reproduced with permission.71 Copyright 2011, American
Chemical Society.
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destabilized and forced to ow upward to the top electrode. The
growth of peaks reduces the air gap between the polymer lm
and the template, which strengthens the electrical eld and
accelerates the evolution. As the peaks grow, the capillary
pressure also increases. Therefore, the competition between
destabilizing electrostatic pressure and the stabilizing capillary
pressure selects a maximum characteristic wavelength l and
a characteristic time s.48 Finally, the micro-/nano-structure of
the polymer will fully contact with the top electrode and then
reach a steady state. Aer that, a slow cooling of the assembly to
room temperature or UV light cures the micropillars array. In
this process, the template can be either featureless
(Fig. 1a),15,17,27 generating an array of periodic pillars, or
patterned (Fig. 1b),15,37,39,41,46,54–65 forming a positive replica of
the template.

2 Theoretical and numerical studies

The overall pressure distribution at the viscous lm surface is

p(h) ¼ p0 + pvdW(h) + pg(h) + pe(h) (1)

where p0 is the atmospheric pressure, pvdW(h) is the disjoining
pressure (arising from dispersive van der Waals interactions),
pg(h) is the Laplace pressure (stems from the surface tension g)
and pe(h) is the electrostatic pressure.16

For high enough values of electric eld intensity, only the
Laplace and electrostatic terms need to be considered. In
a stability analysis, a small sinusoidal perturbation of the
interface with wave number q, growth rate u, and amplitude u is
considered: h(x, t) ¼ h0 + ueiqx+tu. The modulation of h gives rise
to a lateral pressure gradient inside the lm, inducing a Pois-
euille ow j

j ¼ h3

3h

�
�vp

vx

�
(2)

where h is the viscosity of the liquid. A continuity equation
enforces mass conservation of the incompressible liquid

vj

vx
þ vh

vt
¼ 0 (3)

Eqn (1)–(3) establish a differential equation that describes
the dynamic response of the interface to the perturbation. In
a linear approximation, a dispersion relation is obtained

u ¼ �h3

3h

�
vpe

vh
q2 þ gq4

�
(4)

As opposed to the inviscid, gravity-limited case (u f q), the
viscous stresses lead to a q2-dependence of u in the long-
wavelength limit, typical for dissipative systems. Fluctuations
are amplied if u > 0. With time, the fastest growing uctuation
will eventually dominate

vu

vq
¼ �h3

3h

�
2q

vpe

vh
þ 4gq3

�
¼ 00q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�vpe=vh

2g

s
(5)
© 2022 The Author(s). Published by the Royal Society of Chemistry
When mobile free charge is absent (i.e. perfect dielectric), the
characteristic wavelength l and the characteristic time s is

l ¼ 2p

U

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2g

303p
�
3p � 1

�2
s �

3pH þ �
1� 3p

�
h
�3=2

(6)

and

s ¼ 12hg
�
hþ 3pðH � hÞ�6

U4h3
�
3p30

�2�
3p � 1

�4 (7)

where 30 is the dielectric constant of free space, 3p is the
dielectric constant of the polymer lm, g is the surface tension
of the polymer lm, U is the applied voltage, h is the thickness of
the polymer lm, and H is the template-substrate spacing.

When mobile free charge is present (i.e. leaky dielectric), the
dielectric constant and a dimensionless conductivity parameter
S jointly play roles. The latter represents a ratio of the process
time scale to the time for charge conduction (3g30/s)

S ¼ shgH3/30
3U4 (8)

Especially, when S [ 1, the characteristic wavelength l and
the characteristic time s is

l ¼ 2p

U

ffiffiffiffiffiffi
2g

30

s
ðH � hÞ32 (9)

and

s ¼ 12hgðH � hÞ6
U4h3302

(10)

where s is the electrical conductivity of the thin polymer
lm.67–70
3 Effect of the external conditions on
the pattern formation

In continuing the steady development of integrated circuit-
related fabrication, the ability to rapidly pattern polymers into
smaller feature size and/or higher aspect ratio in order to realize
RSC Adv., 2022, 12, 9681–9697 | 9683
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Fig. 3 (a(i)) The characteristic wavelength l vs. VE�3 in log–log scale for viscoelastic liquidlike films. (ii) The characteristic wavelength l vs. the film
thickness h for viscoelastic solidlike films. (iii) The characteristic wavelength l vs. the storage modulus m for viscoelastic films between the
liquidlike and the solidlike regimes. Reproduced with permission.24 Copyright 2009, American Physical Society. (b) Optical microscopy image of
EHDP patterns of (i) a thin liquid film of PI and (ii) a bilayer of PI and ODMS. Reproduced with permission.77 Copyright 2001, American Institute of
Physics. (c) EHDP patterns of various Au(PS) thin films: (i) Au(PS) 0 vol%; (ii) Au(PS) 0.05 vol%; (iii) Au(PS) 0.25 vol%; (iv) Au(PS) 0.5 vol%; (v) Au(PS)
1.0 vol%. Reproduced with permission.78 Copyright 2008, American Chemical Society. (d and e) Simulated and experimental deformation of
EHDP with (d) a featureless template and (e) a structured template for (i) the leaky dielectric and (ii) perfect dielectric. Reproduced with
permission.33 Copyright 2016, Royal Society of Chemistry. Reproduced with permission.31 Copyright 2014, American Chemical Society.
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devices with enhanced performance or even wholly new prop-
erties begins to take a more prominent role in their advanced
applications.

According to eqn (6)–(10), changing the external conditions
such as decreasing the template-substrate spacing (H),
Fig. 4 (a–f) Optical microscopy images with height AFM images (inset) a
EHDP patterns of PPy. (g) Schematic representation (top) and an overvie
using the EHDP patterns on the top of a Si–SiO2 substrate. (h) Drain
transistor based on (i) EHDP pillars shown in a top-view optical image
permission from https://pubs.acs.org/doi/10.1021/acsnano.6b01246.100 C
related to the material excerpted should be directed to the ACS).

9684 | RSC Adv., 2022, 12, 9681–9697
increasing the polymer lm thickness (h) and increasing the
applied voltage (U) can fabricate micro-/nano-patterns with
a shorter characteristic time and a smaller characteristic
wavelength via EHDP for both the perfect and leaky dielectric.
For example, Russel et al. showed that the characteristic
nd three-dimensional AFM micrographs with cross section analysis of
w image (bottom) of the configuration of a liquid-ion gate vertical FET
current versus drain voltage characteristics of PPY electrolyte-gated
and (ii) gate voltage performance of the PPy-FET. Reproduced with
opyright 2016, American Chemical Society (notice: further permissions

© 2022 The Author(s). Published by the Royal Society of Chemistry
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wavelength l decreases with the increase in the applied voltage
(below 10 V) at a given system, as shown in Fig. 2a.71 However,
the characteristic wavelength l no longer decreases or even
increases with the increase in the applied voltage (above 10 V)
due to the dielectric breakdown in at least one of the layers. If
layers break down, submicrometer features are unlikely, as
shown in Fig. 2b. Hence, though theory predicts that changing
the external conditions will decrease the characteristic wave-
length l to nanoscale level, the limit is set by the dielectric eld
strength of the layers. In addition, increasing the pattern
growth velocity not only shortens the patterning time but also
exhibits enhanced scalability for replicating small and
geometrically diverse features.72
4 Effect of the polymer properties on
the pattern formation

In EHDP, polymer lm materials have played a critical role,
since some limitations in accessing better-performance EHDP,
such as higher efficiency, smaller feature size, and greater
aspect ratio, are of material origin; moreover, the functionality
of the generated EHD patterns is governed by EHD materials
owing to the interesting properties these materials can offer.
Fig. 5 (a) Mechanism of the EHDP structure formation process for mult
VCH. (b and c) EHDP with (b) a featureless template and (c) a patterne
column before (i) or after (ii) removing the PS core by washing in cy
Publishing Group. (d) EHDP patterns of a PS-PMMA-air bilayer: SEM ima
hexane. Reproduced with permission.105 Copyright 2006, American Che
and SEM images of structures derived from (i) the trilayer coaxial pillars,
volcanos. Reproduced with permission.106 Copyright 2012, WILEY-VCH.

© 2022 The Author(s). Published by the Royal Society of Chemistry
Hence, the performance of EHDP depends on the comprehen-
sive properties of the polymer lm to a certain extent.
4.1 Rheological property

The rheological property of the polymer noticeably governs the
characteristic wavelength l and the characteristic time s of
EHDP.23–27,73–75 Sharma et al. has systematically studied the role
of the viscoelastic property of the polymer lm in the pattern
formation of EHDP.24 The viscoelastic lms behaving like
a liquid display long wavelengths governed by applied voltage
(or electrostatic pressure) and surface tension, independent of
its elastic storage and viscous loss moduli (Fig. 3a(i)); the
viscoelastic lms behaving like a solid display wavelengths
always scales as �4 � lm thickness, independent of its surface
tension, applied voltage, loss and storage moduli (Fig. 3a(ii));
and the viscoelastic lms behaving in a narrow transition zone
between the liquidlike and the solidlike regimes display
a wavelength governed by the storage modulus (Fig. 3a(iii)). It is
interesting to note that the viscosity of the polymer lm inu-
ences the characteristic time s of EHDP. This offers an advan-
tage in EHDP for decoupling time by varying the types or the
molecular weight of polymers. For example, Dickey et al.
showed that the photocurable systems (e.g. thiol vinyl ether,
ilayer system. Reproduced with permission.106 Copyright 2012, WILEY-
d template patterns of a PMMA-PS-air bilayer: AFM image of a single
clohexane. Reproduced with permission.103 Copyright 2002, Nature
ge of a single “cage” after removing the PS core by washing in cyclo-
mical Society. (e) EHDP patterns of an EC-PVA-PVAc-air trilayer: AFM
(ii) central PVAc pillars surrounded by thin EC rims, and (iii) EC nano-

RSC Adv., 2022, 12, 9681–9697 | 9685
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Fig. 6 (a) Illustration of a three-step process for fabricating a bioinspired mushroom-shaped microfiber array with a high aspect ratio.
Reproduced with permission.115 Copyright 2014, American Chemical Society. (b) Simulated and experimental structures fabricated by (i) EHDP-
PPT and by (ii) EHDP-PPP. Reproduced with permission.114 Copyright 2014, American Chemical Society. (c) The mushroom-shaped micropillars
with a well-controlled aspect ratio and tip diameter using various polymers: (i) polymethyl methacrylate (PMMA) and (ii) polyvinylidene fluoride
(PVDF). Reproduced with permission.115 Copyright 2014, American Chemical Society. Reproduced with permission.116 Copyright 2015, Royal
Society of Chemistry.
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vinyl ether, thiol acrylate, DMS acrylate, epoxy) with a low
viscosity (0.1–1.8 Pa s) formed pillar arrays nearly instanta-
neously under ambient conditions.30,76 Goldberg-Oppenheimer
et al. showed that the use of the polymers with a low-viscosity
(0.073–1.032 Pa s) evidently reduced the characteristic time.19

It is worth noting that the rheology property of the polymer is
closely related to its temperature. For instance, Cheng et al.
showed a faster growth of the surface patterns of polystyrene
lm at a higher temperature due to the lower viscosity.20

However, the molding temperature cannot exceed the decom-
position temperature of the polymer in the pattern formation
process.

4.2 Surface/interface tension

The decrease of the surface/interface tension of the polymer
lm is advantageous to fabricating the micro-/nanostructures
with a smaller characteristic wavelength l and a shorter char-
acteristic time s.75,77,79–85 For example, a clear reduction in length
9686 | RSC Adv., 2022, 12, 9681–9697
scale (2 times) and time scale (50 times) of polyisoprene (PI) lm
is observed by substituting the air gap with oligomeric dime-
thylsiloxane (ODMS) lm, as shown in Fig. 3b. However, there is
a trade-off by replacing air with another uid because it may
decrease the dielectric contrast difference of the system.48

4.3 Electrical property

4.3.1 Dielectric constant. According to the linear stability
analysis based on the perfect dielectric model, when free
charges absent (i.e., the perfect dielectric), the dielectric
constant 3p of the polymer lm is important. A smaller char-
acteristic wavelength l and a shorter characteristic time s is
expected with increasing the dielectric constants 3p of the
layers.78,86 For instance, Bae et al. demonstrated that the
increased dielectric constant of the polymer lm by the incor-
poration of nanoparticles into the polymer lm led to a signi-
cant reduction in the characteristic wavelength l, as shown in
Fig. 3c.78,86 However, the enhancement of the dielectric constant
© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 7 (a) Scheme and (b) numerical simulations of the process for generating hierarchical structures based on electrohydrodynamic (EHD)
structure formation with a prestructured polymer. (c) Hierarchically structured polymer fabricated with different patterned template and pre-
structured polymer: (i) micropillar/nanopillar structure, (ii) micrograting/micropillar structure, (iii) micropillar/micrograting structure, and (iv)
micrograting/micrograting structure. Reproduced with permission.124 Copyright 2016, American Chemical Society.

Fig. 8 (a–c) The mechanism of the method used to align the pillars. (d) Optical microscopy images of a 45 nm thick PMMA film patterned on
a silicon substrate. (e–h) AFM image of a typical pattern formed on the substrate with central pillars taller than those under the ridges.
Reproduced with permission.126 Copyright 2006, WILEY-VCH.

Fig. 9 (a) Illustration of EHDP process for generation of concave MLAs. (b) Experimentally measured 3D profiles of (i) the template arrayed with
cylindrical microholes and (ii) the corresponding concave MLA, respectively (acquired by LSCM). (c) SEM images of a concave MLA with
a hexagonal aperture. Scale bar: 50 mm. (d) Test for the optical properties of concaveMLA: (i) diagramof the optical microscopic setup to evaluate
imaging and focusing performances of theMLA; (ii) image of the authors' school badge obtained by using a concaveMLAwith a sag height of�12
mm; (iii) measured light intensity profiles of a concaveMLAwith a sag height of�23 mm. Reproduced with permission.44 Copyright 2013, American
Chemical Society.

© 2022 The Author(s). Published by the Royal Society of Chemistry RSC Adv., 2022, 12, 9681–9697 | 9687
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Fig. 10 (a) Optical micrographs of EHDP under a top flat electrode using the spatiotemporal modulation of the applied electric field. (b) Optical
micrographs of EHDP under a top electrode having parallel ridges and stripes ofw¼ 120 mm using the spatiotemporal modulation of the applied
electric field. (c) Optical micrographs of EHDP under a box-patterned top electrode using the spatiotemporal modulation of the applied electric
field (box dimension �2l). (d) Optical micrographs of EHDP under a box-patterned top electrode using the spatiotemporal modulation of the
applied electric field (box dimension �3l). Reproduced with permission.26 Copyright 2011, WILEY-VCH.
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by loading nanoparticles is also limited as the excessive ller
loading would result in the increase in the viscosity of the
polymer and the undesirable nanoparticle agglomeration in the
polymer lm.

4.3.2 Electrical conductivity. Particularly interesting is the
characteristic wavelength l and the characteristic time s that is
predicted from leaky dielectric model is smaller than that from
the perfect dielectric model.87–92 Lv et al. demonstrated that
a leaky dielectric could fulll high-performance EHDP with
a featureless template.32–34 A signicant reduction in the char-
acteristic wavelength l (from 325.6 � 14.7 mm to 154.5 � 15.3
mm) and the patterning time (from 5 s to�1 s) are observed, as
shown in Fig. 3d. Furthermore, according to the perfect and
leaky dielectric model, the theoretical characteristic wavelength
l is 368 mm (the perfect dielectric) and 150 mm (the leaky
dielectric), respectively, hence, the experimental results herein
demonstrate a convincing experimental distinction between the
‘‘perfect’’ and ‘‘leaky’’ dielectric models in spite of a slight
mismatch between the theoretical and experimental values
especially from the perfect dielectric model. Moreover, Tian
et al. theoretically and experimentally demonstrated that a leaky
dielectric could signicantly improve the aspect ratio of the
micro-/nano-structures fabricated by EHDP with a structured
template compared to a perfect dielectric, as shown in Fig. 3e.
9688 | RSC Adv., 2022, 12, 9681–9697
Especially, the conducting polymer (CP), as a leaky dielectric,
is a promising material for high-performance EHDP in order to
realize devices with enhanced performance or even wholly new
properties and then take a more prominent role in their
advanced applications such as organic electronic devices,
chemical sensors, eld-effect transistors, superhydrophilic/
superhydrophobic surfaces, micro-/nanouidic systems and
micro-/nanoelectromechanical systems (MEMS/NEMS).93–99 For
instance, Rickard et al. fabricated well-dened conductive
micro-/nano-structures using the thin conducting polymer (e.g.
polypyrrole, poly(3-hexylthiophene), and so on) lms via EHDP,
as shown in Fig. 4a–f.100–102 Moreover, they showed the feasi-
bility of the polypyrrole-based structures with a gate length of
700 nm and a pitch of 500 nm for the electrolyte-gated vertical
eld-effect transistor (FET) devices, as shown in Fig. 4g–h.
5 Fabrication of hierarchical
structures

To date, several techniques structure a single layer of the poly-
mer. For many applications, however, it is desirable to control
the spatial arrangement of more than one component. Morariu
et al. describes a replication process where multiple materials
with an air gap between the lm and the contactor are
© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 11 CNT-EHDP replicated patterns. Atomic force microscopy
height and three-dimensional images and the corresponding cross-
sections of (a) curly nano-hair (CNH) surfaces, (b) straight nano-hairs
(SNH), (c) single-level spikes with rounded edges (S1L), (d) two-levelled
spiky cones (S2L), (e) two-tiered heretical spiky cones (S2L2) and (f)
hexagonal pillars (HP) replicated from the various imposed CNT-based
electrodes. Reproduced with permission.22 Copyright 2017, Royal
Society of Chemistry.

Fig. 12 (a) Low- and high-magnification SEM images of the EHDP micro
EHDPmicro-pillars with partial removal of the PSmatrix. (c) SEM top-view
SEM images of the EHDP micro-pillars using CNTs which are slightly lo
2011, WILEY-VCH.

© 2022 The Author(s). Published by the Royal Society of Chemistry
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processed simultaneously, as shown in Fig. 5a.103–112 Using
a bilayer or trilayer formed by two or three different polymers,
EHDP at both polymer surfaces produce a hierarchic lateral
structure that exhibits two or three independent characteristic
dimensions, as shown in Fig. 5b–e.103–112 This approach might
provide a simple strategy for large-area, sub-100 nanometre
lithography.

EHDP with a featureless template shows the capability to fast
and economically create large-scale three-dimensional micro-
scale structures on various kinds of materials. However,
conventional EHDP with a featureless template can only fabri-
cate a low-aspect-ratio micro-/nanostructures. Therefore, much
research have been devoted to increase the aspect ratio of the
micro-/nanostructures.113,114 For instance, Tian et al. developed
a novel EHDP technique, EHDP-prepatterned polymer (PPP), to
fabricate a hierarchical micro-/nanostructure with a high aspect
ratio, as shown in Fig. 6a.114 The simulation and experiment
showed that EHDP-PPP approach can provide a stronger electric
modulation at the same experimental settings, obtaining
a hierarchical micro-/nanostructure with a higher aspect ratio
compared to EHDP-prepatterned template (PPT), as shown in
Fig. 6b. This method can deform various polymers to a mush-
room-shaped micropillars with a well-controlled aspect ratio
and tip diameter for dry adhesion, nanogenerator,
superhydrophilic/superhydrophobic surfaces, microlens arrays,
and so on, as shown in Fig. 6c.115–123 Furthermore, to fabricate
a hierarchically ordered structure, Tian et al. improved above
EHDP-PPP method by substituting the featureless template
with a patterned template which feature size is far less than the
characteristic wavelength l of the given system, as shown in
Fig. 7a and b. The hierarchically ordered structures with
primary and secondary patterns for mass-production, such as,
micropillar/nanopillar structure, micrograting/micropillar
structure, micropillar/micrograting structure, and
micrograting/micrograting structure, were fabricated, as shown
in Fig. 7c.124,125

Russel et al. design and utilize the special template patterns
to guide pillars into alignment over regions much greater in
extent than their natural domain sizes to pattern thin polymer
lms via EHDP, as shown in Fig. 8a–c. Regular rows of pillars
form under ridges, and ordered triangular arrays are generated
within each individual triangular domain bounded by the
-pillars that contain vertically aligned MWCNTs. (b) SEM images of the
of the EHDPmicro-pillars with partially exposed vertical MWNTs. Inset:
nger than the pillar height. Reproduced with permission.128 Copyright

RSC Adv., 2022, 12, 9681–9697 | 9689
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ridges, as shown in Fig. 8d. Moreover, the ordered pattern
spanned more than 100 periods (400–500 mm), which is the
largest array of ordered pillars from EHDP available in the
literature. The ordered pattern had two identied characteristic
wavelength: one is the spacing between pillars under the ridges,
l1 (�2.7 mm), and the other is the spacing between pillars within
each small triangular array, l2 (�4.0 mm), as shown in Fig. 8e–h.

Li et al. presented an economical method for fabricating
a concave microlens arrays (MLAs) with a high quality and high
density, as shown in Fig. 9a and b.44 The curvature of the MLA
can be well-controlled by changing the air gap between the
template and polymer lm. The MLA has a ll factor calculated
as high as up to 93%, as shown in Fig. 9c. Moreover, the
MLA has excellent focusing and imaging performances, as
shown in Fig. 9d.

Sharma et al. showed that the spatiotemporal modulation of
the applied electric eld inuences the pattern morphology in
incompletely cross-linked viscoelastic polydimethylsiloxane
(PDMS) lms, due to the appearance of secondary and tertiary
structures, resulting in hierarchical, multiscale patterns, which
can be observed in Fig. 10.26 Park et al. also investigated
secondary electrohydrodynamic instability in polymer lms by
controlling the timescale parameter to produce secondary
nanosized patterns between the micrometer-sized grooves.127

Goldberg-Oppenheimer et al. proposed a tunable carbon
nanotubes-based electrohydrodynamic patterning (CNT-EHDP)
to fabricate unique multiscale structured cones and nanohair-
like architectures with various periodicities and dimensions,
successfully enabling surface energy minimization, as shown in
Fig. 11.22 By controlling the hierarchy of micro- to nano cones
and spikes, these morphologies provide a range of architectures
with sufficient roughness for very low wettability, with the
highest contact angle achieved of 173� and their properties can
be easily switched between lotus-leaf to rose-petal behavior.
Fig. 13 AFM images of a (left) template electrode and (right) the pattern
micrographs of well-defined crystalline EHDP patterns of (b) PCL and of (f
patterns. Selected area diffraction pattern obtained with an aperture of 3.0
a single PDHA crystal in (h). Reproduced with permission.129 Copyright 2

9690 | RSC Adv., 2022, 12, 9681–9697
6 Aligning and ordering of the
anisotropic polymers

In order to take full advantage of the synergistic functions in
carbon nanocomposites and hybrids, control of the dispersion,
orientation, and interfacial chemistry of carbon materials in the
organic or inorganic matrix is required. Moreover, anisotropic
composite structures with vertically aligned carbon materials
are essential to realize the full potential of carbon materials-
based composites both for optimization of their mechanical
properties and integration into devices. Goldberg-Oppenheimer
et al. showed that the EHDP micro-patterns along with the
alignment of carbon nanotubes (CNTs) within these patterns
can be fabricated for carbon nanotube-polymer nanocomposite
lms by EHDP with a featureless template, as shown in Fig. 12a
and b.128 The degree of the carbon nanotube alignment within
these patterns can be tuned by adjusting the EHDP parameters.
Furthermore, patterned surfaces decorated by CNT brushes can
be obtained using either etching techniques or by embedding
relatively long nanotubes, as shown in Fig. 12c.

EHDP enables the structure formation of organic crystalline
materials on themicrometer length scale while at the same time
exerting control over crystal orientation, as shown in Fig. 13.129

Well-ordered structures with nearly vertical walls, comprising
stacks of crystals were shown for both PCL (Fig. 13a and b) and
PDHA (Fig. 13e and f). A set of nested rings have formed in the
diffraction plane for both replicated structures of PCL (Fig. 13c
and d) and PDHA (Fig. 13g and h), indicating polycrystalline
samples.

EHDP of a block-copolymer (BCP) lm also gives rise to
hierarchical pattern formation with a micrometer-sized poly-
mer pillars and a 10 nm-scaled microphase morphology in one
single step, as shown in Fig. 14.130–132 Schematic drawing of the
s of (a) PCL and (e) PDHA with corresponding cross-sections. Optical
) PDHA. Diffraction patterns for a large area of (c) the PCL and (g) PDHA
mmof a single PCL crystal in (d) and with a 1.0 mmaperture diameter of
012, WILEY-VCH.

© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 14 (a) Schematic drawing of the experimental procedure. (b) Three possible in-plane configurations of the lamellar microdomains. (c–e)
AFM images of micrometer-sized patterns of PS-b-PMMA films made by EHD lithography. (f–i) SEM images of the microphase morphology of
PS-b-PMMA columns. Reproduced with permission.131 Copyright 2008, WILEY-VCH.
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experimental procedure was shown in Fig. 14a. The pattern
formation on the micrometer scale of lms with two different
molecular weights was shown in Fig. 14c–e. The three different
in-plane assemblies schematically was shown in Fig. 14b:
onion-type concentric alignment of lamellae (Fig. 14f, arrow),
parallel sheets (book sheets) (Fig. 14g) and bent lamellae
pointing towards the column mantle (Fig. 14h and i). Further-
more, Goldberg-Oppenheimer et al. showed a functional block
copolymer that contains perylene bismide (PBI) side chains
which can crystallize via p–p stacking to form an electron
conducting microphase is patterned via EHDP. The patterned
lm shows a hierarchical structure with three distinct length
scales: micrometer-sized polymer pillars, a 10 nm BCP micro-
phase morphology that is aligned perpendicular to the
substrate surface, and a molecular length scale (0.35–3 nm) PBI
p–p-stacks traverse the EHDP-generated plugs in a continuous
fashion.133
Table 1 Type of some patterning methods and characteristics of the re

Method Cause Pattern

Photolithography Optical diffraction Pattern of optical
diffraction

Nanoimprint External force Typically negative replica
of template

EHDP External electric
eld

Typically ordered arrays of
pillars, positive replica of
template
or some hierarchical
structures

© 2022 The Author(s). Published by the Royal Society of Chemistry
7 Conclusions and perspective

The review provides an illustrative commentary about the
progress and recent developments on EHDP. The key emphasis
of the review has been to theoretically and experimentally
discuss how the characteristic wavelength and the character-
istic time depend on both the external conditions (such as the
applied voltage, lm thickness, template-substrate spacing) and
the initial polymer properties (such as rheological property,
electrical property and surface tension). We have theoretically
and experimentally discussed various possible strategies for
fabricating hierarchical patterns by combining the essential
concepts of bottom-up and top-down approaches. Furthermore,
we have emphasized aligning and ordering of the anisotropic
polymers by EHDP.

Table 1 shows some conventional patterning methods and
their characteristics of the resulting patterned surfaces
sulting patterned surfaces

Size range Novelty Limitation

Nanometer to
micrometer

High resolution High cost
High throughput Optical diffraction limit

Nanometer to
micrometer

Low cost Large external force
High throughput
High resolution

Submicrometer
to micrometer

Low cost No long range order
High throughput No nano-scale features
High resolution
Small external force

RSC Adv., 2022, 12, 9681–9697 | 9691
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including the cause, the pattern, the size range, the novelty and
the limitation. Among the conventional patterning methods,
photolithography is a pattern-fabricating technique with high
resolution and high throughput, but the photolithography tools
are rather expensive and the feature size is limited by optical
diffraction limit; nanoimprint is a pattern-transferring tech-
nique with low cost, high throughput and high resolution,
however, nanoimprint typically require a comparatively large
external force to press a patterned template mechanically
against the substrate, possibly leading to poor geometrical
integrity in the duplicated structure or even to irreversible
damage of the template and substrate, making multilayer
overlay alignment difficult. EHDP also is a pattern-transferring
technique with low cost, high throughput and high resolution.
Moreover, the most major advantage of EHDP is the capability
to fast and economically create large-scale three-dimensional
micro-scale structures on various kinds of materials with
featureless templates, even though no long range order and no
nano-scale features due to the dielectric breakdown.71 In addi-
tion, EHDP just need a minimized external force to maintain
a proper air gap between the liquid polymer and the template,
avoiding the shortcoming of nanoimprint.

A promising direction of EHDP is the conjugation with other
patterning techniques (such as dewetting, nanoimprint, and
hot embossing) to fabricate extremely high-aspect-ratio or
hierarchical patterns such as, cages, microlens arrays, high-
aspect-ratio micropillars, mushroom-shaped micropillars with
a well-controlled aspect ratio and tip diameter.134–137 In addi-
tion, an attractive issue in EHDP is to extend its applicability to
a larger class of materials. The benet of exploiting new kinds of
EHD materials lies in that it provides the possibility to not only
improve the performance of EHDP, but also integrate func-
tionality into nal microstructures because of the interesting
physical properties these materials can offer. So a promising
direction in EHDP will include the structure formation in
functional polymers and their various potential applications.
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