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synthesis of nanoflake NiS2 layers
and their photocatalytic activity

Mohammed M. Gomaa, *a Mohamed H. Sayed, ab Mahmoud S. Abdel-Wahed c

and Mostafa Boshtaa

A single-phase and crystalline NiS2 nanoflake layer was produced by a facile and novel approach consisting

of a two-step growth process. First, a Ni(OH)2 layer was synthesized by a chemical bath deposition

approach using a nickel precursor and ammonia as the starting solution. In a second step, the obtained

Ni(OH)2 layer was transformed into a NiS2 layer by a sulfurization process at 450 �C for 1 h. The XRD

analysis showed a single-phase NiS2 layer with no additional peaks related to any secondary phases.

Raman and X-ray photoelectron spectroscopy further confirmed the formation of a single-phase NiS2
layer. SEM revealed that the NiS2 layer consisted of overlapping nanoflakes. The optical bandgap of the

NiS2 layer was evaluated with the Kubelka–Munk function from the diffuse reflectance spectrum (DRS)

and was estimated to be around 1.19 eV, making NiS2 suitable for the photodegradation of organic

pollutants under solar light. The NiS2 nanoflake layer showed photocatalytic activity for the degradation

of phenol under solar irradiation at natural pH 6. The NiS2 nanoflake layer exhibited good solar light

photocatalytic activity in the photodegradation of phenol as a model organic pollutant.
Introduction

In the last decades, nanostructured transition metal suldes
(NTMSs) have received considerable attention in different elds
because of their unique optical, magnetic and catalytic prop-
erties.1–3 The properties of these materials are strongly depen-
dent on the dimension, size, and morphologies of fabricated
materials,4–6 making these materials very promising for
numerous advanced applications such as adsorbents for dye
removal,7 supercapacitors,8 rechargeable lithium-ion batteries,9

hydrodesulfurization catalysts,10 hydrogen evolution reac-
tion,4,11,12 and catalysts in the degradation of organic dyes.13

Metal sulde materials such as zinc sulde,14 manganese
sulde,15 silver sulde,16 iron sulde,17 molybdenum sulde,18

nickel sulde,12 and copper suldes, have been reported and
studied extensively.19 Among the metal suldes, nickel suldes
are more favorable in terms of earth-abundant resources,
forming numerous phases such as NiS, NiS2, Ni3S2, Ni3S4, Ni7S6,
and Ni9S8, which are suitable as alternative materials for
different applications.20–23 Nickel disulde (NiS2) crystallizes in
a pyrite-like structure (FeS2), with a cubic phase Pa�3
symmetry.10,24,25 Nanostructured pyrite NiS2 with a cubic struc-
ture has interesting optical, electronic, and magnetic
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properties.3,10,26 NiS2 nanostructures with controlled
morphology such as nanoparticles, nanowires, nanosheets and
hollow microspheres,27–29 have been considered as promising
semiconducting materials for catalytic applications due to their
low-cost, nontoxicity and chemical stability.30,31 However, the
catalytic performance of NiS2 in the degradation of organic
pollutants such as endocrine disrupting compounds (EDCs) is
still less competitive compared to other catalytic materials
based on phosphides and noble metals.4,13 In this regard,
numerous techniques have been used to develop and fabricate
nickel sulde nanostructures with good physical and chemical
properties including hydrothermal methods,23,32,33 sol-
vothermal,34 decomposition of single-source precursors,35

microwave-assisted synthesis,36,37 solventless route in air,38

sonochemical,39 and ultrasonic spray pyrolysis.10 Most of these
methods are suitable for preparing nickel suldes in powder
form with other different phases sometimes accompa-
nying.22,29,38 The different possible phases of nickel sulde make
the synthesis of single-phase nickel disulde very compli-
cated.20,29,34 Therefore, the demand for an alternative approach
to prepare a single phase of nickel disulde layers with a high
specic area and uniformmorphology is still a major challenge,
and will open doors to various opportunities for advanced
applications.

Endocrine disrupting compounds (EDCs) such as phenol
and its derivatives are a category of dangerous persistent
organic pollutants, which are usually present in low concen-
trations in water environments. Phenol molecules are consid-
ered very harmful to human health, marine creatures and living
RSC Adv., 2022, 12, 10401–10408 | 10401
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organisms due to their carcinogenic, mutagenic, stability, and
bioaccumulation nature, even in low concentrations. Phenolic
compounds are discharged to ecology through effluent from
many industries for instance, paint production, processing of
petroleum, tanning, and pharmaceuticals.40–42 The conventional
treatment is not very effective for the removal of these
hazardous pollutants. Thus, the development of novel tech-
niques is essential to address this issue. Morphological control
is one of the effective approaches for promoting the photo-
degradation of phenol using NiS2 with nanoake morphology.
One of the big problems in the photocatalyst process is sepa-
ration and recovery restriction of the photocatalyst from
effluent aer the treatment process. Therefore, herein, this
problem is overcome through immobilizing prepared nickel
sulde on a glass substrate as layers.

In this study, single-phase NiS2 nanoake layers were
successfully processed via a facile two-step fabrication process.
First, Ni(OH)2 nanoake layers were grown on glass substrates
by the chemical bath deposition method, followed by the phase
transformation of Ni(OH)2 into NiS2 via a sulfurization process.
Structural, morphological and optical properties as well as the
catalytic activity of the obtained NiS2 layer were studied. The
unique nanoake-like morphology of NiS2 serves as an efficient
photocatalyst for the degradation of destructive organic
pollutants (phenol as the model organic compound).
Experimental
NiS2 layers deposition

First, the chemical bath deposition (CBD) approach was used
for the synthesis of the nanoake-structured nickel hydroxide
layer. The glass substrates were ultrasonically cleaned using
acetone and ethyl alcohol for 20 min followed by distilled water,
then dried with nitrogen gas, prior to loading into the reaction
bath. 0.1 M aqueous solution of nickel chloride (NiCl2$6H2O –

Sigma Aldrich) and ammonia solution were used as the source
of Ni2+ and complexing agent for layer deposition, respectively.
In a typical experimental procedure, the ammonia solution was
added drop wise into the nickel chloride solution under
continuous magnetic stirring to produce a clear and homoge-
neous aqueous solution as the starting solution. The precleaned
glass substrates were vertically immersed in the solution bath at
optimum deposition temperature, (Td ¼ 50 �C) and pH 11
during the synthesis process. Aer 2 h, the blue-colored
Fig. 1 Schematic description of the synthesis of porous NiS2 nano-
flake layers.

10402 | RSC Adv., 2022, 12, 10401–10408
solution changed to a greenish white color with the formation
of Ni(OH)2 layer on the surface of the substrate by the adsorp-
tion and nucleation of the nickel cations on the substrate. The
as-deposited Ni(OH)2 layers were transferred into a tube furnace
with excessive sulfur powder and subsequently sulfurized at
450 �C for 1 h in nitrogen atmosphere to obtain a nickel sulde
layer.43,44 For the ease of understanding, the facile CBD and
synthesis process for the nanoake structured NiS2 layer is
schematically described in Fig. 1.

The formation mechanism of the nanoake-structured
nickel disulde layer is divided into two processes: rst, the
formation of a nickel hydroxide phase via the chemical bath
deposition route, as indicated by the following equations:

Ni2+ + 2OH� / Ni(OH)2Y (1)

Ni(OH)2 + 4NH3 / [Ni(NH3)]
4+ + 2OH� (2)

[Ni(NH3)]
4+ + 2OH� / Ni(OH)2Y + 4NH3[ (3)

The detailed mechanism of the formation of nickel
hydroxide by chemical bath deposition (CBD) can be found
elsewhere.45,46

Second, the transformation of as deposited Ni(OH)2 layers to
nickel disulde2 due to reaction of Ni(OH)2 with sulfur atoms at
450 �C according to the following reactions:

Ni(OH)2 + S 4 NiS + 2OH� (4)

NiS + S / NiS2 (5)

Characterization of prepared immobilized NiS2

In this study, the structural investigation and phase identica-
tion of the as-prepared NiS2 layer was analyzed by X-ray powder
diffraction (XRD) with a Panalytical X'Pert diffractometer using
Cu Ka1 radiation at 45 kV and 40 mA. Scanning electron
microscopy (SEM) (QUANTA FEG250) was used for the surface
morphology imaging of the obtained layers. X-ray photoelectron
spectroscopy (XPS) was collected on K-Alpha (Themo Fisher
Scientic, USA) with monochromatic X-ray Al K-alpha radiation
at pressure 10�9 mbar to determine the elemental composition
and electronic states of the NiS2 layer. Raman analysis was
performed on a confocal Raman microscope model WITec
Alpha 300 RA under the laser excitation of 532 nm. Diffuse
reectance spectra were carried out using a UV/Vis/NIR spec-
trophotometer (Jasco V770) in the wavelength range 250–
1000 nm.

Evaluation of the photocatalytic performance of the as-
prepared immobilized NiS2 layer

The photocatalytic performance of the as-prepared NiS2 layer
was established by photodegradation of phenol as a model
organic pollutant. For this purpose, the NiS2 slide is primarily
xed by a silicon adhesive on a 2 cm-height edge inside
a 150 mL beaker. Aer that, 90 mL of 10 mg L�1 phenol solution
was placed in dark and stirred by a magnetic stirrer for 30 min
© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 (a) XRD pattern and (b) Raman spectrumof nanoflake NiS2 layer.
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to achieve adsorption desorption equilibrium. The beaker was
irradiated vertically in a solar system (UVA CUBE 400, Dr Hönle
AG UV Technology, Germany) equipped with a halogen lamp
(model: SOL 500), which is simulated to the natural sunlight
(1000 W m�2). At denite time intervals, a 1 mL sample was
withdrawn from the beaker and 1 mL double distilled water was
inserted instead to keep the distance between the light source
and meniscus of solution constant all over the experiment
duration. Phenol concentration in the withdrawn samples was
determined by a high-performance liquid chromatograph
(HPLC, Agilent 1260, USA) equipped with an analytical column
Zorbax reverse-phase C18 and a diode-array detector at 280 nm
wavelength. Each point was measured in triplet and the average
was recorded. The column temperature was kept at 25 �C during
the analysis. Gradient elution was obtained using water (mobile
phase A) and acetonitrile (mobile phase B). 75% Amobile phase
was eluted for 1 min, and then decreased to 60% A for 2 min.
The ow rate of the mobile phase was kept at 0.5 mLmin�1. The
generation of redox reactive species by NiS2 aer solar irradia-
tion excitation was inspected by 1 mmol ammonium oxalate
(AO) as the hole (h+) scavenger agent, 1 mmol para-benzoqui-
non (p-BQ) as the superoxide radical (O2c

�) scavenger and
1 mmol isopropyl alcohol (IPA) as the hydroxyl radical (cOH)
scavenger.

Results and discussion
Structural and elemental composition properties

The XRD and Raman data for the as-prepared NiS2 layer are
presented in Fig. 2. The XRD pattern of the NiS2 layer (Fig. 2(a))
show sharp and dominant characteristic peaks of the NiS2 cubic
structure (JCPDS card no. 00-011-0099),45 with no additional
peaks related to any other crystalline nickel compounds such as
nickel oxide, nickel hydroxide and other phases of nickel
suldes, indicating the complete transformation of the Ni(OH)2
phase to NiS2 phase.47–49 The XRD analysis well matched with
reported studies in literature.28,30,31,50 The average crystallite size
(D) of the NiS2 layer was calculated using the Scherrer–Debye
formula (eqn (6)) for the (200) reection plane.

DðhklÞ ¼ kl

bðhklÞcos q
(6)

where K is the Debye constant, l is the X-ray wavelength, b is the
line broadening at full width at half maximum of the diffraction
peak, and q is the Bragg's angle.51 The calculated crystallite size
of the NiS2 layers was approximately 26 nm.

The surface Raman spectrum measured at room tempera-
ture of the NiS2 layer (Fig. 2(b)) shows the dominant charac-
teristic peaks of the NiS2 phase.20 The peaks at 279 and
476 cm�1 are assigned to Eg and Ag photons, respectively. The
observed peaks shied towards a lower frequency compared
with the NiS2 single crystal. The obtained spectrum shows no
noticeable characteristic peaks related to possible secondary
phases and is consistent with previous reports.11,28

In order to study the elemental compositions and electronic
states of the nanoake NiS2 layer, X-ray photoelectron spec-
troscopy (XPS) measurements were performed in this study.
© 2022 The Author(s). Published by the Royal Society of Chemistry
Fig. 3(a) presents the high-resolution XPS spectrum of Ni 2p for
the nanostructured NiS2 layer, which has two main peaks
appearing at 854.12 and 871.63 eV, tting to the binding energy
of Ni 2p3/2 and Ni 2p1/2, respectively. In addition, both Ni 2p3/2
and Ni 2p1/2 have shake-up satellite peaks located at 860.1 eV
and 875.59 eV, respectively. Peak tting analysis to separate
overlapping peaks was made for the Ni 2p3/2 component, which
indicates that it can be de-convoluted into a pair of peaks
located at 854.12 and 856.05 eV, corresponding to Ni2+ and Ni3+

in NiS2, respectively. The existence of Ni3+ results from the
surface oxidation of NiS2, which is in agreement with literature.
The collected XPS results of the deconvolution of Ni 2p are in
agreement with the reported binding energy values for Ni2+ and
Ni3+.4,36 In addition, the spectral deconvolution of the S 2p
spectrum (Fig. 3(b)) consists of two strong peaks at 162.91 (S
2p3/2) and 164.38 eV (S 2p1/2), implying the presence of unsat-
urated S atoms on the Ni–S and S–S bonds in NiS2. These results
t well with NiS2 single crystal XPS data.22,29,52
Morphological properties

The morphology of the NiS2 layer was investigated by SEM.
Fig. 4(a–d) shows the SEM images of the surface with different
magnication, and cross section of the NiS2 layer, synthesized
on the glass substrate. The top view images of the as-prepared
NiS2 layer show that the surface of the NiS2 sample reveals
a rough nanoake-like structure, with homogeneous and
uniform distribution as well as a pinhole free layer. Moreover,
the magnied view images show that the cross-linked nano-
akes are compact and uniform, resulting in a network
RSC Adv., 2022, 12, 10401–10408 | 10403
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Fig. 3 XPS spectra of nanoflake NiS2 layers: (a) Ni 2p and (b) S 2p.
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architecture on the substrates. Also, the rough nanoake edges
observed clearly in Fig. 4(c) can be associated with the sulfuri-
zation process of the as-deposited Ni(OH)2 layer as a result of
gas release and dehydration during annealing, leading to the
formation of NiS2 with a high surface area structure.44 The high
surface area and rough morphology can signicantly inuence
the photocatalytic performance of materials.20,28 A cross-
Fig. 4 (a–c) SEM images of NiS2 with different magnifications, and (d)
cross section of the NiS2 layer.

10404 | RSC Adv., 2022, 12, 10401–10408
sectional image (Fig. 4(d)) exhibits that the NiS2 layer has
a uniform thickness in the range of approximately 950 nm.
Optical properties

The energy bandgap of NiS2 was derived from the diffuse
reectance of the obtained layer using the Kubelka–Munk (KM)
function53,54, as indicated by the following equation:

FðRÞ ¼ ð1� RÞ2
2R

¼ a

S
(7)

where F(R) is the (KM) function, R is the diffused reectance,
a is the absorption coefficient, and S is the scattering coeffi-
cient. The optical band gap energy (Eg) of the NiS2 layer can be
calculated by the Tauc's equation:55

ahn ¼ A(hn � Eg)
n (8)

where (hn) is the incident photon energy, a is the absorption
coefficient, A is a constant, (Eg) is the optical band gap energy.
Based on the KM function and Tauc's equation, the optical
bandgap energy of the NiS2 layer can be estimated using the
following equation:

F(R)hn ¼ A(hn � Eg)
n (9)

The plots of (F(R)hn)2 vs. hn for indirect allowed transition are
shown in Fig. 5. It was found that the estimated value of Eg for
the NiS2 layer was 1.19 eV, which is in agreement with reported
values.33,56 The low Eg value would allow the utilization of this
material in photocatalytic applications under solar
radiation.29,57
Photocatalytic activity measurements

The photocatalytic activity performance of the NiS2 sample (5
cm2) was examined using phenol as the model organic
pollutant, two NiS2 samples and at natural pH of 10 mg L�1

phenol. The variation of phenol relative concentration (C/C0) is
offered in Fig. 6 with the matching values of the 1st order
apparent rate constants. Phenol presented insignicant
Fig. 5 (F(R)hn)1/2 vs. hn plot of the nanoflake NiS2 layer.

© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 6 Photocatalytic performance of NiS2, phenol conc.¼ 10 mg L�1,
and natural pH 6.

Fig. 8 Reusability of NiS2, phenol conc.¼ 10mg L�1, and natural pH 6.
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photolysis under solar light. On the other hand, the rate of
phenol photodegradation under solar light in the presence of
the as-prepared NiS2 layer was improved. This is due to the
presence of the as-prepared NiS2 slide, which absorbs solar light
and photogenerates e�/h+ pairs utilized in photodegradation.

The main active species used in pollutant photodegradation
are e�, h+, cOH and O2c

�. The active species produced by NiS2
are identied in Fig. 7. The active species identication was
done by adding 1 mmol of each scavenger agent (AO, p-BQ and
IPA) with 10 mg L�1 phenol and NiS2 layer compared to the
experiment done without any scavenger. As shown in Fig. 7, the
primary active species is O2c

� and h+ is a secondary species,
which are used as redox species in phenol photodegradation.
Therefore, the proposed mechanism of the photocatalytic
reactions is indicated by the following equations:

NiS2 + hn / NiS2(h
+, e�) (10)

NiS2(e
�) + O2 / NiS2 + O2c

� (11)

O2c
� + h+ + phenol / photodegradation product (12)
Fig. 7 Effect of scavengers on phenol removal efficiency.

© 2022 The Author(s). Published by the Royal Society of Chemistry
On the other hand, the NiS2 reusability process is a very
important issue, making the treatment process more econom-
ical. Fig. 8 shows a ve cycle reusability test for NiS2 phenol
photodegradation. The removal efficiency was slightly
decreased aer the rst cycle. Thereaer, there was no change
in the phenol removal efficiency aer each cycle.
Conclusion

A NiS2 layer with a nanoake-like structure was successfully
synthesized by a facile two-step growth process. The Ni(OH)2
layer was deposited on a glass substrate by chemical bath
deposition, followed by a sulfurization process to obtain
a single phase NiS2 layer. The XRD and Raman analysis
conrmed the formation of single-phase NiS2. SEM revealed
that the NiS2 layer consisted of overlapping nanoakes. XPS
measurements revealed that the observed peaks from Ni 2p and
S 2p spectra were attributed to NiS2. The NiS2 displayed
a narrow optical bandgap of 1.19 eV. The NiS2 nanoake layer
showed photocatalytic activity for the degradation of phenol
under the irradiation of solar light at natural pH 6. The NiS2
nanoake layer exhibited good solar light photocatalytic
degradation of phenol with good stability and reusability. The
as-prepared NiS2 layer can absorb solar irradiation and generate
e�/h+ pairs. Hence, the NiS2 layer is a promising photocatalyst
for the photodegradation of destructive organic pollutants.
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