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imetinib as a novel A-FABP
inhibitor using machine learning and molecular
docking-based virtual screening†

Shilun Yang, ‡a Simeng Li‡ab and Junlei Chang *ab

Adipocyte fatty acid-binding protein (A-FABP, also called FABP4, aP2) is an adipokine identified as a critical

regulator of metabolic function due to its dual functions of fatty acid transport and pro-inflammation.

Because of the high therapeutic potential of A-FABP inhibition for the treatment of metabolic diseases

and related vascular complications, numerous inhibitors have been developed against A-FABP. However,

none of these inhibitors have been approved for use in patients due to severe side effects. Here, we

used a virtual screening (VS) strategy to identify potential inhibitors of A-FABP in the latest FDA-approved

drug library (�2600 compounds), aiming to explore the existing drugs with proven safety profiles. We

firstly combined ligand-based machine learning and structure-based molecular docking to develop

a screening pipeline for identifying A-FABP inhibitors. The screening of FDA-approved drugs identified

four compounds (Cobimetinib, Larotrectinib, Pantoprazole, and Vildagliptin) with the highest scores,

whose inhibitory effects on A-FABP were further assessed in cellular assays. Among the selected

compounds, Cobimetinib significantly inhibited the activation of the JNK/c-Jun signaling pathway by A-

FABP in mouse macrophages without causing obvious cytotoxicity. In summary, we present an

integrated VS pipeline for A-FABP inhibitor screening, and identified Cobimetinib as a novel A-FABP

inhibitor that may be repurposed for the treatment of metabolic diseases and associated vascular

complications.
1 Introduction

Adipocyte-type fatty acid-binding protein (A-FABP, also called as
FABP4, aP2) is a member of the apolipoprotein family with
a molecular weight of 14.6 kDa. It is mainly expressed in mature
adipocytes, macrophages, and endothelial cells.1–3 A-FABP
primarily mediates the storage and decomposition of fat in
adipocytes as a carrier of free fatty acid molecules and regulates
lipid accumulation.4 In addition, A-FABP can promote the
expression of a variety of inammatory factors in macrophages,
including MCP-1, TNF-a, IL-6, and IL-1b.5,6 Interestingly, A-
FABP can be secreted to the extracellular space and blood to
promote inammation and is strongly associated with a variety
of metabolic diseases such as obesity, diabetes, lipid metabo-
lism disorder, and atherosclerosis.7–9 Bone marrow trans-
plantation from A-FABP knockout mice was shown to improve
atherosclerosis without metabolic side effects; the mutation of
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A-FABP results in lower triglyceride levels in mice with reduced
risk of cardiovascular disease and reduces obesity-induced type
2 diabetes.10,11 Related studies have also claried the molecular
mechanism by which A-FABP upregulates the expression of
many inammatory factors through the JNK/c-Jun/AP-1
signaling pathway in macrophages.12 It has been shown that
the expression of A-FABP protein in brain tissue is increased
aer ischemic stroke, promotes the expression of inammatory
factors, and aggravates neuroinammation aer stroke.13,14

Therefore, A-FABP is a highly promising therapeutic target for
the treatment of metabolic diseases and related cardio-
cerebrovascular diseases.

In the past decades, hundreds of A-FABP inhibitors have
been reported, including pyrazole derivatives,15 oxazole deriva-
tives,16 imidazole derivatives,16,17 indole derivatives,18–20 benz-
imidazole derivatives,21 thiophene and thiazoles derivatives,22

pyrimidine, bicyclic pyridine and quinoxaline derivatives,23,24

urea, carbamoyl derivatives25 and miscellaneous compounds.26

Some of these inhibitors have shown efficacies in animal
models of atherosclerosis, diabetes, and other related
diseases.27 BMS309403, a potent small-molecule inhibitor of A-
FABP, has been systematically studied in vitro and in vivo in
various disease models.28 Although the inhibitory effect of
BMS309403 on A-FABP has been well veried in animal disease
models, no further clinical trials have been launched to date
© 2022 The Author(s). Published by the Royal Society of Chemistry
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Table 1 Detailed statistical description of the entire data set

Model
Training set
(ECFP_2) Test set (ECFP_2) Total

Inhibitors 108 27 135
Decoys 432 108 540
Total 540 135 675
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View Article Online
likely because of its cardiotoxicity,27,29–31 resulting in no thera-
peutic drugs targeting A-FABP being used or tested in the clinic.

In recent years, researchers have focused on natural prod-
ucts and US Food and Drug Administration (FDA)-approved
drugs for the development of A-FABP inhibitors. The currently
available screening approaches for A-FABP inhibitors are labor-
extensive, time-consuming, and expense-costly.27 Therefore, it
becomes necessary to improve the screening efficiency by
applying virtual screening (VS) in the lead identication of novel
A-FABP inhibitors. Therefore, computer-aided drug design
techniques such as machine learning (ML) and molecular
docking are widely used in drug design. Molecular docking is
a commonly used computer-aided drug design technology
based on the characteristics of receptors and the interaction
between receptors and drug molecules.32 Wang et al. screened
the natural compound library (�5200 compounds)33 and the
FDA drug library (�1500 compounds)34 using molecular dock-
ing and found that hyperoside, quercetin, other avonoids, and
levooxacin, an FDA-approved drug for the treatment of
different bacterial infections, showed inhibitory effects on
FABP4. Machine learning approaches possess robust abilities in
separating inhibitors from non-inhibitors by building classi-
cation models adopting statistical algorithms, including näıve
Bayesian (NB) models.35

Since each individual VS method has its own advantages and
disadvantages, therefore, we combined the ligand-based
machine learning with structure-based molecular docking in
a sequential manner to form an integrated VS pipeline for lead
identication of A-FABP inhibitors. In detail, each compound of
FDA's latest drug list (�2600 compounds) was subjected to
activity prediction by a näıve Bayesian classication model,
followed by molecular docking analysis. The identied candi-
date compounds were validated against A-FABP through cellular
experiments. The results of this study will provide new ideas for
the development of A-FABP inhibitors and FDA-approved drugs
for the treatment of various metabolic diseases.

2 Material and methods
2.1 Materials

High glucose Dulbecco's Modied Eagle's Medium (#11995065),
fetal bovine serum (#10270) were purchased from Thermo
Fisher Scientic (Gibco, Waltham, MA, USA). Thioglycolate
medium Brewer (Lot #5243569) was purchased from Becton,
Dickinson and Company (Sparks, MD, USA). RIPA Buffer
(#R0020) was purchased from Solarbio (Beijing, China). Anti-
bodies were as follows: Phospho-SAPK/JNK (Thr183/Tyr185)
(81E11) Rabbit mAb (#4668), SAPK/JNK Antibody (#9252), b-
Actin (8H10D10) Mouse mAb (#3700), Anti-rabbit IgG HRP-
linked Antibody (#7074) and Anti-mouse IgG HRP-linked Anti-
body (#7076) were purchased from Cell Signaling Technology
(Boston, MA, USA); Phospho-c-Jun-S63 Rabbit mAb (AP0105),
JUN Rabbit pAb (#A16905) were purchased from ABclonal
(Wuhan, China). Chemiluminescence substrate detection
solution (#WBKLS0500) was purchased from MERCK (Milli-
Pore, Boston, MA, USA). Cell Counting Kit-8 (CCK-8) (#BA00208)
was obtained from Bioss (Beijing, China). Dimethylsulfoxide
© 2022 The Author(s). Published by the Royal Society of Chemistry
was purchased from MERCK (Sigma-Aldrich, St. Louis,
MO, USA).
2.2 Data collection and preparation

A total of 2595 FDA-approved drugs were collected from the
DrugBank database (https://go.drugbank.com). Compounds
dened as active A-FABP inhibitors were collected from the
ChEML database,36–38 with IC50 # 10 mM as the selection
criterion. It is noteworthy that the compounds collected from
the ChEMBL database do not overlap with the FDA-approved
drugs dataset. Corresponding decoys (dened as inactive)
were automatically generated by DUD-E online database with
the ratio of 4 : 1 to active compounds.39,40

Morgan ngerprints (4096 bits, radius ¼ 2) were generated
using the RDKit package in Python and then fed into the t-
distributed stochastic neighbor embedding (t-SNE) algorithm to
obtain 2-dimensional representations. To investigate whether the
diversity and spatial distribution of the data set meet the
modeling requirements of subsequent machine learning models.

Both the active datasets and inactive datasets were randomly
distributed into the training set and test set with the ratio of
4 : 1 as shown in Table 1. The A-FABP inhibitors and decoys
were respectively marked as “1” and “0” in all datasets. Before
the calculation of molecular descriptors, all compounds were
required with the addition of hydrogen atoms, deprotonation of
strong acids, protonation of strong bases, generation of a valid
3D conformation, and energy minimization. The detailed
information of the training sets and test sets were described in
Table S1.†
2.3 Näıve Bayesian model generation

Molecular descriptors are the basis for the combination of
machine learning.41 Therefore, we used 542 descriptors calcu-
lated by Discovery Studio 2016 (DS 2016)42 and MOE 2014.9 (ref.
43) soware to calculate three sets of two-dimensional (2D)
descriptors for describing each compound. In addition,
molecular ngerprints involved the SciTegic extended-
connectivity ngerprints (FCFP and ECFP) and Daylight-style
path-based ngerprints (FPFP and EPFP) were also calculated
with DS 2016 in this paper.

In this study, Pearson correlation analysis was performed to
nd out the descriptors that were highly correlated with
activity.44 Firstly, the descriptors whose values appeared in the
high frequency of more than 50% were eliminated. Secondly,
the descriptors whose correlation coefficients with activity less
than 0.1 were excluded. If the absolute value of the correlation
coefficients between two descriptors was higher than 0.9, the
RSC Adv., 2022, 12, 13500–13510 | 13501
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descriptor possessing a lower correlation coefficient with
activity would be deleted. Finally, the remaining molecular
descriptors were ltered by logistic regression, only the molec-
ular descriptors kept in the regression equation were used for
building näıve Bayesian models.

The quality of the models was assessed by 5-fold cross-
validation and test set validation. Measurement parameters
included true positives (TP), true negatives (TN), false positives
(FP), and false negatives (FN). Subsequently, sensitivity (SE),
specicity (SP), positive predictive value (PPV), and Matthews
correlation coefficient (MCC) were calculated by eqn (1)–(4). TP
indicates the number of active compounds predicted to be
active; TN indicates the number of inactive compounds pre-
dicted to be inactive; FP represents the number of inactive
compounds predicted as active and FN represents the number
of active compounds predicted to be inactive. Similarly, SE
stands for the accuracy of prediction for active compounds and
SP represents the accuracy of prediction for inactive
compounds. PPV indicates the overall prediction accuracy for
all compounds in the dataset. MCC signies the most impor-
tant indicator for the quality of binary classication and it is
calculated to evaluate the predictive power of the model with
values ranging from �1 to 1. In this study, the MCC value is
considered the main evaluation index.

SE ¼ TP

TPþ FN
(1)

SP ¼ TN

TNþ FP
(2)

PPV ¼ TP

TPþ FP
(3)

MCC ¼ TP� TN� FN� FP
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTPþ FNÞðTPþ FPÞðTNþ FNÞðTNþ FPÞp (4)

2.4 Molecular docking

The crystal structure of A-FABP was retrieved from the Protein
Data Bank (PDB ID: 2NNQ). The molecular docking studies were
performed inMOE 2014.9. For the preparation of the protein, the
water, and the co-crystallized ligand were removed and hydro-
gens were added and other important parameters were adapted
by the MMFF94x force eld. The A-FABP protein was then further
processed with the prepared protein module to model missing
loop regions, calculate protein ionization and protonate the
protein structure. The prepared protein was dened as the
receptor and the binding site was dened by generating the a-site
spheres in the site nder. The docking inhibitors will attack the
protein surfaces in its interior grooves, aer 30 trials, till the
most stable docking complexes are reached.

2.5 Determination of A-FABP inhibitory activity of cell-based
candidate compounds

2.5.1 Cell culture and treatment. RAW264.7 cells (mouse
macrophage cell line) were cultured in high glucose Dulbecco's
13502 | RSC Adv., 2022, 12, 13500–13510
Modied Eagle's Medium (DMEM) supplemented with 10%
fetal bovine serum and 100 U ml�1 penicillin and 100 mg ml�1

streptomycin at 37 �C, 5% CO2 incubator. Cells were divided
into three groups: (1) control group: no treatment, (2) model
group: cells were treated with 1 mg ml�1 A-FABP protein (3)
treatment group: candidate compounds were pretreated with 1
mg ml�1 A-FABP protein for 30 min; then cell culture with this at
37 �C, 5% CO2 incubator. Candidate compounds were diluted to
two concentrations (10 mM, 100 mM).

2.5.2 Primary macrophage cells. This study was performed
in strict accordance with the NIH guidelines for the care and use
of laboratory animals (NIH Publication No. 85-23 Rev. 1985) and
was approved by the Institutional Animal Care and Use
Committee at the Shenzhen Institute of Advanced Technology,
Chinese Academy of Sciences. We followed the methods of
Layoun A. et al. (2015). 38 g thioglycolate medium Brewer was
taken with 1000 ml of distilled water, boil the solution until it is
completely dissolved that autoclave at 121 �C for 15min. So, this
solution was a 3.8% thioglycolate medium Brewer which was
stored at 4 �C and protected from light for 3 months. The
abdominal cavity of mice was injected with 1 ml of 3.8% thio-
glycolate medium Brewer and waited for 3 days; the mice were
injected with 5 ml of pre-cooled D-PBS into the abdominal
cavity of mice aer being sacriced by the cervical dislocation
method; as massage gently in the abdominal cavity, then the
liquid was aspirated and put in a 15 ml centrifuge tube and
centrifuge at 400�g for 10 minutes at 4 �C. Discard the super-
natant to obtain primary macrophages with greater purity. The
primary macrophage cells were cultured in high glucose Dul-
becco's Modied Eagle's Medium (DMEM) supplemented with
10% fetal bovine serum and 100 U ml�1 penicillin and 100 mg
ml�1 streptomycin at, 37 �C, 5% CO2 incubator for 24 hours,
then changed the medium and the cells continued culturing for
24 hours. The primary macrophage cells were grouped and
processed according to the above-mentioned cell grouping and
processing methods.

2.5.3 Western blotting analysis. The RIPA Buffer was added
in the cell culture dish to extract total cell protein, and the
following processing: rst, the protein sample were separated
by SDS-polyacrylamide gel electrophoresis and transferred to
PVDF membranes; secondly, membranes were blocked with 5%
non-fat dry milk for 1 h at room temperature and then incu-
bated overnight at 4 �C with primary antibodies diluted in TBS
with 0.1% Tween 20 (TBST); membranes were washed in TBST
and then incubated with secondary antibodies for 1 h at room
temperature; nally, the membranes were exposed to enhanced
chemiluminescence substrate detection solution and then
detected by instrument (Gel view, GV6000). Image J soware
was used to quantify the band density.

2.5.4 The cytotoxicity of candidate compounds assays. Cell
Counting Kit-8 was used to detect cytotoxicity. RAW264.7 cells
were cultured according to the above requirements in 96-well
plates at a density of 5 � 104 cells per ml, and experimental
groups were established: (1) blank control group (medium +
CCK8 reagent, cell-free) (2) reagent control group (cell +
medium + CCK8 reagent) (3) solvent control group (DMSO 100
mM) (cell + medium + DMSO + CCK8 reagent) (4) A-FABP protein
© 2022 The Author(s). Published by the Royal Society of Chemistry
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(1 mg ml�1) model group (cells + medium + A-FBP4 protein +
CCK8 reagent) (5) A-FABP protein (1 mg ml�1) + candidate
compounds treatment group (cells + medium + A-FBP4 protein
+ candidate compounds + CCK8 reagent). The candidate
compounds were diluted to two concentrations (10 mM, 100
mM). In a 37 �C, 5% CO2 incubator, the candidate compounds
were incubated with A-FABP protein for 30 minutes and then
added to the cells for 30 minutes. Then the cells were added
CCK8 reagent and treated for 2 h at 37 �C and 5% CO2 from
light. Finally, the microplate reader was used to measure the
absorbance (OD) at 450 nm.
2.6 Statistical analysis

SPSS 17.0 statistical soware was used for the normality test. All
data are expressed as mean � standard error. For normally
distributed data, one-way analysis of variance (One-Way
ANOVA) is used: if the variances are uniform, the pairwise
comparisons will use the least signicant difference (LSD)
method; if the variances are not uniform, Dunnett's T3 test is
used. Data that do not conform to the normal distribution are
counted by a non-parametric test. The statistical difference was
set as *P < 0.05, **P < 0.01, ***P < 0.001 and ****P < 0.0001.
3 Results
3.1 Näıve Bayesian model generation

Generally, the performance of machine learning classication
models is largely affected by the chemical space diversity of
compounds included in the datasets for model training and
testing. A wide chemical space diversity of training sets usually
endows the classication model with high prediction accuracy
and strong generalization ability. The chemical space diversity
Fig. 1 The visual representation of active compound (red) and inactive c
distributed stochastic neighbor embedding (t-SNE) based on Morgan fin

© 2022 The Author(s). Published by the Royal Society of Chemistry
of the entire dataset was explored by t-SNE plot analysis. As we
can see in the t-SNE plot (Fig. 1), remarkable colocalization of
several active compound clusters was shown and well separated
from inactive compounds. It should be noted that different
active compound clusters may represent different chemotypes,
which is worth further investigation in the future.

According to the molecular descriptor selection criteria, 39
discovery studio 2D descriptors (DS_2D) and 21 MOE 2D
descriptors (MOE_2D) (Table 2) were nally chosen for Näıve
Bayesian model construction. 5-Fold cross-validation and test set
validation was then used to further evaluate the predictive power,
as shown in Table 3. The Näıve Bayesian model emerged
a presentable performance with theMCC value of 0.971 and 0.953
from 5-fold cross-validation and test set, respectively (Table 3).

As a primary screening for the A-FABP inhibitors, virtual
screening of the FDA-approved drug dataset was performed based
on the Näıve Bayesian model. The Bayesian categorization model
not only predicts “true” or “false”, but also gives the estimated
probability (0 # EstPGood # 1) that a compound is in the active
class. As a result, 317 compounds were predicted to be active A-
FABP inhibitors (detailed information is available in Table S2†),
of which 30 compounds have EstPGood values $ 0.9 (Table 4).
3.2 Molecular docking study

Molecular docking has been widely used for structure-based
virtual screening, as well as exploring the binding modes of
small molecules within protein–ligand complexes. Herein,
molecular docking analyses were performed for A-FABP by
applying docking algorithm by MOE module. The docking
process was executed between the 30 compounds selected for
docking validation and 2NNQ PDB co-crystals of A-FABP,
respectively. With BMS309403 as the reference, the 30
ompound (light green) based on A-FABP inhibition, generated using t-
gerprint (4096 bits).

RSC Adv., 2022, 12, 13500–13510 | 13503
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Table 2 Molecular descriptors used in this study

Descriptor
class

Number of
descriptors Descriptors

DS_2D 39 ast_violation_ext, b_1rotR, b_ar,
b_max1len, density, diameter,
GCUT_SLOGP_1, h_logP, h_pavgQ,
h_pKb, h_pstates, opr_nring,
opr_violation, PEOE_RPC+, PEOE_VSA-
1, PEOE_VSA-5, PEOE_VSA-6,
PEOE_VSA_FPPOS, PEOE_VSA_PPOS,
petitjean, Q_RPC-, Q_VSA_FHYD,
Q_VSA_FNEG, Q_VSA_FPOL,
Q_VSA_FPOS, Q_VSA_FPPOS, radius,
rings, RPC-, SlogP_VSA0, SlogP_VSA2,
SlogP_VSA4, SlogP_VSA5, SMR_VSA0,
SMR_VSA2, SMR_VSA4, SMR_VSA5,
SMR_VSA7, vsa_acc

MOE_2D 21 ES_Count_aaN, ES_Count_dO,
ES_Count_ssCH2, ES_Count_sssCH,
ES_Sum_sOH, QED_ALERTS,
QED_AROM, SAscore,
SAscore_Fragments, HBA_Count,
Num_AromaticRings, Num_Rings,
Num_Rings5, Molecular_PolarSASA,
BIC, CHI_3_CH, CHI_V_3_C, JX, JY,
Kappa_3, Kappa_3_AM

Table 3 Performance of the Näıve Bayesian model

TP FN FP TN SE SP PPV MCC

5-Fold-cross 106 3 2 429 0.972 0.995 0.991 0.971
External-test-set 25 0 2 108 1.000 0.982 0.985 0.953

Table 4 Prediction results of the top 30 drugs selected for docking
validation

Drugbank ID Generic name EstPGood Prediction

1 DB06803 Niclosamide 0.997 TRUE
2 DB00824 Enprofylline 0.996 TRUE
3 DB12332 Rucaparib 0.996 TRUE
4 DB00900 Didanosine 0.995 TRUE
5 DB03585 Oxyphenbutazone 0.992 TRUE
6 DB00670 Pirenzepine 0.987 TRUE
7 DB01392 Yohimbine 0.987 TRUE
8 DB08826 Deferiprone 0.978 TRUE
9 DB00697 Tizanidine 0.974 TRUE
10 DB06193 Pixantrone 0.973 TRUE
11 DB04876 Vildagliptin 0.972 TRUE
12 DB00998 Frovatriptan 0.971 TRUE
13 DB00993 Azathioprine 0.959 TRUE
14 DB00507 Nitazoxanide 0.958 TRUE
15 DB00457 Prazosin 0.955 TRUE
16 DB00889 Granisetron 0.949 TRUE
17 DB09282 Molsidomine 0.946 TRUE
18 DB00213 Pantoprazole 0.945 TRUE
19 DB00315 Zolmitriptan 0.936 TRUE
20 DB11071 Phenyl salicylate 0.930 TRUE
21 DB05239 Cobimetinib 0.928 TRUE
22 DB00310 Chlorthalidone 0.926 TRUE
23 DB09343 Tipiracil 0.922 TRUE
24 DB09151 Flutemetamol (18F) 0.920 TRUE
25 DB04816 Dantron 0.916 TRUE
26 DB04880 Enoximone 0.914 TRUE
27 DB00744 Zileuton 0.913 TRUE
28 DB00819 Acetazolamide 0.912 TRUE
29 DB14723 Larotrectinib 0.909 TRUE
30 DB00277 Theophylline 0.906 TRUE
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compounds were sorted by docking score (kcal mol�1) (as
shown in Table S3†). Through the analysis of the protein–ligand
interaction model, four compounds with the highest score were
selected: Cobimetinib (currently approved for the treatment of
melanoma), Larotrectinib (currently approved for the treatment
of solid tumor), Pantoprazole (currently approved for the
treatment of gastric ulcers, duodenal ulcers, etc.), and Vilda-
gliptin (currently approved for the treatment of type-2 diabetes).

The X-ray structure of BMS309403 in complex with A-FABP
(PDB code: 2NNQ) revealed that the aromatic at position 3 of
the central core of the pyrazole binds to the hydrophobic pocket
formed by Phe16, Met20, Met40, Ala75, Val25, Arg126 and
Asp76. Another aromatic ring at position 4 is located in another
hydrophobic pocket formed by Ala36, Phe57, Pro38, Ser55,
Ser53, Asn39 and Pro38. The computational study showed that
the binding poses of four compounds (Cobimetinib, Laro-
trectinib, Pantoprazole, and Vildagliptin) with A-FABP has
a similar orientation to that of BMS309403. Notably, identical to
BMS309403, two hydrogen bond interactions were identied
with backbone amino acid residues Arg126 and Tyr128 in
Cobimetinib, Larotrectinib and Vildagliptin. Fundamental data
was exported (Table 5) and docking complexes images (inter-
action and surface maps), are presented as well in Fig. 2.
13504 | RSC Adv., 2022, 12, 13500–13510
3.3 The effect of candidate compounds on the biological
activity of A-FABP

To explore the inhibitory effect of the candidate compounds on
A-FABP, we used western blotting to detect the phosphorylation
state of the JNK/c-Jun signaling pathway in RAW264.7 cells
(mouse macrophage cell line) and mouse primary macrophage
cells aer treatment of A-FABP protein without or with the
above four candidate compounds. The A-FABP protein was
added into RAW264.7 cells and mouse primary macrophages
culture medium. Compared with the blank control group, the A-
FABP protein enhanced the phosphorylation of JNK/c-Jun
(Fig. 3). We found that Cobimetinib can signicantly inhibit
the phosphorylation of JNK/c-Jun by A-FABP, while Laro-
trectinib, Pantoprazole, and Vildagliptin have no obvious effect
on inhibiting the activity of A-FABP (Fig. 3). Therefore, we
further set the concentration gradient of Cobimetinib to (1 mM,
10 mM, 30 mM, 100 mM) and adopted the samemethod described
above to detect the changes in the phosphorylation of the JNK/c-
Jun signaling pathway in RAW264.7 cells. We found that Cobi-
metinib signicantly decreased the phosphorylation of JNK/c-
Jun at concentrations higher than 1 mM, demonstrating
potent inhibition of the JNK/c-Jun signaling by Cobimetinib in
RAW264.7 cells (Fig. 4).
© 2022 The Author(s). Published by the Royal Society of Chemistry
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Table 5 Molecular docking score

Drugbank ID Generic name S (kcal mol�1) Hydrogen bond p–p interaction

BMS309403 �7.704 Arg126, Tyr128 Phe16, Pro38
DB05239 Cobimetinib �6.931 Arg126, Tyr128, Arg106
DB14723 Larotrectinib �6.868 Arg126, Tyr128 Ile104
DB00213 Pantoprazole �6.791 Tyr128 Phe16
DB04876 Vildagliptin �6.416 Arg126, Tyr128, Ala75

Fig. 2 The docking complex images and the two-dimensional diagram of the binding mode of BMS309402 (A), Cobimetinib (B), Larotrectinib
(C), Pantoprazole (D), and Vildagliptin (E).

© 2022 The Author(s). Published by the Royal Society of Chemistry RSC Adv., 2022, 12, 13500–13510 | 13505
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Fig. 3 Effects of candidate compounds on phosphorylation of JNK/c-Jun signaling pathway activated by A-FABP. JNK and c-Jun phosphor-
ylation (p-JNK and p-c-Jun) was assessed in RAW264.7 (A), (C) and (E) and primary macrophages (B), (D) and (F) by western blotting using
phosphospecific antibodies. Data were expressed as mean � SEM. **P < 0.01 compared to the A-FABP group.
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3.4 Toxic effects of candidate compounds on cells

To ensure the candidate compounds can inhibit the activation
of A-FABP without causing toxic effects on cells, we detected the
cytotoxicity by CCK8 assay. Compared with the absorbance of
the control group, the solvent DMSO has no obvious toxic effect
on RAW264.7 cells; compared with the solvent control group
13506 | RSC Adv., 2022, 12, 13500–13510
and the A-FABP protein + candidate compound treatment
group, it was found that the 10 mM/100 mM concentration of
candidate compounds except Cobimetinib (100 mM) had no
obvious toxic effects on RAW264.7 cells, while the low concen-
tration of Cobimetinib (10 mM) had no obvious toxic effect on
the cells. Further analysis of the concentration gradients of
Cobimetinib (1 mM, 10 mM, 30 mM, 100 mM) demonstrated that
© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Inhibition of Cobimetinib on phosphorylation of JNK/c-Jun signaling pathway activated by A-FABP. RAW264.7 was treated with Cobi-
metinib at various dosages (A), and cell lysates were analyzed by western blot with antibodies against p-JNK/JNK (B) and p-c-Jun/c-Jun (C). Data
were expressed as mean � SEM. *P < 0.05, **P < 0.01, ***P < 0.005 compared to the A-FABP group.

Fig. 5 Toxic effects of candidate compounds on RAW264.7 cells (A), and toxic effects of Cobimetinib at various dosages on RAW264.7 (B). Data
were expressed as mean � SEM. ###P < 0.005 compared to the control group.
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except for 100 mM, lower concentrations of Cobimetinib have no
obvious toxic effects on RAW264.7 cells (Fig. 5).

4 Discussion

Over the past two decades, there has been a dramatic increase in
research and development expenditures on drugs for the
treatment of metabolic and related cardiovascular and cere-
brovascular diseases.45,46 With the progress of computer-aided
drug design technology, the application of machine learning
and molecular docking in drug development has increased
rapidly. Machine learning integrates massive data resources to
solve biomedical problems with the combination of computer
science and statistics and has the ability to deal with large and
complex data.47,48 In terms of drug development and evaluation,
machine learning has become an indispensable tool for drug
designers to mine chemical information from large compound
databases and design drugs with important biological proper-
ties.49,50 For example, Sean Ekins et al. used machine learning to
screen new compounds that may treat Mycobacterium tubercu-
losis;51 Yang et al. used machine learning to identify and eval-
uate neuroprotective agents.52 Molecular docking is computer
© 2022 The Author(s). Published by the Royal Society of Chemistry
technology for studying drug–target interactions and drug
design based on structure.53,54 For example, DesJarlais RL et al.
have successfully used molecular docking to design a new type
of HIV-1 protease inhibitors;55 Zhao et al. used molecular
docking to identify JAK2 inhibitors;56 Mirza SB et al. used
molecular docking to screen non-structural protein 3 (NS3)
against dengue virus and found ve inhibitors that could
reduce virus titers in HUH7 cells.57 Therefore, the virtual
screening method that we combine both the ligand-based
machine learning method and the structure-based molecular
docking is of great signicance for the discovery and applica-
tion of drugs.

This study uses molecular descriptors to construct a binary
classication model of A-FABP inhibitors. The näıve Bayesian
model with good predictive power was used to screen potential
A-FABP inhibitors in FDA-approved drugs. Aer combining
machine learning with molecular docking, four potential A-
FABP inhibitors (Cobimetinib, Larotrectinib, Pantoprazole,
Vildagliptin) were identied. Previous studies have found that
A-FABP promotes the expression of inammatory factors by
activating the JNK/c-Jun signaling pathway,12,14 thereby exacer-
bating the inammatory response in related tissues. We found
RSC Adv., 2022, 12, 13500–13510 | 13507
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that Cobimetinib can signicantly inhibit the phosphorylation
of JNK/c-Jun by A-FABP, while Larotrectinib, Pantoprazole, and
Vildagliptin have no obvious effect on inhibiting the activity of
A-FABP. To ensure the candidate compounds can inhibit the
activation of A-FABP without causing toxic effects on cells, we
detected the cytotoxicity by CCK8 assay. This result indicates
that Cobimetinib shows potential cytotoxicity at high concen-
trations (100 mM). However, the inhibitory effect of Cobimetinib
at lower concentrations (1 mM, 10 mM, 30 mM) on JNK/c-Jun
phosphorylation shown in Fig. 3 and 4 was not due to cytotox-
icity. In summary, Cobimetinib is an effective and novel
inhibitor of A-FABP.

Cobimetinib (GDC-0973) is a MEK (mitogen-activated
protein kinase)-specic small molecule inhibitor, which has
an IC50 of 4.2 nM and a half-life of �44 h, and a molecular
weight of 531.58 It is FDA-approved for BRAF-mutated mela-
noma in combination with vemurafenib and atezolizumab.59

Cobimetinib is taken orally together with atezolizumab for the
treatment of melanoma. The dose regimen is 60 mg/1 time/day
on the 1st to 21st day of each 28 day treatment cycle (compared
with atezolizumab and vemurafenib combined) until the
disease progresses or unacceptable toxicity occurs. Adverse
reactions of Cobimetinib include nausea, vomiting, fever,
bleeding, etc.59–61 At present, Cobimetinib is mainly used in
cancer-related research, such as the treatment of melanoma or
other types of cancers, including neuroblastoma, colorectal
cancer, and acute myeloid leukemia.62–64 Here we demonstrate
that Cobimetinib can be potentially repurposed as a “new drug”
for the treatment of metabolic diseases and cardiovascular and
cerebrovascular diseases through targeted inhibition of A-FABP.

In summary, the current study identied several potential
novel A-FABP inhibitors through virtual screening methods
based on machine learning and molecular docking, and
conrmed the inhibitory effect of Cobimetinib on A-FABP-
activated JNK/c-Jun phosphorylation in cellular assays.
Further animal and clinical studies are required to determine
the therapeutic efficacy and adverse effects of Cobimetinib on
metabolic diseases and associated cardio-cerebrovascular
diseases.
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