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Phenylalanine an essential aromatic amino acid for humans and animals, cannot be synthesized by humans
and animals on their own. However, it synthesizes important neurotransmitters and hormones in the body
and is involved in gluconeogenesis and lipid metabolism. Moreover, the two opposite configurations of
phenylalanine have different activities. For example, L-phenylalanine is a biologically active optical isomer
involved in crucial biological processes, the lack of which will lead to intellectual disability, while b-
phenylalanine only acts as a chiral intermediate. In this research, an Hg-BINOL chiral fluorescent sensor
modified with 1,2,3-triazole was synthesized in high yield (95%) by nucleophilic substitution and click
reaction. The chiral fluorescent sensor showed high enantioselectivity toward phenylalanine. L-

Phenylalanine enhanced the fluorescence response of the probe significantly, while p-phenylalanine had
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DOI: 10.1035/d2ra00803¢ fluorescence intensity at 20.0 equivalents of amino acids was 104.48. In this way, the probe could be
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1 Introduction

Chirality is a universal phenomenon and an important feature
of nature, and is widely present in the generation of life and
various evolutionary mechanisms. As most of the drugs
people use in real life are chiral drugs, with further under-
standing and exploration of chiral issues, it is recognized that
the enantiomers of some chiral compounds differ in their
physiological effects and metabolic processes. Different isomers
of the chiral drugs may exhibit different effects in physiological
processes, so much that one enantiomer is effective in treating
diseases while the other is harmful or fatal.** Amino acids,
which are essential for the maintenance of life, are also a class
of chiral molecules.”™ r-Phenylalanine is a physiologically
active aromatic amino acid and is one of the essential amino
acids that cannot be synthesized naturally by humans and
animals."* In addition to ti-phenylalanine, a variety of
commercially valuable derivatives can be produced through the
t-phenylalanine biosynthetic pathway. r-Phenylalanine defi-
ciency leads to a number of disorders such as phenylketonuria
(PKU), one of the most common inherited disorders of amino
acid metabolism that occurs due to the destruction of
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used to identify and differentiate different configurations of phenylalanine.

phenylalanine dehydrogenase (PAH)' and manifests specifi-
cally with symptoms such as intellectual disability and irre-
versible brain damage.”**® Studies have shown that 1-
phenylalanine can also be used as a carrier of anti-cancer drugs,
introducing drug molecules directly to the nidus and the effect
is three to five times that of other amino acids.'”"*®* However, p-
phenylalanine is largely absent in human metabolism due to its
specific structure and activity. It is also used as a very significant
chiral intermediate in organic synthesis, new drug develop-
ment, and the synthesis of peptide compounds.**?° Therefore, it
is very important to distinguish the enantiomers and detect the
optical purity.

There are a number of techniques for detecting the enan-
tiomer composition of chiral compounds. The traditional iden-
tification techniques consist of electrochemistry, ligand
exchange, high-throughput screening, and spectroscopy, such as
high-performance liquid chromatography (HPLC)*** and
circular dichroism (CD)* are commonly used. Colorimetry and
fluorescent probes are excellent approaches to identify enantio-
mers on account of their high-pitched visual resolution, high
sensitivity, ease of operation, convenient equipment, real-time
imaging, and online monitoring.>*?® It has been used to differ-
entiate the conformation of chiral molecules and determine
enantiomeric composition and has led to numerous high quality
and quantitative results in the enantioselective fluorescence
identification of amino acids, carboxylic acids, and amines.

BINOL is a rigid structure, which is a very suitable substrate
for fluorescent sensors.””>* For example, Vivek Panyam
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Muralidharan has designed and synthesized chiral fluorescent
BINOL bearing benzoisoquino-line-1,3-dione on the minor
grooves. It was found to be a sensor for the identification of R-
amino alcohols and to determine the enantiomeric composi-
tion of a-amino alcohols.”” BINOL is also easily modified and
has multiple modification sites that can modulate its fluores-
cence by introducing various moieties at different positions.
Because of the unique chirality, BINOL and its derivatives can
also provide interesting fluorescence signals and good chiral
recognition. In the past few years, BINOL and its derivatives
have gained global visibility in the field of enantioselective
fluorescent sensor, which was used in the recognition of chiral
molecules.**** Hg-BINOL is the 5,5,6,6’ site reduction of BINOL.
Similar to BINOL, due to the electron giving action of the alkyl
ring and the sp® hybridization of the carbon, the inductive effect
causes the electron density of the benzene ring of Hg-BINOL to
increase and higher reaction activity. Most previous reports on
Hg-BINOL focused on asymmetric catalysis.***° However, few
reports paid attention to the enantioselective fluorescent
sensors to date.** In 2011, Pu et al. reported Hg-BINOL-diamine
compounds that displayed a good enantioselective fluorescent
response toward mandelic acid, and the enantioselective fluo-
rescence enhancement ratio was up to 3.5.*> Therefore, a novel
Hg-BINOL-based triazole-modified fluorescent probe was
designed and synthesized to investigate the enantioselective
recognition of phenylalanine in this study.

OH OH
0T CU”
Hs-BINOL

BINOL

2 Experimental
2.1 Materials and methods

All experimental reagents used in the experiments were
purchased from Energy Chemicals and Shanghai Aladdin and
were not sonically purified. All analytical grade solvents were
distilled prior to use. The solvents used for the probe synthesis
experiments were purchased from Innochem. "H NMR and **C
NMR were measured on a Bruker AM-400WB spectrometer
using CDCl;. Fluorescence spectra data were measured on
a Hitachi F-7100 fluorescence spectrophotometer with slit
widths of 2.5 nm and 2.5 nm, respectively (¢ = 260 nm).
Melting points were carried out using an X-4 melting point
tester. The optical rotation was measured on a Rudolph
AUTOPOL IV automatic polarimeter. Elemental analyses were
performed on a Vario EL/MACRO elemental analyzer using
polyethylene as a blank control.

2.1.1 Synthesis of propargyl derivatives a and b. R-
5,5',6,6',7,7',8,8'-Octahydrobiol (1.00 g, 3.40 mmol) and K,COj3
(1.08 g, 7.81 mmol) were put in a 100 mL single-necked flask
and 30 mL of acetone was added to dissolve them. Then, 3-
bromopropyne (0.73 mL, 8.48 mmol) was added slowly
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dropwise to the reaction system. After the mixture was stirred
for 20 min, the reaction was heated to about 55 °C for refluxing
and stirred overnight. The reaction was intercepted, while thin
layer chromatography detection proved the vanishing point of
the start material and a new blot was generated. The tempera-
ture of the system was then reduced to ambient temperature,
and the reaction solution was recovered and filtered, washed
three times with acetone to collect the light yellow liquid, and
dried with anhydrous MgSO,. Then, the crude product was
obtained by rotary concentration on a rotary evaporator and
later separated by column chromatography (silica gel 200-300
mesh, eluting solvent petroleum ether: ethyl acetate = 15 : 1, v/
v) to get 0.48 g (derivatives a) of white solid in 38% yield,
together with 0.45 g (derivatives b) of a white solid with a yield of
40%. [derivatives a, M.p. 97-99 °C. [«]} +0.50 (c 0.2, CH;OH).
'H NMR (400 MHz, chloroform-d) 6 7.05 (d, J = 8.5 Hz, 1H), 6.90
(dd, J = 17.7, 8.4 Hz, 2H), 6.70 (s, 1H), 4.51 (t, ] = 2.2 Hz, 2H),
4.31 (s, 1H), 2.67 (q,J = 8.7, 7.5 Hz, 4H), 2.36-2.11 (m, 3H), 2.10-
1.83 (m, 2H), 1.80-1.40 (m, 10H)]. Elemental analysis results: C
(experimental value: 83.01%, calculated value: 83.10%), H
(experimental value: 7.09%, calculated value: 7.28%), O (exper-
imental value: 9.90%, calculated value: 9.63%). [derivatives
b, M.p. 86-87 °C. [a]p’ +0.35 (c 0.2, CH;OH). 'H NMR (400 MHz,
chloroform-d) 6 7.09 (d, J = 8.4 Hz, 2H), 6.94 (d, ] = 8.4 Hz, 2H),
4.56 (d, J = 2.4 Hz, 4H), 2.79 (td, ] = 6.4, 2.8 Hz, 4H), 2.39 (t, ] =
2.3 Hz, 2H), 2.08 (q,/ = 5.8, 5.0 Hz, 1H), 1.79-1.66 (m, 6H), 1.58
(s, 1H)]. Elemental analysis results: C (experimental value:
84.20%, calculated value: 84.29%), H (experimental value:
6.99%, calculated value: 7.07%), O (experimental value: 8.81%,
calculated value: 8.64%).

2.1.2 Synthesis of R-1 probe. R-2-Alkynylmethoxy-
5,5',6,6',7,7,8,8'-octahydrobinol (200 mg, 0.81 mmol) was put in
a 100 mL aubergine flask, evacuated several times, and pro-
tected by argon, and then 6 mL of tetrahydrofuran was added
and stirred thoroughly to dissolve completely. Then 2-azidoa-
cetate (0.09 mL, 0.97 mmol) was added to the mixture. Sodium
ascorbate (129 mg, 1.70 mmol) and copper sulfate pentahydrate
(337 mg, 0.81 mmol) were then accurately weighed, dissolved in
5 mL of water after a few minutes, and appended to the system.
When the reaction was completed, it was monitored by thin
layer chromatography and quenched by adding 15 mL of ice
water to the reaction flask. It was then extracted three times
with dichloromethane, collected, washed with prepared satu-
rated brine, dried with anhydrous sodium sulphate for 30 min,
and separated by column chromatography (silica gel 200-300
mesh, eluting solvent CH3OH : CH,Cl, = 1:2, v/v). A white
solid of 0.26 g was obtained with a yield of 95%. M.p. 93-95 °C.
[]5 +0.75 (c 0.2, CH;0H). Elemental analysis results: C
(experimental value: 69.54%, calculated value: 69.79%), H
(experimental value: 6.29%, calculated value: 6.49%), N (exper-
imental value: 9.31%, calculated value: 9.40%), O (experimental
value: 14.96%, calculated value: 14.32%). '"H NMR (400 MHz,
chloroform-d) 6 7.24 (s, 1H), 7.09 (d, J = 8.4 Hz, 1H), 7.01 (d, ] =
8.2 Hz, 1H), 6.93 (d, J = 8.4 Hz, 1H), 6.77 (d, J = 8.2 Hz, 1H),
5.48-4.92 (m, 4H), 3.79 (s, 3H), 3.11-2.70 (m, 4H), 2.36-2.06 (m,
4H), 1.85-1.43 (m, 11H), 1.26 (td, J = 7.1, 2.2 Hz, 2H). ">°C NMR
(101 MHz, chloroform-d) & 153.26, 149.73, 145.06, 137.58,
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135.84, 130.94, 129.77, 128.76, 123.23, 122.89, 111.76, 111.05,
62.45,52.49, 50.20, 28.83, 26.81, 26.57, 22.64, 22.44.ppm. HRMS
(ESI-): caled for [CyeH,oN;0, " H™ |- 448.2158; found 448.1774.

2.1.3 Preparation of fluorescent probe solutions. 44.7 mg
of probes R-1, 44.7 mg of probes S-1, or 60.0 mg of probe R-2
were put in three 10 mL volumetric flasks, each; then, CH;0H
(chromatographic grade) was added to dissolve and fix the
volume to the scale line, was shaken well to dissolve completely
and mixed well to obtain the required concentration of 0.001
moL 17! of the master solution. Then, the above mixture was
diluted with the same grade of methanol solution to the 2 x
10> mol L™ test solution for testing (need to be ready to use).

2.1.4 Preparation of solutions required for the test.
Common amino acids (p/t-alanine, p/t-aspartic acid, p/L-gluta-
mine, p/t-glutamic acid, p/i-leucine, p/t-lysine, p/L-methionine,
p/t-phenylalanine, b/t-proline, b/i-serine, p/i-valine, b/r-argi-
nine, p/i-aspartic acid, po/i-tyrosine, p/i-cysteine, p/i-glycine)
accurately weighed in a 5 mL volumetric flask, and then, 2000
uL of deionized water was pipetted dropwise to obtain a solu-
tion with a concentration of 0.1 mol L™".

3 Results and discussion
3.1 Synthesis procedure

The synthesis process of sensors R-1 R-2 and S-1 is outlined in
Scheme 1. R-5,5,6,6,7,7',8,8-Octahydrobiol (Hg-BINOL) was
used as the starting material, the fluorescent sensors R-1 and R-
2 based on Hg-BINOL derivatives modified with 2- and 2,2'-tri-
azoles were obtained by a click reaction. According to the
previous literature,” R-Hg-BINOL and 3-bromopropyne were
synthesized as propargyl derivatives a and b. Propargyl deriva-
tive a and methyl azidoacetate were dissolved in tetrahydro-
furan at room temperature and reacted with anhydrous copper
sulphate and sodium ascorbate to afford 1,2,3-triazole modified
Hg-BINOL derivative R-1, which was further purified by column
chromatography in a high yield of 95%. Similar probes R-2 and
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Scheme 1 Synthetic procedure of fluorescent sensors R-1, R-2, and
S-1
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S-1 were synthesized by the same synthetic route with high
yields (93% and 98%). The specific structures of the experi-
mentally synthesized compounds were all validated by "H NMR,
13C NMR, and ESI-MS.*

3.2 Fluorescence study

The fluorescence responses of the R-1 probe toward two enan-
tiomers of sixteen kinds of common amino acids without the
involvement of metal ions were explored first. In this experi-
ment, various amino acid (0.1 M) test solutions were prepared
in distilled-deionized water or DMSO. Methanol was used to
dissolve the R-1 probe (2.0 x 107> M). A pair of enantiomers
(20.0 equivalents) of each amino acid was mixed into the solu-
tion at room temperature for fluorescence measurements. As
shown in Fig. 1, i-phenylalanine and p-aspartic acid tremen-
dously increased the fluorescence response of the R-1 probe,
with I/I, values of 2.04 and 1.43, respectively. However, b-
phenylalanine and r-aspartic acid, as well as other amino acids,
had little effect on the probes, with almost no fluorescence
change. Thus, the novel chiral fluorescence R-1 exhibited a high
degree of enantioselectivity and chemoselectivity for phenylal-
anine and aspartic acid.

The fluorescence responses of the R-1 probe toward b-
phenylalanine and r-phenylalanine were then studied in detail.
The fluorescence spectra of the R-1 probe after the treatment
with 20 equivalents of p-phenylalanine and 1-phenylalanine are
provided in Fig. 2a. For these measurements, the R-1 probe was
blended in methanol (2.0 x 10~° M) with either .-phenylalanine
or p-phenylalanine (20 equivalents). The fluorescence spectrum
of the R-1 probe at r-phenylalanine spiked from 5 to 100
equivalents, as given in Fig. 2c. As revealed in Fig. 2¢, when the
concentration of r-phenylalanine was raised to 20 equivalents,
the fluorescence strength of the R-1 probe at 315 nm rose to 2.04
times its original value. However, when p-phenylalanine was
used, the fluorescence of the R-1 probe did not change signifi-
cantly over this concentration range (as shown in Fig. 2b). At
20.0 equivalents of amino acids, the maximum enantioselective
fluorescence enhancement ratio* [ef = (I — I,)/(Ip — Io), where
I, is the fluorescence of the sensor in the absence of amino acid]

1600

1400 > L-Phe

1200

1000 |-
= D-Asp

~D-Phe
_. L-Asp
——= R-1 and other
amino acids

800 -

600 |-

400

Fluorescence intensity (a.u.)

200

300 350 400 450
Wavelength (nm)

Fig. 1 Fluorescence spectra of R-1 (2.0 x 107> M in CHzOH) with
different enantiomers of sixteen ordinary amino acids (20.0 equiva-
lents) in the absence of metal ions (Aex = 260 Nm, slits = 2.5/2.5 nm).
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Fig. 2 (A) Fluorescence spectra of R-1 (2.0 x 107> M in CHzOH)
toward p- and L-phenylalanine (20.0 equiv.). (b) Fluorescence titration
of R-1 with p-phenylalanine in CHzOH. (c) Fluorescence titration of R-
1 with L-phenylalanine in CHsOH. (d) Fluorescence intensities at 1 =
315 nm versus the equivalents of phenylalanine (Aex = 260 nm, slits =
2.5/2.5 nm).

was 104.28. The fluorescence intensity of p-phenylalanine
remained relatively constant with increasing equivalents (5-100
equivalents), while the fluorescence of r-phenylalanine then
gradually increased and showed a linear relationship R =
0.9986, as shown in Fig. 2d.

To investigate the enantiomeric composition of amino acids,
the fluorescence response of R-1 with phenylalanine at different
ee [ee,*® enantiomeric excess, = (1 — d)/(I + d)] values were also
studied. In the experiment, the R-1 probe was mixed with
phenylalanine at different ee values and its fluorescence
responses were then measured (Fig. 3). It was possible to
measure the enantiomeric composition of amino acids when
using R-1 with an excess of L-phenylalanine in methanol solu-
tion. To demonstrate the enantiomeric composition of amino

4500
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acids, the fluorescence response of R-1 could be significantly
enhanced by r-phenylalanine. As the excess of L-phenylalanine
increased, the fluorescence intensity progressively enhanced.

The large non-linear plot is shown in Fig. 3. It also demon-
strated that the conformation of the amino acid did not
improve the fluorescence, which could greatly curtail the fluo-
rescence enhancement by its enantiomer. The most simple-
minded approach to describe this phenomenon was that the
two configurations of amino acids may bind to each other and
slowly form a structure between them.*” This structure pre-
vented them from binding to the probe for reaction. A surplus of
the enantiomeric amino acid of the configuration that
enhanced fluorescence reacted with the probe and turned on
the fluorescence of the sensor, inducing it to enhance
fluorescence.

The fluorescence reaction of the R-1 enantiomer S-1 toward
D- and i-phenylalanine was also studied under the same
conditions. As displayed in Fig. 4-a, the fluorescence responses
of S-1 toward the phenylalanine enantiomer were identical to
that of the R-1 probe, both recognizing only .-phenylalanine. We
also investigated the fluorescence response of R-2, the double
substitution product of R-1, toward D- and r-phenylalanine, as
displayed in Fig. 4b. As shown, the fluorescence responses of R-
2 to the phenylalanine enantiomer were identical to those of the
R-1 probe. All three probes exhibited that L-phenylalanine could
display a significant fluorescence enhancement, while b-

O
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1000 / \
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300 350 400 450
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Fig. 3 Fluorescence response at A = 315 nm for the mixtures of R-1
toward L-phenylalanine (100.0 equiv.) at various ee values.
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Fig. 4 (a) Fluorescence spectra of R-2 (2.0 x 107> M in CHzOH)
toward p- and L-phenylalanine (20.0 equiv.) in the absence of metal
ions. (b) Fluorescence spectra of 5-1 (2.0 x 107> M in CHsOH) toward
p- and L-phenylalanine (20.0 equiv.) in the absence of metal ions (Aex =
260 nm. Excitation/emission slit widths: 2.5/2.5 nm).
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phenylalanine exhibited no obvious change. Hence, it was clear
that the recognition of phenylalanine was independent of the
configuration of the probes and the degree of triazole modifi-
cation. Further study was focused on the exact mechanism of
the recognition.

4 Conclusions

In summary, a novel fluorescent sensor of 1,2,3-triazole-
modified Hg-BINOL derivative with high correspondence
selectivity was synthesized by nucleophilic substitution and
click reaction with a high yield. It could be used as a novel chiral
fluorescence sensor to identify and differentiate different
configurations of phenylalanine as it exhibited high enantio-
selectivity and sensitivity to L.-phenylalanine in the fluorescence
experiments. The maximum enantioselective fluorescence
enhancement ratio was 104.48 at 20.0 amino acid equivalents.
The results showed that the novel synthesized sensor had the
great possibility to be used as a fluorescent sensor to identify
the different configurations of phenylalanine as well as to
determine the enantiomeric composition of amino acids.
Moreover, in contrast to previously reported amino acid fluo-
rescent probes, the newly synthesized sensor also has the
advantage of convenient use in observing fluorescence
enhancement, because when many previously reported amino
acid fluorescent probes are used in observing fluorescence
enhancement, additional metals have to be used.
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