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The asymmetric total synthesis of four lignans, dimethylmatairesinol, matairesinol, (—)-niranthin, and

(+)-niranthin has been achieved using reductive ring-opening of cyclopropanes. Moreover, we

DOI: 10.1039/d2ra00499b

rsc.li/rsc-advances

Lignans are attracting considerable attention due to their
widespread distribution in plants and their varied bioactivity.'”
For example, matairesinol,”> dimethylmatairesinol,? yatein,* and
niranthin® are found in nature and exhibit e.g., cytotox-
icity,?»%3»4% anti-bacterial,* anti-allergic,* anti-viral,*>*>¢ anti-
leishmanial,®¥ and strong insect-feeding-deterrent activity.*
Among these compounds, anti-viral compounds have received
significant attention owing to the worldwide pandemic of
coronavirus disease 2019 (COVID-19). Although niranthin
exhibits anti-viral activity toward the hepatitis B virus (HBV),*»¢
the enantiomeric SAR (structure-activity relationship) for the
anti-viral activity of niranthin has not been revealed so far. To
examine the SAR for a pair of enantiomers, an independent
asymmetric synthesis of both enantiomers is necessary.
However, the alternative synthesis of (—)- or (+)-niranthin has
not been reported.® During our recent studies on the trans-
formation of cyclopropanes,” we have reported a reductive ring-
opening of enantioenriched donor-acceptor (D-A) cyclopro-
panes and its application to an asymmetric total synthesis of
yatein.” As a further extension of this synthetic method, we
disclose here the asymmetric total synthesis of
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performed bioassays of the synthesized (+)- and (—)-niranthins using hepatitis B and influenza viruses,
which revealed the relationship between the enantiomeric structure and the anti-viral activity of niranthin.

(—)-dimethylmatairesinol, (—)-matairesinol, (+)-niranthin, and
(—)-niranthin. Moreover, the results of bioassays using (+)-nir-
anthin and (—)-niranthin against HVB and influenza virus (IFV)
are described (Scheme 1).

Scheme 2 outlines the enantioselective synthesis of optically
active lactones 5a and 5b. Following our previous report,” we
attempted to synthesize the enantio-enriched bicyclic lactones
4a and 4b.

Initially, the cyclopropanation of enal 1 with dimethyl a-
bromomalonate 2 using the Hayashi-Jorgensen catalyst affor-
ded the desired optically active cyclopropylaldehydes 3a and 3b
in good to high yield with high ee.”#*"%%° The reduction of the
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Scheme 1 Some examples of bioactive dibenzyl lignans.
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Scheme 2 Enantioselective synthesis of key intermediates 5a and 5b.

aldehydes to alcohols and subsequent lactonization with p-
TsOH afforded lactones 4a and 4b in high yield with high ee.
The optical purity of lactones 4a and 4b were determined
using HPLC analyses on a chiral column, and the ee values of
the enantioselective cyclopropanations were estimated
based on these HPLC analyses. Next, treatment of bicyclic
lactones 4a and 4b with hydrogen in the presence of a cata-
lytic amount of Pd-C in AcOEt at 0 °C resulted in a regiose-
lective reductive ring-opening to furnish benzyloxylactones
5a and 5b in good to high yield with high dr and high ee. In
the hydrolysis step, debenzylation of the benzyloxyaryl group
did not occur under these mild conditions, i.e., in AcOEt at
0 OC.7i

For the a-benzylation of 5a and 5b to afford 6a-c, the cor-
responding substituted benzylhalides were necessary. 3-
Methoxy-4-benzyloxybenzylbromide and 3,4-dimethoxybenzyl-
bromide were easily prepared by known methods (for details,
see the ESIt); however, the preparation of 3,4-methylenedioxy-5-

HO CO,Me o CO,Me CO,Me
K,COg < <
o CHyly K2CO4
—_—
DMF
10 OH 1 OH 12 OMe
34% 90%
OH +
NaBH, Na 1) K,CO4
THE o o CO,Me CHjl HO CO,Me
10 \/ DMF
A
o o 2) HCI
MeO,C H,0 HO
13 OH 14 OMe
84% (2 steps)
K,CO. Co,M 0
2C03 o] Hvie
CHalp LiAlH, < PBr3 <
—_— — 0
DMF THF s CH,Cl, 16 o
12 OMe oM OMe

92% 7% 0%

Scheme 3 Preparation of substituted benzylbromide 16.
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methoxybenzylbromide (16) required a modified procedure that
involves the regioselective protection of the hydroxy group at the
3-position of 3,4,5-trihydroxybenzene (Scheme 3). The methyl-
enedioxylation of gallic acid (10) during the first step resulted in
alowyield of 11."° Consequently, we successfully synthesized 12
using a cyclic boron-ester system.™ Arylmethylbromide 16 was
derived from ester 12 in two steps in good to high yield.

Next, enolates were generated from lactones 5a and 5b using
K,CO; in DMF, and successfully attacked the benzylhalides on
the less-hindered side to afford a-benzyl lactones 6a-c¢ with
excellent dr values (Scheme 4).7"*> The trans-a,B-disubstituted
lactones 7a-c were obtained via the hydrolysis of the a-
methoxycarbonyllactones 6a-c¢ followed by decarboxylation.
The transformation from the enol form to the keto form gave
the thermodynamically favored trans products (7a-c) with
excellent dr values.””** Finally, the debenzylation of 7a using
a catalytic amount of Pd-C in methanol under a hydrogen
atmosphere afforded matairesinol (7d) in 96% yield. Thus, the
total syntheses of dimethylmatairesinol (7b) and matairesinol
(7d) were achieved, and spectral data of these natural products
were consistent with reported data.”>*? The absolute configu-
ration of these compounds were determined using the known
data of optical rotation values. The reduction of lactone 7¢ using
LAH afforded diol 8 in 91% yield (Scheme 4). Subsequent
dimethylation of the resulting diol 8 using NaH and Mel fur-
nished (—)-niranthin in 89% yield with 95% ee."® Spectral data
of (—)-niranthin was also consistent with reported data.?»<®
Following the total synthesis of (—)-niranthin, we also achieved
the total synthesis of (+)-niranthin via an alternative enantio-
selective cyclopropanation using a different enantiomeric Hay-
ashi-Jergensen catalyst derived from bp-proline instead of r-
proline (Scheme 5).**
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Scheme 4 Alternative asymmetric total synthesis of dimethylmatair-
esinol, matairesinol, and (—)-niranthin.
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Scheme 5 Alternative asymmetric total synthesis of (+)-niranthin.

(—)-Niranthin has been reported to exhibit anti-HBV activi-
ty.”»¢ Aiming to shed light on the relationship between its
enantiomeric structure and activity, we performed a bioassay on
the synthesized (—)- and (+)-niranthin against not only HBV, but
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Fig. 1 HBV-infection assay using (—)- and (+)-niranthin.
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also the influenza virus (IFV). The anti-HBV activity results are
summarized in Fig. 1 and 2, while the anti-IFV activity is
summarized in Fig. 3 (for details, see the ESIf).

Based on the assays using HBV-infected HepG2-hNTCP-C4
cells and HBV-replicating Hep38.7-tet cells, the amount of
HBs antigen decreased in a concentration-dependent manner
without apparent cytotoxicity. The 50% inhibition concentra-
tion (ICs) in the HBV-infected cells was calculated to be 14.3 +
0.994 uM for (—)-niranthin and 9.11 + 0.998 uM for (+)-nir-
anthin (Fig. 1), while the IC5, in the HBV-replicating cells was
calculated to be 16.2 £+ 0.992 uM for (—)-niranthin and 24.2 +
0.993 puM for (+)-niranthin (Fig. 2). These results show that
(—)-niranthin and (+)-niranthin exhibit anti-HBV activity, and
that there is no remarkable difference between the anti-HBV
activity of both enantiomers. In contrast, based on the
bioassay of (—)- and (+)-niranthins against IFV using MDCK
cells, cytotoxicity of (—)-niranthin appears at >400 uM judging
that cell viability without IFV is less than 80%, and (—)-nir-
anthin inhibited IFV-infection to cells in a concentration-
dependent manner on the concentration range of non-
cytotoxicity, and exhibits anti-IFV activity at 200-400 puM
judging that cell viability with IFV is over 50% (Fig. 3). However,
(+)-niranthin does not exhibit anti-IFV activity, and similarly to
(—)-niranthin, cytotoxicity appears at >400 uM. Thus, the anti-
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Fig. 2 HBV-replication assay using (—)- and (+)-niranthin.
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Scheme 6 A speculation for the bioactive site of niranthin against HBV
and IFV.

IFV activity between (—)- and (+)-niranthins is clearly different.
Our findings suggest that the enantiomeric site in niranthin
endows (—)-niranthin with more potent anti-IFV activity than
(+)-niranthin. We speculated that the anti-HBV active site of
niranthin might be a part of the molecular structure such as
aromatic groups which are far from chiral centers. In contrast,
anti-IFV active site of niranthin might be closer to the chiral
centers (Scheme 6).

Conclusions

We achieved the asymmetric total syntheses of four bioactive
lignans: matairesinol, dimethylmatairesinol, (—)-niranthin, and
(+)-niranthin. Key reactions include the Pd-catalyzed reductive
ring-opening reaction of enantioenriched cyclopropanes under
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a hydrogen atmosphere and a highly stereoselective decarbox-
ylation. Thus, we have achieved the first alternative total
synthesis of (—)-niranthin and (+)-niranthin. Using the synthe-
sized niranthin enantiomers, we investigated the relationship
between the enantiomer structure and its anti-viral activity
against the hepatitis B virus (HBV) and the influenza virus (IFV).
The results indicate that although the anti-HBV activity does not
differ significantly between these two enantiomers, the anti-IFV
activity of (—)-niranthin is more potent than that of (+)-nir-
anthin. This result may be interpreted in terms of a different
recognition of the enantiomeric structure of a bioactive
compound among different virus species.
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