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entification of natural product
inhibitors against EGFR double mutant (T790M/
L858R) by integrating ADMET, machine learning,
molecular docking and a dynamics approach†

Subhash M. Agarwal, ‡*a Prajwal Nandekar‡§b and Ravi Saini{c

Double mutated epidermal growth factor receptor is a clinically important target for addressing drug

resistance in lung cancer treatment. Therefore, discovering new inhibitors against the T790M/L858R

(TMLR) resistant mutation is ongoing globally. In the present study, nearly 150 000 molecules from

various natural product libraries were screened by employing different ligand and structure-based

techniques. Initially, the library was filtered to identify drug-like molecules, which were subjected to

a machine learning based classification model to identify molecules with a higher probability of having

anti-cancer activity. Simultaneously, rules for constrained docking were derived from three-dimensional

protein–ligand complexes and thereafter, constrained docking was undertaken, followed by HYDE

binding affinity assessment. As a result, three molecules that resemble interactions similar to the co-

crystallized complex were selected and subjected to 100 ns molecular dynamics simulation for stability

analysis. The interaction analysis for the 100 ns simulation period showed that the leads exhibit the

conserved hydrogen bond interaction with Gln791 and Met793 as in the co-crystal ligand. Also, the study

indicated that Y-shaped molecules are preferred in the binding pocket as it enables them to occupy

both pockets. The MMGBSA binding energy calculations revealed that the molecules have comparable

binding energy to the native ligand. The present study has enabled the identification of a few ADMET

adherent leads from natural products that exhibit the potential to inhibit the double mutated drug-

resistant EGFR.
Introduction

Natural products (NPs) have been used to treat various diseases
for centuries. They are one of the most successful sources of
potential leads as they have unique structural scaffolds making
them the preferred choice over synthetic molecules.1 According
to the latest update which analysed the data from Jan 1981 to
Sep 2019, it was noted that in cancer 41% of drugs are inspired
by natural products.2 Despite the several advantages, the
development/conversion of NPs into drugs has always been
challenging, due to which pharmaceutical companies had
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the Royal Society of Chemistry
abandoned their natural product drug discovery programs in
the early 1990s.3 This lack of interest resulted in a signicant
reduction in identifying new leads in the drug development
pipeline and approval.4 Interestingly, this decline in identifying
NCEs forced the pharmaceutical industry to refocus its atten-
tion on natural products, leading to natural product drug
discovery renaissance. Thus, discovering and predicting new
compounds from natural products as leads is essential to open
new horizons for drug discovery.

The Epidermal Growth Factor Receptor (EGFR), a member of
the ErbB family of tyrosine kinases, is among the most widely
studied receptors in cancer biology. It is an important and well-
established clinically used therapeutic target for non-small cell
lung cancer (NSCLC).5–8 Hence, therapeutic leads that target
EGFR were discovered, which led to the approval of getinib
and erlotinib for the treatment of NSCLC.9 Although these rst-
generation inhibitors are highly effective, however during
treatment within 6–12 months, these inhibitors become inef-
fective in 60% of NSCLC cases. It was shown that the ineffec-
tiveness resulted from the acquisition of another mutation,
wherein the gatekeeper residue threonine was replaced with
methionine at position 790 (T790M).10,11 Therefore, the
RSC Adv., 2022, 12, 16779–16789 | 16779
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identication of new inhibitors against EGFR mutants, which
inhibits both EGFR activating mutation (L858R) as well as
secondary mutation (T790M), i.e. TMLR inhibitors, has
emerged as an important clinical requirement.12–15

In recent years different structure and ligand-based compu-
tational methods have been regularly used to identify high
binding affinity hits. However, it is essential to identify inhibi-
tors that exhibit high affinity with the target binding site and
have suitable ADMET properties to reduce the chances of
attrition during the drug development phase.16,17 So, a novel
computational approach has been employed wherein the rule
for constrained-based docking was developed based on re-
ported TMLR X-ray crystal structures so that the screened
inhibitors mimic interactions similar to that of co-crystallized
ligands. Additionally, prior to docking the NP library was
screened using a machine learning based binary classication
model (NPred) which categorizes molecules based on their anti-
cancer potential. Also, the binding affinity and stability of
ligands to the TMLR mutant protein was validated based on
HYDE scoring function as well as molecular dynamics simula-
tions. Overall, in the present work, twelve natural product
databases were screened by an integrated workow employing
several techniques like ADMET, machine learning based
prediction, constrained docking and molecular dynamics for
identifying new ADMET adherent potential inhibitors against
the mutant EGFR (Fig. 1). The current knowledge-based work-
ow can be useful for screening and identifying NP inhibitors
against any cancer target.
Fig. 1 Shows the workflow adopted in the present study.

16780 | RSC Adv., 2022, 12, 16779–16789
Methods
Virtual library collection and drug likeliness ltering

Twelve different natural product databases (namely AfroDB
Natural Products, AnalytiCon Discovery NP, Herbal Ingredients
Target, Herbal Ingredients In Vivo Metabolism, IBScreen NP,
Indone Natural Products, NPACT Database, NubBe Natural
Products, Princeton NP, Specs Natural Products, TCM Data-
base@Taiwan, and UEFS Natural Products) containing a total of
152 056 molecules available from the ZINC database (https://
zinc.docking.org), were downloaded.18 MONA (https://
www.zbh.uni-hamburg.de/mona), a cheminformatic
application designed to process large small-molecule datasets
was used to check the physico-chemical properties of the
molecules.19 Firstly, the duplicate molecules present within
these libraries were removed, leaving 145 628 molecules for
ltering. Thereaer, the drug-likeliness of these molecules
was assessed using two-stage ltering criteria. The rst lter
operation was based on Rule of Five (Ro5), according to which
the oral absorption is more likely when the compounds have
#5 H-bond donors, #10 H-bond acceptors, molecular weight
<500 Da, and log P of value <5.20 The second lter, which is
even more stringent, was used to further reduce false-positive
predictions about druggability/bioavailability. This screening
was based on Ghose lter that denes the constraints for
drug-likeness: log P should be between �0.4 and 5.0,
molecular weight between 160 and 480 Da, and the number of
atoms between 20 and 70.21
© 2022 The Author(s). Published by the Royal Society of Chemistry

https://zinc.docking.org
https://zinc.docking.org
https://www.zbh.uni-hamburg.de/mona
https://www.zbh.uni-hamburg.de/mona
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d2ra00373b


Paper RSC Advances

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

7 
Ju

ne
 2

02
2.

 D
ow

nl
oa

de
d 

on
 1

1/
8/

20
25

 1
1:

48
:2

4 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online
Anti-cancer activity prediction using binary QSAR model

To examine the anti-cancer potential of natural product
compounds that were pre-screened for ADMET properties,
machine learning based random forest binary classication
model termed NPred was employed.22 NPred is a binary QSAR
model developed to predict natural compounds probability as
anticancer agents. The ones predicted active were subjected to
pharmacophore-based virtual screening.
Generation of pharmacophore using protein–ligand
interactions

As several EGFR mutant structures co-crystallized with different
inhibitors are available in the PDB (https://www.rcsb.org/),
twenty protein–ligand complexes of EGFR-TMLR mutant
protein were retrieved. The hydrogen bonding interaction data
in each of the ligand–receptor complexes were then identied
and thereaer used to derive a pharmacophore pattern. As
a result, a combination of “one essential” and “one optimal”
interaction constituted the pharmacophore feature, which was
then used for virtual screening.
Homology modeling

The crystal structure 5EDQ having a co-crystallized ligand (5N3)
bound to it and exhibiting biological activity of 2 nM against the
T790M/L858R mutant of EGFR was chosen for virtual screening
and molecular dynamics study.23 However, it had a gap at the
position 860–875 in its crystallographic structure. Therefore,
homology modeling was undertaken to ll the gap at position
860–875 in the X-ray crystallographic structure of 5EDQ. Briey,
the sequence from 697 to 997 was considered as query and the
3D structure of double mutated (T790M/L858R) EGFR kinase
(PDB: 5EDQ) was considered a template. The target and
template sequences were aligned and ten homology models
were built using MODELLER.24 The MODELLER pre-dened
DOPE score (Discrete Optimized Protein Energy) was utilized
to identify the best model. The model that exhibited the lowest
DOPE score was selected for molecular docking.
Virtual screening using FlexX-Pharm

FlexX-Pharm is an advanced form of FlexX designed to utilize
the information of pharmacophoric feature generated using
protein–ligand binding data for docking.25 It works on the
guiding principle that the dened pharmacophore constraints
the docking process to nd the solutions which exhibit the
dened interactions. In this way, the probability of nding
newer scaffolds showing interactions as in X-ray crystallo-
graphic complexes increases and the likelihood of false-positive
decreases. Therefore, FlexX-Pharm was used to screen the
library of molecules predicted to possess anti-cancer activity in
the previous step. The binding pocket is dened as the location
where the co-crystallized inhibitor molecule 5N3, is present in
the protein structure 5EDQ and consists of amino acid residues:
Leu718, Gly719, Phe723, Val726, Ala743, Lys745, Glu762,
Leu788 Met790, Gln791, Leu792, Met793, Phe795, Gly796,
Cys797, Asn842, Leu844 and Thr854.
© 2022 The Author(s). Published by the Royal Society of Chemistry
Lead identication

The docking results were then imported in SeeSAR (SeeSAR;
BioSolveIT GmbH, Sankt Augustin, Germany, https://
www.biosolveit.de/SeeSAR) for visual analysis and binding free
energy calculation using HYDE assessment method.26 HYDE
implemented in SeeSAR relies on ligand's physico-chemical
properties i.e. hydrogen bond and desolvation energy, to esti-
mate ligand-binding affinity to the protein.
Molecular dynamics

The docked complexes were considered as the starting struc-
tures for the subsequent MD runs. The MD simulations were
carried using Desmond simulation package included in
Schrödinger Suite.27 Orthorhombic solvation box of TIP3P water
model was used and the system was neutralized by adding
chloride ions and an ionic strength of 0.15 M was set by adding
NaCl. Prior to MD, Desmond's default system relaxation
protocol was followed for equilibration. At the initial stage, 100
ps Brownian dynamics NVT simulation ensembled at 10 K
employing constraint on protein's heavy atoms. The second
stage consists of a 12 ps NVT simulation at 10 K and restricting
the solute heavy atoms. The third stage corresponds to NPT
simulation of 12 ps at 10 K, retaining the restrictions on the
solute heavy atoms. The last relaxation stage was increasing
temperature from 10 K to 300 K in 12 ps of NPT ensemble. Then
the simulation was continued for the next 24 ps in NPT
ensemble at 300 K with no restraint on any atom. The simula-
tion length was 100 ns with a recording interval of 100 ps. The
OPLS_2005 force eld parameters were used in all simulations.
As a control, MD using the same protocol described above was
performed for the co-crystalized ligand 5N3 from 5EDQ
structure.

Aer completion of the MD simulation, the trajectories were
further examined to understand the ligand stability and protein
conformational changes using parameters like root mean
square deviation (RMSD), root mean square uctuation (RMSF),
solvent accessible surface area (SASA), radius of gyration (Rg)
and molecular interactions between protein and ligand
complexes. To estimate the relative free energy of ligand
binding, Molecular Mechanics with Generalized Bonn Surface
Area (MM-GBSA) was computed using the equation:

DGbinding ¼ DGcomplex � [DGprotein + DGligand]

where, DGbinding is the free energy of the protein–ligand
complex, and DGprotein and DGligand are energy values of protein
and ligand, respectively. For the above purpose, Prime was
utilized to calculate MM-GBSA using the last 5 ns simulation
trajectories.
Results and discussion
Screening of natural product libraries for drug-likeness

In drug discovery, it has been suggested that the starting
molecules should be drug/lead like28 i.e. it should have signi-
cant activity and favorable ADMET properties. As poor
RSC Adv., 2022, 12, 16779–16789 | 16781
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pharmacokinetics oen results in failure in later stages of drug
discovery, screening libraries for their ADMET properties before
taking them for virtual screening studies is considered neces-
sary.16,17,29 In the last few years, various in silico rules to evaluate
the pharmacological properties and identify optimal molecules
have been designed.30 The routinely used approach to screen for
drug-like molecules is by estimating Lipinski's “Rule of Five”
(Ro5). Therefore, twelve natural product libraries containing
approximately 145 000 unique molecules were screened for
drug-like properties using the Lipinski lter. Application of Ro5
on the dataset resulted in the exclusion of �35% of the mole-
cules, leaving�65%, which obeyed three out of four parameters
of Lipinski (Fig. 2). Briey, it was observed that 95 758 followed
three out of four parameters of Lipinski and are expected to
have physico-chemical properties like drugs. Subsequently, the
Ghose Rule of Three (Ro3), which is a variant of Ro5 was used to
improve the drug likeliness prediction and reduce the false
positives by narrowing the criteria's (�0.4 < log P < 5.6, 160 <
MW < 480 Da, 20 < heavy atoms < 70). Implementation of the
second lter based on Ro3 further eliminated compounds
leaving behind �48% (�75 000 molecules) for further process-
ing (Fig. 2). This ltered set of 74 673 molecules that passed the
Fig. 2 Shows distribution of physicochemical properties of all molecu
Products, AnalytiCon Discovery NP, Herbal Ingredients Target, Herbal In
NPACTDatabase, NubBeNatural Products, Princeton NP, Specs Natural P
black arrow on each graph marks the position of known inhibitor (5N3)
acceptors, molecular weight <500 Da, and log P value < 5.20 Ghose filt
between 160 and 480 Da, and the number of heavy atoms between 20

16782 | RSC Adv., 2022, 12, 16779–16789
Lipinski and Ghose lter are expected to have properties suit-
able for lead identication and therefore, only these were
considered for anticancer activity prediction. It is also noted
that the known inhibitor 5N3 i.e. (N-(7-chloro-1H-indazol-3-yl)-
7,7-dimethyl-2-(1H-pyrazol-4-yl)-5H-furo[3,4-d]pyrimidin-4-
amine), has molecular weight of 381.8, log P of 2.5, number of
atoms is 27, number of H-bond donor and acceptor are 3 and 6,
respectively. Similarly, the twenty reported co-crystallized
ligands with TMLR EGFR protein from PDB were analyzed
and found their physicochemical properties within the range of
the Ghose lter. Thereby, it provided further condence on the
applicability of the Lipinski and Ghose lter for selecting
dataset specically for TMLR EGFR target.
Virtual screening using a machine learning model

To speed up the drug discovery process, machine learning
classication models are regularly employed to identify poten-
tial leads from a large set of molecules.31 Therefore, a random
forest prediction model was utilized for screening and pre-
dicting their likeliness as anti-cancer inhibitors. The model
predicts a score from 0 to 1 and a higher value signies more
les present in 12 natural product databases, namely AfroDB Natural
gredients In Vivo Metabolism, IBScreen NP, Indofine Natural Products,
roducts, TCMDatabase @ Taiwan, and UEFS Natural Products. The dark
. Lipinski's filtered compounds have #5 H-bond donors, #10 H-bond
ered molecules have log P between �0.4 and 5.0, molecular weight
and 70.

© 2022 The Author(s). Published by the Royal Society of Chemistry
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likelihood for the compound to show anti-cancer activity. As
a higher value reduces the probability of selecting false posi-
tives, only those compounds were selected that exhibited values
>0.7. As a result, out of the 74 673, nearly 6% of the compounds
i.e. 4681 molecules, were predicted to have anti-cancer activity
and therefore selected for molecular docking.
Pharmacophore based molecular docking

The receptor–ligand information derived from multiple co-
crystal structures was used to dene a pharmacophore pattern
for constraint-based virtual screening to reduce false positives
and improve docking results. Analysis of twenty double mutated
TMLR co-crystal structures and their interactions with ligand–
receptor complexes has demonstrated that Met793 acts as
a donor and forms a hydrogen bond with the ligand in all the
complexes. Also, it was shown that Gln791/Glu762 acts as
a hydrogen bond acceptor while interacting with the ligand.32

Therefore, used the above structural features for dening the
pharmacophore denition. As Met793 interaction showed an
absolute 100% conservation, it was termed as “essential”
constraint while interactions with either Gln791 or Glu762 was
dened as “optimal”. The combination of “one essential” and
“one optimal” interaction constituted the pharmacophore
pattern which was used for constrained-based virtual screening
using FlexX-Pharm. As a result of the pharmacophoric
constraints during docking, only 1339 molecules out of 4681
could be docked in the active site as they demonstrated the
ability to form the key dened interactions.
Fig. 3 Chemical structures of the three top-scoring molecules based o

Table 1 Hydrogen and hydrophobic interaction analysis of ligands with

Ligand Mol wt. log P
H-bond interactions
(AA residues) Hy

Co-crystallized ligand (5N3) 382 2.5 Met793, Glu762 Le
74
Le

ZINC03935485 (Zn03) 422 4.96 Gln 791, Met 793 Le
Ph

ZINC05013091 (Zn05) 351 4.64 Gln 791, Met 793 Le
74

ZINC35465964 (Zn35) 366 4.87 Gln 791, Met 793 Le
74

© 2022 The Author(s). Published by the Royal Society of Chemistry
Lead identication and molecular interaction analysis

Then took 1339 docked molecules into SeeSAR for affinity
assessment using HYDE. The top three ligands with the lowest
HYDE affinity were chosen and their interactions in the
protein's active site was analyzed (Fig. 3 and Table 1). It revealed
that all the three ligands show the conserved H-bonding inter-
action with Gln791 and Met793, as in the case of co-crystallized
inhibitors (Table 1). It conrmed that the dened pharmaco-
phore during docking was constrained and only those docked
poses were short-listed, which exhibited these binding charac-
teristics in the active site of the TMLR mutant protein. Addi-
tionally, the three ligands showed similar hydrophobic
interactions mainly with Leu718, Phe723, Val726, Ala743,
Lys745, Leu788 and Leu844 (Table 1). As observed earlier, the
binding pocket analysis shows that it prefers Y-shaped mole-
cules to enable the ligand to occupy the pockets.33 Visual
examination of the identied leads in the active site revealed
that Zn05 and Zn35 have similar binding that is, they occupy
both the pockets as in 5N3, the native ligand. However, Zn03
occupies only one of the two pockets showing hydrogen bond
interaction with Gln791 and Met793. It instead orients towards
the outer site and interacts with Leu718 and Phe795 to form
hydrophobic interaction, thereby stabilizing the ligand in the
binding pocket of TMLR.

Further, the three lead molecules were analyzed for their
toxicological properties using DataWarrior.34 It relies on the
registry of toxic effects of chemical substances (RTECS) data-
base to predict the toxicity levels of a molecule and assess them
n HYDE assessment and co-crystallized ligand.

TMLR mutant

drophobic interactions (AA residues) HYDE affinity

u 718, Gly 719, Phe 723, Val 726, Ala
3, Lys 745, Leu 788, Met 790, Leu 792,
u 844

0.06–5.74 nM
(experimental activity: 2.1 nM)

u 718, Val 726, Ala 743, Met 790,
e795, Leu 844

1–145 nM

u 718, Phe 723, Val 726, Ala 743, Lys
5, Leu 788, Met 790, Leu 792, Leu 844

1–104 nM

u 718, Phe 723, Val 726, Ala 743, Lys
5, Leu 788, Leu 844

0–18 nM

RSC Adv., 2022, 12, 16779–16789 | 16783
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for their mutagenicity, tumorogenicity (carcinogenicity), repro-
ductive effect and irritant properties. Since the toxicity predic-
tion capability of this tool is reliable with sensitivity and
specicity levels of 87% and 77% respectively, thus this tool has
been used in the current study. The results of the toxicity
prediction analysis showed that none of the 3 compounds
exhibited any adverse/toxic effects i.e. neither of them were
predicted to be mutagenic, tumorogenic, have effect on repro-
ductive ability or is an irritant.

As the three identied molecules follow drug like properties,
are non-toxic and exhibit the key interactions similar to the
three-dimensional protein–ligand complexes, therefore, to
conrm the stability of these ligands in the binding pocket of
TMLR mutant protein they were then subjected to 100 ns
molecular dynamics simulation.
Molecular dynamics (MD) simulations

The use of molecular dynamics (MD) is an integral and well-
established structure-based method for exploring the dynamic
nature of protein–ligand complexes at an atomistic level.9,33

Therefore, to study the stability of the ligands (Zn03, Zn05 and
Zn35) MD simulation was performed for 100 ns with 5N3 the co-
crystallized ligand as the standard. The RMSD analysis of the
protein backbone revealed that aer 30 ns the system stabilized,
for all three ligands. However, it required 50 ns to stabilize the
protein with 5N3, the co-crystal ligand. Compared to the co-
crystal ligand 5N3, Zn03, Zn05, and Zn35 showed better
stability (lower RMSD) (Fig. 4A). To check for the exibilities of
the individual residues that may have contributed to the overall
uctuations in the system, RMSF was computed for all the
protein–ligand complexes and it was observed to be similar
Fig. 4 Shows (A) RMSD of the protein backbone with respect to the fi

residues, (C) radius of gyration plot as a function of simulation time for lig
and co-crystallized ligand.

16784 | RSC Adv., 2022, 12, 16779–16789
(Fig. 4B). The radius of gyration was used to study the ligands
compactness and stability. It was observed that Zn05 had the
lowest Rg value, which was expected as it has benzothiazole and
benzene linked to 2-pyrazoline in the center, thereby making
the structure rigid and restricting the rotation (Fig. 4C). On the
contrary, the Rg value was highest for Zn35, which has aliphatic
structures, while the Rg of Zn03 was comparable with the
standard ligand (Fig. 4C). The solvent accessible surface area
(SASA) is an important measure of the surface area of a ligand
that is available to its surrounding solvent. The SASA calculation
for all the ligands revealed that the standard ligand has the
lowest average SASA score indicating that a signicant portion
is buried in the receptor and only a smaller area is accessible to
the solvent. The Zn05 ligand have higher SASA scores but are
comparable to the standard ligand (5N3), revealing that only
a few ligand atoms are exposed to the solvent (Fig. 4D).
However, the SASA score of Zn03 and Zn35 was elevated,
compared to the other ligands revealing that they are exposed to
the solvent and thereby show an increased score.
Interaction analysis based on molecular dynamics

The interaction analysis of the ligand–receptor complexes for
the 100 ns simulation time revealed that the leads Zn03 and
Zn05 form hydrogen bonds with the protein backbone via
Gln791 and Met793 same as in the case of co-crystal ligand
(5N3) (Fig. 5–7 and ESI Fig. S1†). However, in Zn35, it shows
hydrogen bond interaction prominently with the Met793
residue (Fig. 8 and ESI Fig. S1†), while with Gln791 the inter-
action probability was nearly 20%, so it is not captured in the
Fig. 8. The three ligands Zn03, Zn05, and Zn35 interact with
Met793 residue with connection probabilities of 96%, 81% and
rst frame of MD simulation, (B) RMSF profile for Ca atoms of protein
ands only, (D) solvent accessible surface area for three lead molecules

© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 Shows (A) residues involved in the interactionwith 5N3 ligand and the interaction fraction during simulation. Different types of interactions
are shown in different colors. (B) 2D ligand interaction diagram for the co-crystallized ligand 5N3 and surrounding residues with their percentage
interactions and (C) number of H-bonds across the 50 ns MD simulation trajectory. The data and plots are generated using Schrödinger Suite.
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82% respectively. On the other hand, two ligands (Zn03 and
Zn05) interact with Gln791 residue with medium to strong
connections of 40% and 88%, respectively.

As hydrogen bonding is crucial for forming stable protein–
ligand complexes, the number of hydrogen bonds throughout
the simulation for all the ligands was also analyzed (Fig. 5–8).
On average, the standard ligand (5N3) shows three hydrogen
bonds, comparable to the Zn05 ligand (Fig. 7). In the case of
Zn03 and Zn35, two hydrogen bonds are observed during the
simulation period (Fig. 6 and 8).
Fig. 6 Shows (A) residues involved in the interaction with ligand (Zn0
interactions are shown in different colors. (B) 2D ligand interaction diag
interactions, and (C) number of H-bonds across the 50 ns MD simulation

© 2022 The Author(s). Published by the Royal Society of Chemistry
Apart from hydrogen bonds, hydrophobic interactions are
also important for drug–target binding. The co-crystal ligand
shows hydrophobic interactions predominantly with Ala743,
Met790 and Leu844, which are also observed in the case of
Zn05. In Zn03, additional H-bond interaction with Leu718 and
hydrophobic interaction with Phe723 were observed, as phenyl
ring orients outside the cavity and establishes interaction,
enhancing the binding affinity.

Additionally, water-mediated interaction with Asn842 was
observed in Zn05, similar to the co-crystal ligand. Also,
3) and the interaction fraction during simulation. Different types of
ram for ligand Zn03 and surrounding residues with their percentage
trajectory. The data and plots are generated using Schrödinger Suite.
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Fig. 7 Shows (A) residues involved in the interaction with ligand (Zn05) and the interaction fraction during simulation. Different types of
interactions are shown in different colors. (B) 2D ligand interaction diagram for ligand Zn05 and surrounding residues with their percentage
interactions, and (C) number of H-bonds across the 50 ns MD simulation trajectory. The data and plots are generated using Schrödinger Suite.

Fig. 8 Shows (A) residues involved in the interaction with ligand (Zn35) and the interaction fraction during simulation. Different types of
interactions are shown in different colors. (B) 2D ligand interaction diagram for ligand Zn35 and surrounding residues with their percentage
interactions, and (C) number of H-bonds across the 50 ns MD simulation trajectory. The data and plots are generated using Schrödinger Suite.
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additional water mediated H-bond interactions with Thr854
and Asp855 and hydrophobic interactions with Leu788 were
observed, as benzothiazole ring orients inside the cavity thereby
increasing the strength of interaction (Fig. 5 and 7).

Overall, the analysis indicated that the Y-shaped molecule
(Zn05) is stabilized by the above interactions and is similar to
the co-crystal ligand (5N3) interactions.
16786 | RSC Adv., 2022, 12, 16779–16789
Optimization of Zn05

Based on the assessment of the interactions of ligands
computed with the help of molecular dynamics calculations,
the lead Zn05 was found to have the most interactions like the
known ligand (5N3). It showed the RMSF and SASA were
comparable to the co-crystal ligand. It even had RMSD and Rg

values lower than the standard ligand suggesting the better
© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 9 Shows (A) residues involved in the interaction with ligand (Zn05-NH2) and the interaction fraction during simulation. Different types of
interactions are shown in different colors. (B) 2D ligand interaction diagram for ligand Zn05-NH2 and surrounding residues with their percentage
interactions (C) number of H-bonds across the 50 ns MD simulation trajectory.
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stabilization of Zn05 in the active site of the TMLRmutant. Also,
it showed conserved hydrogen bond interactions with Gln791,
Met793, and Asn842 in comparison to co-crystal ligand (5N3).
The analysis of co-crystallized ligand 5N3 bound in the active
site of TMLR crystal structure (PDB: 5EDQ) revealed that in one
of the pockets the nitrogen atom of pyrazole ring interacts viaH-
bond with Met793 while in the other pocket, the nitrogen of
benzothiazole interacts with Glu762 to form hydrogen bond.
From the co-crystallized ligand data, it was clear that interaction
with Glu762 in addition to Gln791 and Met793 would further
stabilize the ligand in the binding pocket of TMLR. The binding
pattern analysis of Zn05 revealed an opportunity exists to make
modications that may allow interaction with Glu762. There-
fore, a library of Zn05 analogues with several modications were
generated and selected the analog having a single –NH2

substitution on the benzothiazole group for molecular
dynamics. The interaction analysis for the 100 ns simulation
time revealed that the newly designed lead Zn05-NH2 forms
hydrogen bonds with Gln791 and Met793 as well as additional
interaction with Glu762 (Fig. 9 and ESI Fig. S1†). Also, the other
H-bond interactions with Thr854 (water-mediated) are present
but with a lower propensity (�23%). Further, the number of
hydrogen bonds throughout the simulation shows that nearly
three hydrogen bonds are observed (Fig. 9). Overall, the modi-
cation allows the ligand to form additional interactions with
TMLR protein and thereby increase binding affinity.

Binding affinity calculations and per-residue-decomposition-
analysis

To study the binding ability of inhibitors with the TMLRmutant
EGFR protein, the binding free energies of complexes were
computed using MM/GBSA method based on 50 snapshots
© 2022 The Author(s). Published by the Royal Society of Chemistry
taken from the last 5 ns MD simulation trajectories. It was
observed that the binding free energy of Zn03, Zn05, Zn05-NH2

(analog of Zn05) and Zn35 are lesser but comparable to the
reference ligand 5N3 (�72.45 kcal mol�1) with values �64.60,
�61.07, �63.77 and �65.92 kcal mol�1, respectively. Further,
the breakdown of energy terms reveals that in the case of Zn03,
the contribution of coulomb energy is markedly lower while
lipophilic and van der Waal and electrostatic solvation energy is
nearly the same as in co-crystal ligand (Table 2). In Zn35, the
contribution to the DGbind from lipophilic energy is compara-
tively higher than the native ligand (�23.86 vs.
�19.56 kcal mol�1). This is in accordance with the ligand's t in
the binding pocket as it allows the benzyl group to have
hydrophobic interactions in the pocket, thereby increasing the
lipophilic energy. Similarly, in Zn05 there is a decrease in the
contribution from lipophilic energy but a marked increase in
coulomb energy compared to the crystal ligand (Table 2).
Analysis of energy contributing terms of Zn05-NH2 ligand
revealed an increase in lipophilic energy, thereby increasing the
binding free energy in comparison to Zn05. Also, it is observed
that van der Waals interactions are favorable for inhibitor
binding in the active site of the mutant protein and all the three
inhibitors Zn03, Zn05-NH2, Zn35 show similar van der Waals
binding energy. Thus, this provides condence that the iden-
tied molecules will have high affinity within the active site of
the EGFR mutant protein.

Further, to decipher the contribution of each amino acid
involved in protein–ligand interactions per-residue decompo-
sition analysis was undertaken (Fig. 10). The residues that
exhibited binding free energy lesser than �1 kcal mol�1 are
considered important and contribute towards the stability of
the protein–ligand complex. It is observed that the amino acid
RSC Adv., 2022, 12, 16779–16789 | 16787
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Table 2 Binding free energy of studied protein–ligand complexes calculated using MM/GBSA method

Ligand
Binding free energy
(DGbind) Coulomb energy (DEcoulomb) Lipophilic energy (DElipo)

Van der Waals energy
(DEvdw)

5N3 �72.45 � 3.45 �15.83 � 1.68 �19.56 � 0.95 �59.35 � 2.11
Zn03 �64.60 � 3.91 �9.46 � 3.60 �22.11 � 1.90 �54.08 � 2.55
Zn05 �61.07 � 4.24 �24.73 � 3.12 �15.14 � 0.81 �46.36 � 2.23
Zn35 �65.92 � 4.00 �13.77 � 3.46 �23.86 � 1.26 �47.96 � 2.62
Zn05-NH2 �63.77 � 5.67 �22.73 � 3.85 �18.22 � 1.17 �48.44 � 2.47

Fig. 10 Residue-wise energy decomposition analysis of the inhibitors against the TMLR mutant EGFR structure.
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residues Val718, Val726, Ala743, Lys745, Met790, Gln791,
Leu792, Met793, Leu844 and Thr854 are signicantly contrib-
uting towards the binding of all ligands including co-
crystallized ligand 5N3. However, in the case of Zn03, the
interaction with three residues Lys745, Leu788 and Gln791 was
missing while it shows interaction with two other residues
Gly796 and Cys797. On the other hand, in the case of Zn05-NH2,
the residues Lys745 and Met790 are observed to have
a remarkable contribution (<�4.5 kcal mol�1) towards the
ligand binding.
Conclusion

In this study, computational techniques including ligand and
structure based were employed to shortlist a few leads from
a myriad of natural compounds against EGFR double mutant
for overcoming drug resistance in cancer. For this purpose, the
drug-likeliness of the molecules was assessed using Lipinski
and Ghose lter and then screened the library for its anticancer
activity using a random forest based binary QSAR model. These
potential anti-cancerous compounds were next examined for
binding modes using pharmacophore constrained molecular
docking against the EGFR-TMLR protein. Subsequent assess-
ment of binding affinity allowed us to identify three lead
molecules that occupy the critical sub-pockets and have the
desired interaction critical for tight binding affinity with the
16788 | RSC Adv., 2022, 12, 16779–16789
receptor. The molecular dynamics simulations then conrmed
the stability of the binding interactions predicted through
molecular docking. Additionally, the MMGBSA binding affinity
established that these molecules have comparable binding
energy to the co-crystal ligand, which has low nM activity. Thus,
we have integrated machine learning based virtual screening,
molecular docking and molecular dynamics simulations to
identify inhibitors against EGFR mutant protein from natural
products libraries which may overcome resistance in cancer.
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6 K. Gately, J. ÓFlaherty, F. Cappuzzo, R. Pirker, K. Kerr and
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