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Machine learning based on structural and FTIR
spectroscopic datasets for seed autoclassification
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A single feature set is often unable to effectively classify complex biological samples due to their similar
morphology and sizes. This paper proposes a protocol for the fast identification of seed medicinal
materials based on micro-structural and infrared spectroscopic characteristics. Three different feature
datasets, namely micro-CT, FTIR, and mixed datasets, were established via principal component analysis
(PCA) and competitive adaptive reweighted sampling (CARS) and then used to train a back-propagation
neural network. The mixed dataset consists of 34-dimensional micro-CT eigenvalues and 13-
dimensional FTIR eigenvalues, optimized by PCA and CARS processing and then used to train a BP
neural network. The results showed that the classification accuracy reached 89.5% for the micro-CT
dataset and 93.3% for the FTIR dataset, and the classification accuracy of the mixed dataset achieved
99.2%, much higher than those of the traditional single feature datasets. This study provides a new
multi-dimensional

protocol for characteristic architecture with excellent performance for the
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1 Introduction

Seeds are widely used in herbal medicine and play an important
role in traditional Chinese medicine (TCM). However, seeds are
huge in number as well as in species, and many are named even
for the same species. Furthermore, many seeds are similar in
shape, appearance, size and internal structure, especially those
from homologous genera of plants. There are many seeds not
documented in the Chinese pharmacopoeia in a standardized
manner, hampering their classification and usage. This can
lead to confusion and misuse of seed herbs and even cause the
emergence of fake herbs. Therefore, it is necessary to develop
a rapid identification tool for herbs using multi-dimensional
intelligent methods.

Current medical botanical identification is mainly based on
imaging, spectroscopic, and biochemical techniques as well as
manual classification. For example, the identification of six
species of Litsea Lam by scanning electron microscopy,' estab-
lishment of the spectral fingerprint of Swertia mileensis for its
quality control,” identification of ginseng from China and Korea
by isotope tracing,® and identification of fake Semiaquilegia
adoxoides by biomolecular methods.* However, these methods
are costly and need complex sample preparation and handling
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classification and identification of Chinese medicinal materials.

procedures. Infrared spectroscopic techniques such as visible/
near-infrared spectroscopy (VIS/NIR), near-infrared spectros-
copy (NIR), mid-infrared spectroscopy (MIR), and hyperspectral
imaging (HSI) can be used to analyse the species and places of
origin of plants. For instance, VIS/NIR is used to distinguish crop
growing regions and detect nutritional indicators.>® Since the
spectra contain chemical information about the plant, they can
reflect differences in the spectra of plants of different varieties
and geographical origin, such as in food quality testing using
spectroscopic methods.”® X-ray computed microtomography
(CT) is a fast, non-destructive, multi-scale testing technique
widely used in botany, biomedicine, food testing and security.
For example, the identification of New Zealand plant leaf mate-
rial from artefacts using micro-computed micro-CT,’ imaging of
mouse heart using micro-CT and eXIA-160 contrast agents,
study of micro-deformations of breadcrumbs under severe
compression," testing of cellular food products,"” and investi-
gation of food microstructure evaluation.” Due to the combi-
nation of high brightness, adjustable energy of synchrotron
radiation and micro-CT, high-resolution 3-dimensional X-ray
phase contrast imaging techniques are being increasingly
employed in plant physiology and in situ structural identifica-
tion. For example, cavitation and water recharge processes in
rice and bamboo leaves were investigated successfully,™ feature
tissues and calcium oxalates of wild ginseng were revealed,*>**
and a phase-attenuation-duality-based phase retrieval algorithm
effectively improved the density resolution of weakly absorbing
materials and successfully visualized the morphological char-
acteristics of eaglewood specimens at different stages.'”'®
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Machine learning can solve real-world problems by extract-
ing various features based on imaging, such as gray level co-
occurrence matrix (GLCM), gray gradient co-occurrence matrix
(GGCM) and Tamura texture values,'®*° mass spectrometry, and
chromatography.** Recently, it has been introduced to medical
botanical identification and classification, such as in the iden-
tification of bitter almond and peach kernel herbs of different
origins using neural networks,* the identification of licorice
using support vector machines (SVMs) and random forests,*
and the accuracy comparison of different classifiers of plant
specimens.? Principal component analysis (PCA) is always used
as a dimension reduction tool for machine learning, and can
significantly reduce the time required for machine learning.

In this study, we propose a new protocol to develop a multi-
dimensional intelligent method for identifying highly similar
seed herbs. A mixed feature dataset was established using
a combination of micro-CT structural and FTIR spectroscopic
eigenvalues optimized by PCA and competitive adaptive
reweighted sampling (CARS) methods,” including, GLCM,
GGCM and Tamura texture values, and the FTIR vibration
absorption feature peak (VAFP) technique. Then, a classifier
based on a BP neural network was introduced and trained. The
classification accuracy of the mixed dataset is much higher than
that of the traditional dataset. This protocol has great potential
in dealing with other problems of classification in medical
botany.

2 Materials and methods
2.1 Preparations of samples

7 types of seeds with similar appearance, shown in Fig. 1, were
used as our experimental samples at room temperature,
provided by the Institute of Traditional Chinese Medicine and
Ethnomedicine, Xinjiang Uyghur Autonomous Region. The
encapsulated samples were first subjected to SR-XPCT experi-
ments and after their 3D morphological data had been
acquired, the sealed samples were treated with cutting and
other processes and used for infrared data acquisition. For SR-
XPCT data collection, the samples were not pre-treated in any
way, such as cutting or staining, and placed in a conical trans-
parent container and kept in a fixed position to avoid generating
motion artifacts. Then, the samples were soaked for 6-8 hours
and embedded, frozen at —24 °C and 7 pm thick slices with
a frozen slicer (Leica CM3050 S) were obtained. The slices were
carefully attached to BaF, substrates to improve their
transmittance.

Experimental samples

[class_1 [class_2 [class_3 Ic\ass 4 [class_5 [class_6 |class_7

White Lepidium Teucrium Black
sesame ISP;%hUIa F'usr:éane apetalum simplex Linseed sesame
seed seed Vant seed seed

= S

Fig. 1 Experimental samples of the 7 species of seeds.
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2.2 Data collection

Our experiments were carried out using high-brightness
synchrotron radiation to achieve high signal-to-noise ratio
data at the Shanghai Synchrotron Radiation Facility (SSRF). To
obtain the 3D morphological data, synchrotron-based X-ray
phase contrast tomography (SR-XPCT) was employed to collect
sample projections on a BL13HB beamline equipped with
a CMOS camera with a resolution of 1.625 pm per pixel. The
sample was placed in the centre of a rotary table to obtain the
best results for reconstruction. The experimental conditions of
SR-XPCT were as follows: photon energy 15 keV, sample-to-
detector 80 mm, exposure time 1000 ms and 1080 projections
per sample with 2048 x 2048 pixels. All SR-XPCT projections
were pre-processed by background -correction and phase
retrieval to improve the density resolution of weakly absorbing
samples, then reconstructed by filtered back-projection (FBP).
The SR-FTIR data of 5 pm slices of each seed sample were
collected in the transmission mode on the BLO6B beamline at
SSRF, equipped with a Nicolet 6700 FTIR spectrometer and
Nicolet Continupm Microscope. The conditions of FTIR
mapping were as follows: 40 x 40 um aperture, step size 40 pm,
repeated times 8 in ROIs and 32 in background to ensure data
reliability and a wavenumber range of 650-4000 cm™'. The
mapping area covered each entire seed slice. The VAFPs of each
seed were processed and averaged with 30 points using the
OPUS software.

The post-processing sample data were collected via feature
extraction, combination and classification as shown in the flow
diagram in Fig. 2. Both modality datasets were compared
quantitatively. For the SR-XPCT dataset, the structural features
were extracted via the GLCM, GGCM and Tamura texture
methods. For the SR-FTIR dataset, the spectral features of the
VAFPs were obtained through the CARS method, which is
applied to the selection of the optimal subset of wavelengths. Its
workflow usually includes four successive steps: Monte Carlo
model sampling, forced wavelength reduction by an

SR-XPCT E Blosk ;‘
[}

Ik X-ray detector
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-
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Fig. 2 Schematic diagram of the multi-dimensional sample data
acquisition and analysis system based on SR-XPCT and SR-FTIR in
SSRF and the experimental flow chart.
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exponential decrement function (EDF), adaptive re-weighted
sampling (ARS), and calculation of RMSECV for each subset.
The mixed feature dataset was built based on both modality
features and optimized by PCA.

2.3 Machine learning

Three feature datasets were trained and compared by a back-
propagation neural network (BPNN), which is a multilayer
feed-forward neural network with unidirectional transmission
topology, consisting of an input layer, hidden layer and output
layer. It is capable of learning and storing a large number of
input-output pattern mappings. Using a gradient descent
algorithm, it can achieve continuous adjustment of the weights
of the network until the squared error is minimized.

A 3-layer BPNN (input, hidden, output layers) was intro-
duced in this study, characterized by its compact structure to
avoid long training time and the tendency of overfitting. The
nodes of the hidden layer were essential to the accuracy of
classification, and can be determined by the formula
h= vm+n+a, where h is the number of nodes in the
hidden layer, m and n are the number of nodes in the input
and output layers, respectively, and a is the adjusting constant
integer between 1 and 10. In this study, the number of nodes
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in the hidden layer was 11, and three feature datasets (SR-
XPCT, SR-FTIR, mixed feature datasets) were used to train
our BPNN adopt software Weka (version 3.6.15). Here, 70%,
15%, and 15% randomly selected points were applied for the
training set, test set and validation set, respectively. The
performance of BPNN was evaluated with four assessment
criteria, as shown in Table 1. TP, TN, FP and FN represent true
positive, true negative, false positive and false negative,
respectively. Accuracy is the most intuitive performance
measurement. It is the ratio of the number of correctly pre-
dicted samples to the total number of samples. Precision is the
ratio of correctly predicted positive samples to the total pre-
dicted positive samples. Recall rate is the ratio of correctly
predicted positive samples to all actual positive samples. F1 is
a weighted average of precision and recall. The closer this
value is to 1, the more accurate the model's predictions.

3 Result

3.1 Dual modality dataset and feature architecture

All SR-XPCT data of the seed samples were three-dimensionally
reconstructed to extract the structural features using the pre-
processing flow, as shown in Fig. 3(a). Sub-images of ROIs

Table 1 Binary prediction models for classifiers and the assessment criteria

Predict type Assessment criteria
Real type Positive Negative Accuracy Precision Recall F1
Positive TP FN TP + TN TP TP 2(Precision)(Recall)
Negative FP TN TP + TN + FP + FN TP + FP TP + FN Precision + Recall

ﬁ
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Fig. 3 Morphological and spectroscopic experimental results and data processing. (a) 3D rendering of the reconstruction of a seed sample and
its image pre-processing flow. Green, blue, and red rectangles denote the embryo, cotyledon, and seed coat regions, respectively. (b) SR-FTIR
mapping image of the sample in the 1500-1700 cm™! range, showing the distribution of proteins. VAFPs were measured at 30 points, indicated

by cross symbols, to obtain the average spectrum. (c) Different feature peaks of biomacromolecules in the range of 4000-650 cm
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were chosen in three different regions, namely the cotyledon,
embryo and seed coat areas, and then processed with median
filter and histogram equalization to improve the signal-to-noise
ratio and contrast of the image. Their eigenvalues were calcu-
lated by GLCM (16-dimensional features), GGCM (15-dimen-
sional features) and Tamura texture (3-dimensional features). A
34-dimensional feature set was finally minimized into a 5-
dimensional one using the PCA method, as shown in Fig. 5(a).
SR-FTIR data of the seed slices was collected by mapping in the
range of 650-4000 cm™ ' and processed via background
subtraction, baseline correction, smoothing and averaging, as
shown in Fig. 3(b). The VAFPs of biomacromolecules, including
lipids, proteins, nucleic acids, and various chemical bonds,
were determined by averaging of multiple points (N = 30), as
shown in Fig. 3(c). Therefore, there are 1737 spectral channels
used for building the SR-FTIR feature sets.
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Fig. 4 Calculation results of the CARS method. (@) The number of
variables, (b) RMSECV and (c) regression coefficients of each variable
with increasing number of sampling runs. (d) FTIR eigenvalues of 7
species of seed samples extracted from VAFPs.
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The CARS method was employed to obtain the optimal
variable number (M) of VAFPs using an iterating algorithm, as
shown in Fig. 4(a). The number of sampling runs (N) can be
effectively determined through the calculation of the lowest
RMSECV value. In this study, the initialization parameters of
CARS are A = 10 (maximum number of principal components),
K =10 (k-fold cross-validation), and N = 50 (maximum number
of Monte Carlo sampling runs). The values of RMSECV fluctu-
ated and approached zero at a given N, as shown in Fig. 4(b).
The regression coefficient path reflected the optimal course of
the eigenvalue number with increasing number of sampling
runs, as shown in Fig. 4(c). The results of the CARS analysis
showed that the RMSECV was minimal when the iteration
proceeded to the 49th iteration, at which time there were 13
points with high specificity. It can be seen that CARS enabled
the optimization of the data model, especially in increasing the
identification of similarly structured samples. Fig. 4(d) presents
the FTIR spectroscopic distribution and selected eigenvalues of
the 7-species VAFPs.

The mixed feature dataset was built by the combination of
both SR-XPCT and SR-FTIR optimal eigenvalues. The PCA
method was applied to optimize the SR-XPCT and mixed feature
sets to 5-dimensional and 8-dimensional feature sets, respec-
tively, as shown in Fig. 5(a). Fig. 5(b) and (c) reflect the results of
selected PCAs and data concentration, respectively, for the
XPCT and mixed feature datasets. After PCA processing, the
data in the mixed dataset were richer than those in the SR-XPCT
dataset. The data in the CT dataset were more scattered, with
large data overlap between classes, which made correct classi-
fication difficult. The data in the mixed dataset were more easily
distinguishable due to the greater concentration of data. The
numbers of three statistical samples are listed in Table 2. The
total number of samples was 6642, and a total of 4650 samples
were randomly selected from each species as the training set,
996 as the validation set, and 996 as the test set.

3.2 Classification results based on BPNN

Three datasets were trained by BPNN with 11 nodes in 1
hidden layer, a learning rate of 0.3, momentum of 0.2 and 500
training times, and the results of accuracy, precision, recall
and F1 are shown in Fig. 6. The SR-FTIR dataset got higher
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Fig. 5 Analytical results of the PCAs and the distribution for the SR-XPCT dataset and mixed dataset. (a) Individual and cumulative proportions of
both PCAs; covered variance is set to 90%; (b) 5-dimensional principal components for the SR-XPCT dataset; (c) 8-dimensional principal

components for the mixed dataset.
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Table 2 Numbers of dataset of seeds for each species. A, B, and C
represent the training set, validation set and test set, respectively

SR-XPCT SR-FTIR Mixed

Class name A B C A B c A B o}

Class_1 750 125 125 740 130 130 730 135 135
Class_2 609 136 136 601 140 140 631 125 125
Class_3 664 168 168 670 165 165 676 162 162
Class_4 494 120 120 502 116 116 498 118 118
Class_5 685 161 161 685 161 161 719 144 144
Class_6 754 133 133 748 136 136 706 157 157
Class_7 694 153 153 704 148 148 690 155 155
1.0
0.992 0986 0.986 0.987
0.933 0.934 0.933 0934
0.895 0.901 0.895 0.892
0.8
06
04}
0.2
XPCT data
FTIR data
Mixed data
Accuracy Precision Recall F1

Fig.6 Comparison of the classification performances of the SR-XPCT,
SR-FTIR and mixed data models. The orange, green and purple bars
represent the XPCT dataset, FTIR dataset and mixed dataset,
respectively.

scores than the SR-XPCT dataset due to the highly similar
image feature sites. The mixed dataset combined the advan-
tages of the SR-XPCT and SR-FTIR datasets, and achieved
a higher classification result. Such a high accuracy of classi-
fication is due to the small number of seed samples and seed
species; the accuracy will decrease when the number and
species of samples increase. For training complex samples, the
classification accuracy of the mixed dataset is superior to that
of traditional single datasets.
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4 Discussion

To demonstrate the advantages of mixed datasets over tradi-
tional datasets, radar plots and box line plots were prepared to
represent the attributes and data distribution, respectively, of
the SR-XPCT and mixed datasets. The area of the mixed dataset
was larger than that of the SR-XPCT dataset, indicating that the
mixed dataset contains more feature information to improve
the accuracy of classification, as shown in Fig. 7(a). Fig. 7(b) and
(c) reflect the data distribution of different species of samples in
the SR-XPCT and mixed datasets, respectively. There is an
obvious overlap between the means and medians of the various
categories in the SR-XPCT dataset, which results in a lower
accuracy of classification, whereas in the mixed dataset, the
data overlap is lower, greatly improving the accuracy.

For further assessment of the classification performance of
the three datasets, the method of regression analysis was
employed in this study to analyse the relationship between
dependent variables and independent variables by way of
mathematical expression. As shown in Fig. 8(a), the regression
values of the SR-XPCT, SR-FTIR and mixed dataset were 0.849,
0.956 and 0.969, respectively. The regression value of the SR-
FTIR dataset was significantly higher than that of the SR-
XPCT dataset, indicating that the classification performance
of the SR-FTIR dataset was better. The regression line for the
mixed dataset, closest to the idealized value, reflected that the

(@ l— (b)
9 s [
3
8 I
] ,/ 8
7
® n .
6 s —_—
O o
i° £3
sS4 8 &
<] ) g o &
8 ] 8
2 L & .
g 5 =
g = f—dlass 2
! E§—FTiR data k:l class_3)
8 §—xpCTdata 3 f—class_4
o —— Mixed data 2 class_5|
- idealized value(Y = T)| = class_6,
O data class_7
| L !
0 1 2 3 4 5 6 7 8 9 10 o 1

05
Target True Positive Rate

Fig. 8 Performance analysis of the three datasets. (a) Regression
values for the SR-XPCT, SR-FTIR, and mixed datasets, with data points
indicating the error between the target classification and the output
value; (b) ROCs for the SR-XPCT, SR-FTIR, and mixed datasets.
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Fig. 7 Comparison of the SR-XPCT and mixed feature datasets. (a) Three metrics of performance represented by radar plots; (b) PCA data
distribution of the SR-XPCT dataset; (c) PCA data distribution of the mixed dataset.
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Fig. 9 Confusion matrixes for the SR-XPCT (a), SR-FTIR (b), and mixed (c) datasets; the green cells denote the correct number of classifications,
red cells denote the incorrect number, and blue cells denote the rate of correct classification. The black percentages indicate the number of
samples in the current grid as a percentage of the test set. The green and red numbers indicate the correct and incorrect classification rates for

a category, respectively.

trained results of the mixed dataset model had the clearest
mapping to the true species. Receiver operating characteristic
curves (ROCs) are generally used to evaluate the classification
results of machine learning. The test results of the three data-
sets were calculated by ROC, as shown in Fig. 8(b). There are
misclassifications between each species in both the SR-SPCT
and SR-FTIR datasets due to insufficient discrimination using
features of one single attribute, such as for class_1 and class_5
in the SR-XPCT dataset. Their structural features are so similar
that their classification accuracies become relatively low.
Moreover, the SR-FTIR dataset also suffers from the similarity
problem, although the average accuracy is higher than that of
the SR-XPCT dataset. This suggested that we need to combine
more different attribute features into the optimal feature data-
set to further discriminate similar and complex samples.
Therefore, the mixed feature dataset was proposed for the
autoclassification of seed samples. In comparison with the
above datasets, the ROC of the mixed dataset exhibited better
accuracy of classification (up to 99.2%). This demonstrated that
a multi-attribute feature dataset can effectively improve the
accuracy of classification for complex specimens, especially for
biological samples. Indeed, multi-dimensional imaging
methods have great potential in providing sufficient raw feature
data for the identification of complex systems, combining the
methods of feature extraction, PCA, and classifiers.

Since confusion matrixes allow us to obtain the specific
number of misclassifications, the confusion matrixes of the
three types of datasets are shown in Fig. 9. In the SR-XPCT
dataset, class_1 and class_5 had a much higher number of
misclassifications compared to the other species, as illustrated
in Fig. 8(b), which demonstrated that the similarity of micro-
structural features affects the accuracy of classification. For the
SR-FTIR dataset, class_2, class_3, class_4 and class_6 were
easily confused; this result was complementary to that of the SR-
XPCT dataset and suggested that an approach combining
microscopic and spectroscopic features was feasible. Our mixed
dataset combining two features demonstrates this approach,
and all species can be distinguished with high accuracy. Taking
advantage of the complementary properties between different

1418 | RSC Adv, 2022, 12, 1413-11419

features, the mixed dataset is superior in identifying samples of
similar species.

5 Conclusions

In this study, SR-XPCT and SR-FTIR datasets were combined to
obtain a mixed dataset with machine learning to classify seed
samples accurately. In this regard, a BPNN classifier was used to
train the three datasets separately. Compared to the SR-XPCT or
SR-FTIR datasets, the mixed dataset shows great superiority in
classifying similar and complex samples. This protocol can also
be applied to the identification of similar and complex char-
acteristics in medicinal botany and biology. For samples with
significant morphological or spectroscopic characteristics,
classification can be performed using either a SR-XPCT or SR-
FTIR feature set to save time.
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