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Highly efficient synthesis of 3,4-diarylbutadiene
sulfones using Heck—Matsuda reactiont

Olga V. Shurupova, Sergey A. thevskiy,@ Lidiya I. Minaeva, © Maxim A. Topchiy@
and Andrey F. Asachenko & *

For the first time we describe a general method for the synthesis of previously not synthesized
unsymmetrical 3,4-diarylbutadiene sulfones which can be stable convenient precursors for 2,3-diaryl-
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1,3-butadienes. Our method for arylation of butadiene sulfones via Heck—Matsuda reaction allows to

obtain unsymmetrical 3,4-diarylbutadiene sulfones with a variety of alkyl, alkoxy, nitro, ethoxycarbonyl,
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rsc.li/rsc-advances and catalysts.

Introduction

Conjugated dienes are one of the most important precursors in
organic synthesis that allow to obtain much more complex
compounds using fewer synthetic steps.”” Also they are well
known to be significant scaffolds in a wide range of natural
products (such as trichostatin A, fuzanin C, modiolin and
azoxymycin C) (Fig. 1).*° 2-Aryl- and 2,3-diaryl-1,3-butadienes
have attracted the interest of organic chemists due to their
ability to combine Diels-Alder'>'* and hetero-Diels-Alder
cyclization.”** This type of conjugated unsaturated compound
was also investigated in some other reactions, including
hydrohydroxymethylation' and hydroxymethylation' catalyzed
by iridium and ruthenium complexes respectively. Regarding all
these facts the efficient and approachable preparation method
for 2,3-diaryl-1,3-butadienes possessing certain regioselectivity
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Fig. 1 Bioactive molecules with 1,3-diene motif.
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perfluoroalkyl and halogen substituents (30 examples) in very good yields using readily available reagents

is of particular interest both from academic and practical points
of view.

Among the possible ways to obtain 1,3-dienes, Wittig reac-
tions,® reduction of 1,3-diynes or 1,3-enyne,"” transition metal-
catalyzed cross-coupling reactions®® and 1,2- or 1,4-elimination
of allylic alcohols® should be named in the first instance.
Nevertheless, obtaining unsymmetrical (containing different
aryl groups) 2,3-diaryl-1,3-butadienes is much less studied. The
preparation of these important compounds can be proceeded
using palladium-catalyzed cross-coupling of p-tolyl iodide with
3-silyl-3-phenylbuta-1,3-diene (40% yield)*® or styryl triflates
with styryl boronates (31-76% yield).>* Palladium-catalyzed
Stille cross-coupling was applied to obtain an unsymmetrical
2,3-bis-(2-nitroaryl)-1,3-butadiene derivative in 61% yield.?* The
two different hydrazones were assayed in cross-coupling reac-
tion to give unsymmetrical dienes as well as symmetrical ones
causing modest yields of necessary products.* Also the ene-yne
cross-metathesis reaction was reported on one example to make
2,3-diphenyl-1,3-butadiene from ethylene as olefin substrate
and internal alkyne.** Then this method was successfully
applied to the variety of alkynes, but it became inefficient in
case of substituted unsymmetrical phenylacetylene derivatives
since ortho-substitution in aryl ring might cause the low reac-
tivity of alkynes in the reaction* due to both steric hindrance
and potential catalyst inhibition of by the coordination of the
ortho-substitutes to the metal center. Obviously, a highly
regioselective synthetic methodology for unsymmetrical 2,3-
diaryl-1,3-butadienes from simple and readily available starting
materials is significantly desirable.

The substituted 3-sulfolenes are well-known key precursors
of not only different sulfolanes,>**” polycyclic heterocycles?® but
also conjugated unsaturated compounds.*?*° The thermal
extrusion of SO, (temperatures typically >100 °C) from these
stable compounds provides corresponding 1,3-dienes.**
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In our previous work we have developed simple and efficient
method for preparation of 3-arylbutadiene sulfones via Heck-
Matsuda reaction (Scheme 1).*

Concerning our interest in Pd-catalyzed chemistry,*~** for
the first time we disclose an efficient and facile Pd-catalyzed
cross-coupling reaction of 3-arylbutadiene sulfones with aryl-
diazonium salts to construct 3,4-diarylbutadiene sulfones with
high regioselectivity. Thus, our proposed method discovered
the possibility to explore unsymmetrical diaryl sulfones and
their transformations, especially substituted 1,3-dienes
synthesis.

Results and discussion

3,4-Diarylbutadiene sulfones synthesis via Heck-Matsuda
reaction

To investigate the possibility of 3-arylbutadiene sulfones aryla-
tion we have started using the conditions that had already
shown the best results in the synthesis of 3-arylbutadiene
sulfones® (1 eq. of aryldiazonium tetrafluoroborate, 3 mol%
Pd(OAc), in methanol). On the first stage compound 3’ (Scheme
2) is formed due to the arylpalladium syn addition to the C-C
double bond from the less hindered face of the double bond
anti to the Ph group followed by syn palladium hydride elimi-
nation resulting in the migration of the C-C bond* in the
reaction product. The base induced double-bond isomerization
in case of 3,4-diarylbutadiene sulfones require much harsher
conditions than in case of 3-arylbutadiene sulfones maybe due
to the sterical hindrance provided by an aryl group on C-3.*
Refluxing with DBN (1,5-diazabicyclo(4.3.0)non-5-ene) in 1,4-
dioxane turned out to be the most suitable system, which leads
to formation the only thermodynamically stable 3,4-diary-
Ibutadiene sulfones (Scheme 2).

However the incomplete conversion and moderate product
yields caused us to investigate the optimal aryldiazonium salt
and Pd(OAc), amounts using the model reaction between 3-
phenyl sulfolene and p-nitrophenyldiazonium tetra-
fluoroborate, that turned out to be 1.5 eq. and 5 mol% Pd(OAc),
respectively.

After that the impact of aryldiazonium salt structure was
studied on the 6 examples of Heck-Matsuda reaction using the
3-phenyl sulfolene as a substrate (Table 1). In all cases the full
conversion of 3-arylbutadiene sulfones took place on the cross-
coupling stage, including the example with the sterically
hindered o-methoxyphenyldiazonium tetrafluoroborate. The
migration of double-bond always showed quantitative yield, but
required more time in case of methoxy substituted products 3e
and 3f (2-4 hours for 3a-d vs. 24 hours for 3e and 3f).

ArN,*BF, Pd(OAc),, 3 mol%

@ Ar

o
S MeOH or THF, 50 °C, 2 h CHZCIZ A 2-24h " [Ref. 21]

S
Oz 0O, 0,
1 2 2

Scheme 1 Synthesis of 3-aryl-3-sulfolenes.
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Scheme 2 3,4-Diarylbutadiene sulfones synthesis using Heck—Mat-
suda reaction.

To investigate the scope and the limitations of the consid-
ered method the influence of the aryl substitution in the start-
ing 3-arylbutadiene sulfones in the Pd-catalyzed Heck-Matsuda
reaction was explored (Table 2).

Series of 3-arylbutadiene sulfones bearing different electron-
donating and electron-withdrawing groups were involved and
corresponding 3,4-diarylbutadiene sulfones were obtained in
good or excellent yields. To show the versatility of the condi-
tions proposed else 18 examples (Table 3) of unsymmetrical 3,4-
diarylbutadiene sulfones bearing different donor, acceptor or
neutral substitutions on both aryl rings were obtained.

As it can be found from the Tables 2 and 3, introduction of
the electron-withdrawing substitutions to the aryldiazonuim
salt (Table 3, 5f, 5j, 5k and 5r) lead to the slight yield decrease
compared with the arylation agents with the electron-donating
groups, even in the ortho-position (Table 3, 5a, 5d, 5g, 5i, 5I,
5n). On the contrary in case of the starting 3-arylbutadiene
sulfones bearing electron-donating groups (Tables 2 and 3, 5k,
50, 5s) the moderate yields were observed, while introducing
EWG substitutions to sulfones lead to the yield increase.
Therefore it can be concluded that the aryldiazonium salt
should contain electron-donating substitution whereas the 3-
arylbutadiene sulfones should bear the electron-withdrawing
one to provide the better product yields.

Table 1 Arylation of 3-phenyl-3-sulfolene with different aryldyazo-
nium salts®

Ph Ph. Al

Ar'N,*BF4", Pd(OAC), 5 mol% 2 g _
1 4-dioxane,

iS: MeOH, 50 °C, 2 h

0, 100 °C,2-24h 0,
2a 3- 3af
CHs tBu cl
o} 0, o}
3a, 70% 3b, 97% 3¢, 81%
NO, OMe
;_; ’2_5 ?—( OMe
S S 3,
O, O,
3d, 79% 3e, 94% 3, 79%

¢ Reaction conditions: step 1: 2a (1 mmol), aryldiazonium salt (1.5
mmol), Pd(OAc), (5 mol%), MeOH 5 ml, 2 h; step 2: DBN 0.2 ml, 1.4-
dioxane 5 ml, 100 °C, 2-24 h.

© 2022 The Author(s). Published by the Royal Society of Chemistry
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Table 3 Scope of 3,4-diarylbutadiene sulfones®

Ar, d _
- p-MeOPhN,*BF Pd(OAc)ZAr p-MeOPh oy Ar. p-MeOPh
i z—j/ —
S MeOH, 50 °C, 2 h S 1,4-dioxane, S
0, 3, 100 °C, 2-24 h 3,
2 4 4a-f
O2N OMe  EtOOC OMe OMe
= ﬁ_ F i—
S S S
o 0, O,
4a, 80% 4b, 80% 4c, 88%
FsC. OMe cl OMe gy OMe
S S S
O, 0z O,
4d, 89% 4e, 81% 4f, 97%

“ Reaction conditions: step 1: 2 (1 mmol), aryldiazonium salt (1.5
mmol), Pd(OAc), (5 mol%), MeOH 5 ml, 2 h; step 2: DBN 0.2 ml, 1.4-
dioxane 5 ml, 100 °C, 2-24 h.

The 3,4-diaryl butadiene sulfones’ reactivity investigation

Conversion of 3,4-diarylbutadiene sulfones to 2,3-diaryl-1,3-
butadienes. As it has been already mentioned in the introduc-
tion, 3,4-diarylbutadiene sulfones can be easily converted to the
corresponding 2,3-diaryl-1,3-butadienes via the SO, thermal
extrusion from the sulfone solution at 100-150 °C.*' Since no
one had ever produced unsymmetrical 3,4-diarylbutadiene
sulfones before us, we felt it necessary to try them in the clas-
sical sulfone chemistry transformations. Some of the unsym-
metrical 3,4-diarylbutadiene sulfones obtained in the first part
of this work underwent this transformation in the 1,2-dichlo-
robenzene solution at 140 °C resulting with the stable unsym-
metrical 2,3-diaryl-1,3-butadienes with the high yields (Scheme
3, 8a-8c). These 3 examples of 2,3-diaryl-1,3-butadienes have
the different electron-donating and electron-withdrawing
substituents in the phenyl rings and were synthesized for the
first time. It is also worth mentioning that the whole scope of
obtained 3,4-diarylbutadiene sulfones (Tables 2 and 3) may be
considered as the precursors for the corresponding 2,3-diaryl-
1,3-butadienes, and in most cases (except for Table 3,
5042,43) after SO, thermal extrusion previously unavailable 2,3-
diaryl-1,3-butadienes may be originally synthesized.

[4 + 2] cycloaddition reactions. Cyclization reactions are of
significant value in the synthesis of complex structures.”® 3,4-
Diarylbutadiene sulfones are shown to be the convenient and
stable substrates in place of 1,3-dienes for cycloaddition reac-
tions, most significantly the [4 + 2] Diels-Alder reaction, in
various synthetic routes such as the synthesis of natural prod-
ucts,**** porphyrins***” and functionalized fullerenes.***°

Having explored the scope of 3,4-diarylbutadiene sulfones
we have carried out a number of them with some well-known
dienophiles via Diels-Alder reaction. Thus the cycloadduct
between maleic anhydride and 3-(p-tert-butylphenyl)-4-phenyl-

© 2022 The Author(s). Published by the Royal Society of Chemistry

Arl 1 1 2
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| - -
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0O, 0, 100 °C, 2-24 h 0,
2 5 5a-s
Cl Cl tBu
YRS, QO ) D
— OMe — —
S S S
0, 0, O,
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tBu Cl Br
F — OMe F! ;; _
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0O, O,
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O.N, 2
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— OMe _ = OMe
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2 3, 2
54, 94% 5h, 75% 5i, 85%
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— — — OMe
S S S
0, 0, 0,
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?*( — OMe -
S S S
0O, O, O,
5m, 77% 5n, 85% 50, 84%
Br. tBu EtOOC Br tBu
— ?—( = OMe
S S S
O, O, O,
5p, 85% 5r, 65% 5s, 98%

¢ Reaction conditions: step 1: 2 (1 mmol), aryldiazonium salt (1.5
mmol), Pd(OAc), (5 mol%), MeOH 5 ml, 2 h; step 2: DBN 0.2 ml, 1.4-
dioxane 5 ml, 100 °C, 2-24 h.

butadiene sulfone (3b) was obtained in good yield (76%)
(Scheme 3, 7).

The reaction of 3-(p-OMe-phenyl)-4-(p-tert-butylphenyl)-
butadiene sulfones with dimethyl acetylenedicarboxylate
results to the mixture of the cycloadduct and the product of its
aromatization. The comprehensive aromatization of the

RSC Adv, 2022, 12, 5517-5521 | 5519
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Scheme 3 Transformation of 3,4-diaryl-3-sulfolenes to different
products.

mixture can be catalyzed by treatment with DDQ or palladium
on activated charcoal (Scheme 3, 6).

We have also shown that unsymmetrical dienes can react
regioselectively with asymmetric dienophiles via Diels-Alder
reaction. N-Tosyl tetrahydropyridine 9 was obtained as the
single regioisomer in good yield (Scheme 3).>

Thus, the unsymmetrical diaryl sulfones showed good reac-
tivity under Diels-Alder reaction conditions, which significantly
expands the potential scope of polyaromatic compounds which
can be used in liquid crystals, microelectronics, etc.>*"*

Conclusions

In summary, the facile, mild and highly regioselective synthesis
of previously undescribed unsymmetrical 3,4-diarylbutadiene
sulfones bearing donor, acceptor and sterical hindered
substituents was developed. It was shown that this approach is
applicable for obtaining different previously unavailable
unsymmetrical 2,3-diaryl-1,3-butadienes in very good yield. For
the first time the reactivity of 3,4-diarylbutadiene sulfones
under Diels-Alder reactions conditions has been demonstrated,
which makes it possible to explore new, more complicated
polyaromatic compounds.
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