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and Ryan C. Chiechi *abd

This paper describes the use of reduced graphene oxide decorated with gold nanoparticles as an efficient

electron transfer layer for solid-state biophotovoltic cells containing photosystem I as the sole photo-active

component. Together with polytyrosine–polyaniline as a hole transfer layer, this device architecture results

in an open-circuit voltage of 0.3 V, a fill factor of 38% and a short-circuit current density of 5.6 mA cm�2

demonstrating good coupling between photosystem I and the electrodes. The best-performing device

reached an external power conversion efficiency of 0.64%, the highest for any solid-state photosystem

I-based photovoltaic device that has been reported to date. Our results demonstrate that the

functionality of photosystem I in the non-natural environment of solid-state biophotovoltaic cells can be

improved through the modification of electrodes with efficient charge-transfer layers. The combination

of reduced graphene oxide with gold nanoparticles caused tailoring of the electronic structure and

alignment of the energy levels while also increasing electrical conductivity. The decoration of graphene

electrodes with gold nanoparticles is a generalizable approach for enhancing charge-transfer across

interfaces, particularly when adjusting the levels of the active layer is not feasible, as is the case for

photosystem I and other biological molecules.
1 Introduction

Photosystem I (PSI) is a trimeric photoactive electron-transport
protein complex that is found in thylakoid membranes and is
a part of the photosynthetic apparatus of green plants, algae,
and cyanobacteria.1–4 It is a light-harvesting element, and its
ability to convert solar energy into spatially separated charges,5

combined with its ease of extraction and natural abundance6,7

makes it ideal for sustainable, biomimetic energy conversion
applications. A series of processes in PSI transfer energy from
light-harvesting pigments at the periphery into a multi-step
electron transport chain beginning at the reaction center
(P700)8 that generates a hole on P700 and an electron on the iron–
sulfur cluster (FB–Fe4S4) acceptor site,9 which are at the termini
of the chain, with a quantum efficiency near unity.10 The oper-
ating principle of PSI-based biophotovoltaic (BPV) cells involves
ty of Groningen, Nijenborgh 4, 9747 AG

Nijenborgh 4, 9747 AG Groningen, The

ahan University of Technology, Isfahan

c.ir

State University, Raleigh, North Carolina

tion (ESI) available. See DOI:

the Royal Society of Chemistry
capturing these electrons and holes as they are generated on
opposite sides of each PSI complex following the absorption of
a photon.

A major challenge to integrating PSI into BPV cells is that,
during the extraction and isolation process of PSI, the PSI
trimers must be removed from the thylakoid membrane, which
destabilizes them and reduces their efficiency.5 Solid-state solar
cells are comprised of multiple layers stacked on top of each
other; thus, in BPV cells, PSI must be sandwiched between
charge-transfer layers, and the selection of electron- and hole-
transfer materials with the proper energy alignments plays
a critical role in facilitating the transfer of charge to and from
individual PSI complexes.6,11 To achieve continuous, optimal
charge-transfer ux through these different layers and to
maximize the efficiency of solid-state BPV cells, the PSI
complexes need to be kept properly aligned with respect to the
hole/electron injection and structurally intact.12 Several
methods have been developed to achieve this, such as
increasing light absorption by using thick multilayer lms of
PSI,11,13 increasing the surface area of the electrodes by using
nanoporous and roughened substrates,8,14,15 wiring isolated PSI
complexes with modied electrodes16–18 and using carbon-
based electrodes.1,7 Recent investigations on the topic of
performance improvements of BPV cells have focused on the
selection of electrodes, mediators, and composite matrices with
optimal properties.13,19–21
RSC Adv., 2022, 12, 8783–8791 | 8783
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Increasing the surface-area of electrodes is a general strategy
for increasing photocurrent in PSI-based BPV devices, in
combination with conformal charge-transfer layers. Nano-
porous lms of tin-doped indium oxide (ITO) nanoparticles,
microporous inverse-opal structures, needle-like polytyrosine
(PY), and conductive polymers have been shown to increase the
efficiency of BPV devices.22–25 Polyaniline (PANI) has been
utilized as a conformal hole-transfer layer in BPVs due to its
high electrical conductivity, charge mobility, and compatibility
with PSI complexes.26–30 Nano-composites based on carbon
allotropes such as graphene, graphene oxide (GO) and reduced
graphene oxide (rGO) exhibit a similar combination of useful
properties: high electrical conductivity, large surface area,
mechanical exibility, good carrier mobility, thermal conduc-
tivity and transparency in the visible range of the spec-
trum.7,11,21,31–33 These materials have been used as charge-
transfer layers in silicon-based solar cells,34–36 dye-sensitized
solar cells37–39 and other energy storage devices.27,40–42 In
previous studies, when PSI was deposited onto GO surfaces, the
hydroxy (–OH), carboxylic acid (–COOH), and epoxide groups
present in GOmake it particularly well suited for PSI-based BPV
devices because they interact selectively with PSI to affect the
orientation of the hole- and electron-injecting sides with respect
to the charge-transfer layers and electrodes.1,7 These groups can
also be used to tune the electric properties of GO by varying the
oxygen quantity of the layers.43,44 Examples of successful strat-
egies that utilize these properties in PSI-based BPV cells include
coupling PSI on graphene electrodes modied with NHS-pyrene
(N-hydroxysuccinimid) esters,17 immobilizing PSI on three-
dimensional rGO electrodes modied with cytochrome c,31

directly conjugating PSI to graphene,7 incorporating oriented PSI
in single-layer graphene akes functionalized with Ni2+ nitrilo-
triacetic acid chelates (Ni-NTA), cytochrome c553,45 and depositing
composite lms of PSI with GO and rGO on p-doped silicon.46 All
of these studies demonstrate signicant progress in the maxi-
mizing of photocurrents in BPV devices. Lastly, due to the unique
physicochemical properties, bio-inertness, and high catalytic
activity,12,47–49 gold nanoparticles (AuNPs) can increase the rate of
electron transfer and the electrical response of PV devices under
illumination.42 Dispersions of GO and rGO with AuNPs are widely
used in sensing applications,41,50,51 solar cells33 and to enhance
photocatalytic H2 production.43 Here, we utilize the unique
properties of these materials by decorating rGO with AuNPs to
enhance the performance of PSI-based BPV cells. We combine
the aforementioned approaches to construct cells in which PSI
complexes are self-assembled on a hole-transfer layer of PY-PANI
on ITO electrodes and covered with an electron-transfer layer of
rGO decorated with AuNPs (rGO–Au). Using this combination of
materials, we show the highest external power conversion effi-
ciency (h) for PSI-based BPVs devices reported to date.

2 Results and discussion
2.1 Device design

The overall device structure, energy levels, and associated
electron and hole transfer pathways of our BPV cells are sche-
matically depicted in Fig. 1 where ITO serves as the cathode, PY-
8784 | RSC Adv., 2022, 12, 8783–8791
PANI as the hole transfer layer (HTL), PSI as an active layer,
rGO–Au as an electron transfer layer (ETL) and evaporated gold
serves as the anode. Solid-state BPV cell fabrication begins with
cleaning pre-patterned ITO glass in several steps; rst,
substrates were cleaned using soap and DI water (DIW) under
sonication. Then, they were cleaned by sonication in acetone
and in the last step sonication in isopropanol. Finally, they were
dried in a stream of N2 and then activated in an O2 plasma-
cleaner for 3 min before dipping them into a PY solution (pH
7.4) at 5 �C. Aer 3 d, the substrates were removed from the PY
solution and gently immersed in deionized water to remove any
unbound PY colloids. During this process, the ITO is coated in
a layer of PY due to the electrostatic attraction between the
activated ITO and PY; we presume the oxygen plasma treatment
leaves a net positive charge on the ITO surface,52 because PY,
which bears acidic phenol moieties that are readily deproto-
nated, is net-negatively charged, as is depicted schematically in
Fig. 1c. A PANI solution was then spin-coated onto the PY layer
at 1000 rpm (with 1000 rpm s�1 acceleration) for 30 s. The PSI
active layer was deposited by drop-casting an aqueous solution
(40 mL at 0.8 mM), which was allowed to stand on the bench-top
in the cleanroom environment at a temperature of 20 �C for
30 min. Aer 30 min, the samples were then dried completely in
vacuo at room temperature for 45 min. In the next step of device
fabrication, rGO–Au (z1 mg mL�1, see Experimental) was
deposited by spin coating at 500 rpm (with 350 rpm s�1 accel-
eration) for 120 s, then at 1000 rpm (with 500 rpm s�1 acceler-
ation) for 30 s before being gently dried in a stream of N2.
Finally, the 60 nm-thick Au anode was thermally deposited
directly onto the rGO–Au layer under high vacuum (3 � 10�8

mbar). The active area was determined by measuring the over-
lap of the Au anode and the pre-patterned ITO cathode.
2.2 Device performance

As depicted in Fig. 1, the expected three-step mechanism is: (1)
the reaction center (P700) of each PSI complex absorbs light; (2)
electrons are shuttled to the (FB–Fe4S4) acceptor site, while
holes remain localized at the P700 donor site; and (3) the holes
travel through the PY-PANI HTL to the ITO cathode and elec-
trons travel through the rGO–Au ETL to the Au anode. The
resulting current J–V characteristics of BPV cells in the dark and
illuminated with AM1.5G simulated sunlight in the presence
and absence of the PSI active layer is shown in Fig. 2, and the
relevant photovoltaic parameters are summarized in Table S1.†
These results demonstrate that, the performance metrics of
open-circuit voltage (VOC), short-circuit current density (JSC), ll
factor (FF) and external power conversion efficiency h are
maximized in cells with PSI active layers under illumination,
demonstrating the generation and collection of photo-
generated charge by PSI complexes. Under illumination
devices with the conguration ITO/PY/PANI/PSI/rGO–Au/Au
yielded a VOC of 0.3 V and JSC of 5.6 mA cm�2, while in the
absence of PSI, devices with the conguration ITO/PY/PANI/
rGO–Au/Au yielded VOC and JSC that were approximately three-
fold smaller. Furthermore, h increases tenfold when PSI is
included in the device conguration.
© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 (a) Solid-state PSI-based photovoltaic cell with labeled components. (b) Energy levels of each layer and charge transfer pathways to
external electrodes of biophotovoltaic cell. (c) Assembly of polytyrosine on positive ITO surface. (d) A photograph of completed BPV devices (the
energy level data are given elsewhere.23,53–57).

Fig. 2 J–V plots of BPV cells with and without PSI in dark and under
simulated sunlight with an intensity of 1000 W m�2.

Fig. 3 J–V curves of four different photovoltaic cells fabricated with
rGO–Au and rGO layer in the presence and absence of PSI under
AM1.5G illumination. BPV cells fabricated of ITO/PY/PANI/PSI/rGO–Au
(green), ITO/PY/PANI/PSI/rGO (blue), ITO/PY/PANI/rGO–Au (orange),
and ITO/PY/PANI/rGO (magenta).
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To elucidate the role of the AuNPs, BPV cells were prepared
with rGO electron-transfer layers lacking AuNPs while keeping
the rest of the device conguration constant. The comparison of
J–V measurements of BPV cells with or without AuNPs layers in
the presence and absence of PSI is presented in Fig. 3;
comparison of the device perfomance, also summarized in
Table 1, demonstrates that VOC and JSC of 0.21 V and 2.96 mA
cm�2 obtained for the BPV cells without AuNPs, result in
a signicantly lower device performance and a threefold
decrease in PCE relative to the devices with AuNPs. These
results clearly demonstrate that surface functionalization of 2D
layers of graphene by integration of low-dimensional AuNPs is
© 2022 The Author(s). Published by the Royal Society of Chemistry
an effective method to improve the performance of PSI-based
photovoltaic devices which increase photochemical activity
through plasmonic coupling and retain the structural integrity
and charge-carrier mobility at the interface.42,58 Specically, the
surface functionalization of rGO with AuNPs adjusts the work
function33 and lowers contact resistance, increasing JSC and FF
by facilitating the extraction of charges from the photo-excited
PSI complexes before they recombine.59,60 Meanwhile, the
increased work function gives rise to an improved VOC in the
BPV devices. The alignment of the energy levels of the transfer
RSC Adv., 2022, 12, 8783–8791 | 8785
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Table 1 Performance parameters of four different photovoltaic cells fabricated of rGO–Au and rGO layer as electron transfer layer in the
presence and absence of PSI. The errors were obtained from the standard deviation of multiple test samples. The abbreviations used are tin-
doped indium oxide (ITO), polytyrosine (PY), polyaniline (PANI), reduced graphene oxide (rGO), gold (Au), photosystem I (PSI), open-circuit
voltage (VOC), short-circuit current density (JSC), fill factor (FF), and external power conversion efficiency(h)

Devices VOC(V) JSC (mA cm�2) FF h (%)

ITO/PY/PANI/PSI/rGO–Au/Au 0.3 � 0.02 5.6 � 0.28 0.38 � 0.06 0.64 � 0.03
ITO/PY/PANI/PSI/rGO/Au 0.21 � 0.01 2.96 � 0.37 0.32 � 0.09 0.2 � 0.05
ITO/PY/PANI/rGO–Au/Au 0.1 � 0.01 1.95 � 0.14 0.3 � 0.12 0.06 � 0.01
ITO/PY/PANI/rGO/Au 0.07 � 0.03 2 � 0.41 0.29 � 0.07 0.04 � 0.01

Fig. 4 External quantum efficiency (EQE) of fabricated BPV cells with
and without PSI as active layer between PANI and rGO–Au charge
transfer layers.

Table 2 Performance parameters of different PSI-based photovoltaic de
The abbreviations used are fluorine-doped tin oxide (FTO), aminoethan
(PTCDI), poly[2-methoxy-5-(20-ethylhexyloxy)-1,4-phenylene vinylene]
[bis(4-phenyl)(2,4,6-trimethylphenyl)amine] (PTAA), poly(p-xylylviolog
(PEDOT:PSS), sodium 3-mercapto-1-propanesulfonate (MPS), phenyl-C

Device conguration

Type of BPV cells

Solid-state Electrolyte

FTO/TiO2/PSI — 3

ITO/PSI/MEH-PPV:PCBM/MoO3/Al 3 —
FTO/TiO2/PANI-PSI/Ag 3 —
Au/PANI-PSI — 3

FTO/TiO2/PSI — 3

P-doped silicon/PSI/ZnO/ITO 3 —
FTO/PEDOT:PSS/PSI/LiF/Al 3 —
ITO/PY/PSI/C60/Au 3 —
PAni/PSI/TiO2/SnO2 3 —
ITO/PxV/PSI/P-Si 3 —
FTO/TiO2/PTCDI — 3

Au/AET/PSI-PEDOT:PSS LBL — 3

Au/MPS/PSI — 3

FTO/TiO2/PSI — 3

Au/PCBA/PSI — 3

ITO/PY/PANI/PSI/rGO–Au/Au 3 —

8786 | RSC Adv., 2022, 12, 8783–8791

RSC Advances Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

2 
M

ar
ch

 2
02

2.
 D

ow
nl

oa
de

d 
on

 2
/1

7/
20

26
 4

:1
5:

28
 A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online
layers with PSI (Fig. 1) is particularly important for reducing
recombination because it ensures that there is no energetic
barrier to the extraction of charges from the PSI complexes. The
evaluation of current density versus voltage for BPV devices
fabricated using ITO/PY/PANI/PSI/rGO–Au/Au was measured
during 10 d (Fig. S4†) which shows that, as the PSI layer ages,
there are fewer intact PSI complexes contributing to the
photovoltaic effect and the total performance of BPV devices
decreases.

EQE spectra of BPV cells with the conguration ITO/PY/
PANI/PSI/rGO–Au/Au and ITO/PY/PANI/rGO–Au/Au (Fig. 4) were
measured to evaluate the photovoltaic performance, further
conrming the active role of the PSI layer. In BPV cells with the
conguration ITO/PY/PANI/PSI/rGO–Au/Au, there is a peak
between 600 nm to 700 nm and the magnitude of the EQE
spectrum is signicantly enhanced in the same spectral region
as the absorption of PSI (Fig. S1†). A reference cell with the
conguration ITO/PY/PANI/rGO–Au/Au (i.e., lacking PSI) gave
a signicantly smaller response in this spectral region, with an
EQE response that can be ascribed to the absorption of PANI
(see Fig. S2†). The integrated current-densities estimated from
vices from the recent literature with different charge transfer materials.
ethiol (AET), layer by layer photosystem I (LBL PSI), perylene di-imide
(MEH-PPV), (6,6)-Phenyl C61 butyric acid methyl ester (PCBM), poly
en) (PxV), poly(3,4-ethylenedioxythiophene)polystyrene sulfonate

61-butyric acid (PCBA)

VOC (V) JSC (mA cm�2) FF h (%) Reference

0.5 0.362 0.71 0.13 61
0.34 0.305 0.4 0.041 62
0.299 0.072 0.42 0.0091 30
— 0.0057 — 0.005 27
0.59 1.3 0.62 0.47 63
0.214 0.127 0.28 0.0077 6
0.25 0.96 0.31 0.069 64
0.36 3.47 0.33 0.517 23
0.299 0.072 0.42 0.0091 65
0.25 0.027 — 0.002 66
0.43 0.43 0.62 0.12 67
— 0.00041 — — 68
0.5 0.18 0.15 0025 69
0.443 0.175 0.43 0.042 70
0.59 0.12602 0.31 0.0043 71
0.3 5.6 0.38 0.64 This study

© 2022 The Author(s). Published by the Royal Society of Chemistry
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the EQE spectra are also in good agreement with the JSC values
calculated from the J–V curves.

To contextualize our results, Table 2 gives an overview of
recent advances in the performance of solid-state and
electrolyte-based BPV cells that use active layers of PSI, which
have been steadily improving in photocurrents and photo-
voltages over the past ten years. While there are many factors
that determine the performance of BPV cells (e.g., electrode
materials, surface-to-volume ratio, electrolytes, and immobili-
zation of PSI) the selection of transfer layers is vital because the
energy levels of PSI are xed and the internal level-alignment
both affects device performance and mitigates damage from
internal processes. As can be seen from Table 2, improvements
in one or two of the performance parameters does not translate
into high efficiencies. In this work, the deposition of rGO–Au
onto PSI complexes yields a comparatively good VOC, which is
mainly a function of energy alignment. The PY/PANI interface
facilitates good density and alignment (with respect to the
injection of holes and electrons) of PSI, leading to good JSC. Both
of these factors—transfer layers and alignment—contribute to
FF, which is strongly inuenced by the relative rate of recom-
bination. While neither JSC, VOC nor FF are the highest reported,
the combination of the three lead to an optimized efficiency of h
¼ 0.64 � 0.03, which is the highest reported to date. Ultimately,
h is the most important metric for BPV device performance, as it
captures the efficiency with which photon energy is converted
into electrical energy.

3 Conclusions

The active components of biological light-harvesting systems,
such as PSI, are a naturally abundant and renewable resource
that can be developed into affordable, safe, and efficient solar
cells. But biological light-harvesting converts photon energy
into chemical energy. Finding the right combination of mate-
rials for co-opting these systems to produce electrical energy,
especially in solid-state devices, remains a challenge. Our
results demonstrate that using rGO–Au as an ETL facilitates the
extraction of photo-generated electrons without sacricing
other parts of the power conversion process. This remarkable
enhancement affords PSI-based PV cell with the highest re-
ported power conversion efficiency to date, h ¼ 0.64%. This
work establishes a foundation for utilizing the unique proper-
ties of graphene-based materials decorated with metal nano-
particles in future BPV devices. Further studies will optimize the
electrical interaction between carbon-based materials and PSI
for proper electron transfer and improved photoresponsivity as
well as long-term stability, which is an important step on the
way to potential technological applications.

4 Experimental
4.1 Materials

ITO, L-tyrosine (Sigma-Aldrich, 99%), polyaniline (emerladine
salt, average Mw > 15 000, Sigma-Aldrich), tetrachloroauric(III)
acid (HAuCl4, Sigma-Aldrich, 99.9%wt), L-ascorbic acid (Sigma-
Aldrich, 99%), graphite powder, phosphoric acid (H3PO4),
© 2022 The Author(s). Published by the Royal Society of Chemistry
sulfuric acid (H2SO4), potassium permanganate (KMnO4),
hydrochloric acid (HCl), hydrogen peroxide (H2O2) were
purchased and used as recieved. For all experiments, DIW was
used.

4.2 Extraction and isolation of PSI

PSI was extracted from cyanobacterium Thermosynechococcus
elongatus as described previously.69 Briey, thermophilic
cyanobacterium Thermosynechococcus elongatus BP-1 was grown
in BG11 medium, and then cells were collected by centrifuga-
tion under controlled conditions. Aerward, by re-suspending
cells in a buffer and aer several centrifuge cycles, the thyla-
koid membranes were broken open.72 The puried PSI
complexes were collected by using an anion exchange column
chromatography. Chlorophyll a concentration of the resulting
PSI solution was determined by the methods of Porra73 and
Baba et al.74

4.3 Synthesis of reduced graphene oxide decorated with gold

The preparation of graphene oxide (15mgmL�1) was performed
by Hammers75 method through the oxidation of graphite. The
decoration of rGO by AuNPs was achieved using the procedure
previously described.76 Briey, 0.1 g of GO was dispersed in
100 mL of DI water (1 mg mL�1). To this aqueous solution,
20 mL of ascorbic acid solution (20 mM) was added, and GO
reduced well on amagnetic stirrer at 90 �C for 12 h. Then, 40mL
of aqueous solution of HAuCl4 (1 mg mL�1) was slowly added to
the prepared suspension on a magnetic stirrer. The resulting
mixture was then continually stirred for 24 h under reux
conditions.

4.4 Current–voltage (J–V) characterization

The current–voltage curves of solid-state BPV cells were
measured in the glove box by means of a Keithley 2400 source
meter in the dark and under simulated AM1.5G white light
illumination in an inert atmosphere. The intensity of the white
light was calibrated using a mono-silicon reference cell for one
sunlight intensity of 1000 W m�2. All cells were measured at
room temperature (295 K), and the temperature maintained by
means of a liquid N2 bath. To dene the illuminated cell area,
a black shadow mask with an aperture area was used. Keithley
swept the voltage from 0.5 to�0.2 for the reverse scan and from
�0.2 to 0.5 for the forward scan with a step size of 0.01 V. The
time delay of the Keithley 2400 source meter was 0.01 s and the
total time between the voltage range of �0.2 to 0.5 was 0.71 s.

4.5 External quantum efficiency measurements

For measurements of external quantum efficiency, a home-built
setup was used. The light from a xenon lamp (Newport, oper-
ating power 230 W) was guided through a set of three lter
wheels (Spectral Products, AB304-T) which allowed measure-
ments in the spectral range 400–1400 nm at 20 nm intervals
below 680 nm and 30 nm intervals above 680 nm. Aer the lter
wheels, the light was focused using a lens, passed through an
aperture and a chopper (Stanford Research instruments, 78 Hz),
RSC Adv., 2022, 12, 8783–8791 | 8787
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and then further focused with a series of lenses to obtain a spot
size smaller than the active area of the device. The sample was
held in place in an air-tight sample holder, and the obtained
photocurrent was measured using a lock-in amplier (Stanford
Research Systems, Model SR830 DSP Lock-In Amplier). All
measurements were carried out in a dark room, and prior to
measurement of the device, the photon ux was calibrated
using a set of Newport optical power detectors (Newport Model
818-SL and Model 818-IR).
4.6 UV-Vis absorption

UV-Vis absorption spectra were measured by JENWAY 6715 UV-
Vis spectrophotometer at room temperature between 200 nm
and 800 nm.
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