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Introduction

Metal-free functionalized carbonized cotton for
efficient solar steam generation and wastewater
treatmenty

. L. . P . Mm Mm
Hiran D. Kiriarachchi,? Amr A. Hassan, (2 ° Fathi S. Awad (2 * and M. Samy El-Shall (2@

Water desalination via solar steam generation is one of the most important technologies to address the
increasingly pressing global water scarcity. Materials for solar photothermal energy conversion are highly
sought after for their cost savings, environmental friendliness and broad utility in many applications
including domestic water heating and solar-driven desalination. Herein, we report the successful
development of metal-free, low weight and cost effective functionalized carbonized cotton (CC) fibers for
efficient solar water desalination and wastewater treatment. The CC fibers with nearly full solar spectrum
absorption, efficient photo-thermal conversion and low-cost could provide excellent alternatives to the
high-cost plasmonic-based materials for solar water desalination. We also report on a novel and simple
device to mitigate the issues associated with conductive heat loss by utilizing the economically viable
carbonized cotton materials as an irradiation surface placed on a low-density polyethylene foam that floats
on the surface of seawater. The CC solar steam generation device exhibits average water evaporation rates
of 0.9, 6.4 and 10.9 kg m~2 h~! with impressive solar-to-vapor efficiencies of 59.2, 88.7 and 94.9% under 1,
5 and 8 sun illumination, respectively. Moreover, the device displays excellent durability showing stable
evaporation rates over 10 steam generation cycles under 5 sun of solar intensity. Furthermore, the
applicability of the CC device for the removal of organic dyes from contaminated water through solar
steam generation is also demonstrated. The low-cost, simple design, high solar thermal evaporation
efficiency, excellent stability and long-term durability make this CC device a perfect candidate for
applications in seawater desalination and wastewater treatment by solar steam generation.

Materials used for solar photothermal energy conversion
through heat localization are highly sought after for their cost
savings, clean environmental impact and broad utility in

Seawater desalination via steam generation using sunlight is
one of the most important technologies to address the
increasingly pressing global water scarcity.' Therefore, solar
steam generation has gained significant attention in recent
years due to its important applications in seawater desalina-
tion,**> wastewater treatment,”® domestic water heating and
even autoclave-based disinfection processes.” Due to the
increasing energy demand and the environmental impact of
fossil fuel consumption, it is essential to utilize abundant and
clean renewable energy sources like solar energy in energy-
yielding applications such as seawater desalination.
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providing water heating and/or steam for many applications
including solar-driven desalination. Thus far, various materials
have been utilized in fabricating steam generation devices such
as metals,>*** metal oxides,'®"” metal sulfides,"” plasmonic
metal nanoparticles,”®'*** and carbon-based composites.'>**>
However, bulk metals such as copper and aluminum have
limited utility because of their inflexibility for tailored applica-
tions, high cost and limited availability.>»*'> Most important,
these bulk metals are not very efficient in absorbing the solar
spectrum and they exhibit significant heat loss through heat
dissipation to bulk water. Also, the utility of plasmonic metal
nanoparticles, although efficient, can be economically disad-
vantageous due to the high cost and complicated synthesis and
processing.”®?*** On the contrary, carbon-based materials can
be eco-friendly, low cost and energy efficient due to their low
heat conductivity and most importantly they can absorb light in
a wide wavelength range expanded over visible and near infra-
red (NIR) regions of solar spectrum.>***?*3* Nevertheless,
carbonized materials also possess several drawbacks including
material shedding and poor mechanical properties,
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hydrophobicity with lack of wettability and porosity, and
limited durability.

Herein, we report the successful development of metal-free,
low weight and cost effective functionalized carbonized cotton
(CC) fibers for efficient solar water desalination and wastewater
treatment. We also report on a novel and simple device to
mitigate the issues associated with conductive heat loss by
utilizing the economically viable carbonized cotton materials as
an irradiation surface placed on a low-density polyethylene
foam that floats on the surface of seawater. This unique design
allows the transfer of water by capillary forces through a cotton
stalk to the external CC surface for solar thermal evaporation.
Here, we demonstrate that the CC device can significantly
enhance the conversion efficiency of sunlight into heat and
solve some of the critical issues associated with the use of
carbonized materials in solar steam generation such as material
shedding, conductive heat loss and durability.

Materials and methods
Materials

Commercial cotton, nitric acid (50% w/w), low-density poly-
ethylene foam, methylene blue.

Synthesis of functionalized carbonized cotton (CC)

Commercial cotton fibers were washed with deionized water to
remove impurities followed by drying at 80 °C overnight. The
dried cotton fibers were carbonized at 600 °C for several hours
under an N, atmosphere to obtain the CC materials. To intro-
duce hydrophilicity to the CC fibers, the materials were refluxed
in a 50% HNOj; solution at 80 °C for several hours. The resulting
hydrophilic CC fibers were washed several times with deionized
water followed by drying at 80 °C overnight.

Characterization

Pure cotton and CC fibers were characterized using a Nexus 670
FTIR spectrometer, (4 cm™ " resolution and 32 scans) using
diamond attenuated total reflectance (DATR). The Raman
spectrum of the CC fibers was measured using a Thermo
Scientific DXR SmartRaman spectrometer (532 nm excitation).
Surface structure and morphology of the pure and CC fibers
were characterized using a Hitachi SU-70 FE-SEM scanning
electron microscope (SEM). The optical characterization of the
CC fibers was determined using a diffuse reflectance accessory
attached to a Cary 6000i UV-vis-NIR spectrophotometer (Agilent
Technologies). X-ray photoelectron spectroscopy (XPS)
measurements of the CC fibers were conducted using a PHI
VersaProbe III Scanning XPS Microprobe.

Solar steam generation experiments

A class ABA, Newport Sol2A, 450 W solar simulator was used to
conduct the solar steam generation experiments. The experimental
setup is shown in Fig. S1 (ESIT).”® The solar steam generation rate
of the CC device was measured under solar intensities of 1, 5 and 8
kW m 2. Another device was prepared containing pure cotton
fibers instead of the CC fibers as a control experiment. Solar
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intensities of 5 and 8 kW m™ were obtained using a Fresnel lens
(208.2 mm focal length and 279.4 mm diameter). In a typical steam
generation experiment, the solar steam generation device was
contained in a 100 mL beaker containing around 75 mL of water.
The beaker was placed on a calibrated electronic balance. The
temperatures of the evaporation surface and bulk water were
measured using an IR heat sensor and a thermocouple, respec-
tively. Normalized solar steam generation rates were calculated
based on the weight loss of the water body per unit area of irra-
diation at a corresponding time interval (5 min). Normalized
steam generation data were used to calculate the solar-to-vapor
efficiency of the CC solar steam generation device. All the steam
generation experiments were carried out at room temperature of
20 + 1 °C and relative humidity of ~40%.

Wastewater treatment

To evaluate the applications of the CC steam generation device
in wastewater treatment, a 10 ppm methylene blue solution was
used as a model pollutant. The steam generation experiment
was carried out for the dye solution instead of deionized water
under a solar intensity of 5 kW m ™2 and the resulting steam was
condensed and analyzed using an HP-8453 UV-visible
spectrophotometer.

Recycling study of the CC solar steam generation device

To evaluate the recyclability of the CC solar steam generation
device, solar steam generation experiments were carried out for
10 cycles using a light density of 5 kW m™>. Each cycle was
carried out for 30 minutes and the device was cooled down to
room temperature after each cycle by flushing cold DI water
through the device.

Results and discussion

Fig. 1 displays the FT-IR spectra of the pure cotton and the CC
fibers. The peak around 3325 cm ™' is attributed to the hydroxyl
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Fig. 1 FT-IR spectra of pure cotton and acid treated carbonized
cotton (CC).
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functional groups, which are present in abundance in pristine
cotton fibers. Peaks at 2900, 1426 and 1054 cm ™! are ascribed to
C-H stretching, CH, asymmetric bending and C-O stretching
vibrations, respectively.’® After the cotton is carbonized at
600 °C, most of the hydroxyl functional groups are removed and
the resulting black carbonaceous fibers are hydrophobic due to
the absence of polar functional groups. Since the hydrophobic
CC cannot transport water to the evaporation surface, an acid
treatment was performed to introduce oxygen functional groups
such as hydroxyl and carboxylic groups to make the material
partially hydrophilic. The peak for O-H stretching frequency of
the acid-treated CC is not prominent and most likely overlapped
with the C-H stretching peak. However, a broad peak ranging
from 1000-1500 cm ™" is clearly visible which can be ascribed to
overlapped peaks of C-H bending and C-O stretching
frequencies.

XPS spectra were measured to evaluate the extent of oxida-
tion in the CC fibers after the acid treatment. Fig. 2 displays the
XPS data of the CC fibers before and after the acid treatment.
After the acid treatment, an increase in the atomic percentage of
oxygen is observed due to the addition of hydroxyl and
carboxylic functional groups. Fig. 2(A) represents the XPS survey
spectra of the CC fibers before and after acid treatment. The two
peaks at 285.0 eV and 532.0 eV correspond to the C 1s and O 1s
photoelectrons, respectively. An Auger peak is visible around
970 eV, which is responsible for the transition from L to K shell
of oxygen, and is denoted as O KLL in the survey scan. The
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atomic percentage of oxygen before and after the acid treatment
was calculated based on the peak area of the C 1s and O 1s
peaks. Oxygen atomic percentage was found to increase from
6.3% to 24.8% after refluxing in 50% HNO; for one hour. High-
resolution XPS spectra of the C 1s photoelectrons before and
after the oxidation are displayed in Fig. 2(A) and (B), respec-
tively. The dominant peak at 284.8 eV corresponds to C-C bond
(diamond and graphitic type). A small amount of ethereal
carbon (C-O and O-C-O) was also observed even before the acid
treatment, which is probably coming from adventitious carbon
deposited on the surface. After the acid treatment, a significant
increase can be seen in peaks corresponding to C=0 and
0O-C=0 bonds (~287 eV and ~289 eV, respectively) due to the
addition of carbonyl and carboxylic functional groups.***” The
addition of these polar functional groups effectively enhance
the hydrophilicity of the CC fibers, which is vital in designing an
efficient solar steam generation device.

SEM images of the pure cotton and the CC fibers are shown
in Fig. 3. As shown in Fig. 3(A) and (B), the average diameter of
pristine cotton (PC) fiber can range from 15 to 20 um. However,
after carbonization at 600 °C for 1 hour, the average diameter of
the fiber decreased by about 50% due to the release of H,O, CO
and CO, during the carbonization process® (the weight of the
cotton fiber also decreased by ~70% after carbonization). Also,
during the heat treatment, most of the cotton fibers were
cracked and opened probably due to the pressure build up from
the evolved gases (Fig. 3(D)).
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(A) XPS survey spectra of CC before and after acid treatment. C 1s photoelectron spectrum of CC before (B) and after (C) acid treatment.
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Fig. 3 SEM images of pristine cotton fibers ((A) and (B)) and carbonized cotton fibers ((C) and (D)).

The Raman spectrum of the carbonized cotton fibers is dis-
played in Fig. 4. The two peaks in the spectrum at 1350 cm™*
and 1590 cm ' are assigned to the D and G bands, respec-
tively.*>*> The prominent G band ascertains that after carbon-
ization at a higher temperature in an inert atmosphere (N,), the
cellulosic fibers were converted into sp> hybridized graphitic
carbon.

Fig. 5 displays the reflectance and absorption spectra of the
CC fibers. The low percentage reflectance in Fig. 5(A) is ascribed
to the ultra-black color of the fibers. The absorption spectrum
(Fig. 5 (B)) shows a broad profile with a percentage absorbance
above 70% in the entire visible range of the solar spectrum,

Intensity (AU)
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: -1
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Fig. 4 Raman spectrum of carbonized cotton (CC) fibers.
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which is one of the key reasons to use carbonized materials as
efficient photothermal energy converters.**** The drop in the
percentage absorbance by ~15% in the infrared region does not
have a significant impact on the absorption of the CC fibers
since the solar irradiance in the region after 800 nm is below
~0.6 Wm > nm™ "

The CC fibers with nearly full solar spectrum absorption,
efficient photo-thermal conversion and low-cost could
provide excellent alternatives to the high-cost plasmonic-
based materials for solar water desalination.”®2%** However,
because of the significant heat loss due to the large heat
capacity of water, porous CC fibers that float on the surface of
water are desired for efficient steam generation. To achieve
this goal, we designed a new device to mount the CC fibers on
low-density polymer foams to facilitate the buoyancy and
floating capability of the fibers."*****»** In addition to buoy-
ancy, the low thermal conductivity of the polymer foams helps
to efficiently localize the heat within the fibers and minimize
the conductive heat loss. However, during the long-term
steam generation process, the CC solar absorber and the
polymer foam support can eventually start dissipating heat
into bulk water due to the heat buildup. One way to address
this issue is to reduce the contact surface area between bulk
water and the CC solar absorber. Therefore, our design
strategy involves elevating the CC irradiation surface above
the evaporating water surface and providing a continuous
flow of water to the CC solar absorber. This strategy is based
on the natural mushroom design demonstrated recently to
successfully minimize the conductive heat loss in solar
desalination.*

© 2022 The Author(s). Published by the Royal Society of Chemistry


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d1ra08438k

Open Access Article. Published on 05 January 2022. Downloaded on 1/21/2026 6:19:54 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Paper
(A)

1004 100
L 80 X 80
o @

8 o
S 604 @ 60
- 0
[&] o
g 2
© 404 o] 40
o <
G :
5 20-/\/,,—————// S 20
o o
0 0

200 400 600 800 1000 1200 1400
Wavelength (nm)

View Article Online

RSC Advances

B
o)
14 o
—— -1.2 g_‘.
1.0 &
- o
Lo8 3
o
i L0.6 g
0.4 3
1 ‘ o
‘ ’ L02
‘ 3
| (T \‘ ‘ ‘ 0.0 v_'.

500 750 1000 1250 1500 1750
Wavelength (nm)

Fig. 5 Optical properties of the CC fibers. (A) Reflectance spectrum of CC and (B) Absorbance spectrum of CC in comparison with the solar

irradiance.

To improve the durability and minimize the conductive heat
loss to bulk water, the CC solar steam generation device is
assembled according to the schematic representation shown in
Fig. 6. In this design, the irradiation surface consists of a bilayer
of functionalized carbonized cotton and pristine cotton fibers
placed on a frame of low-density polyethylene foam. To feed
water to the irradiation surface, a stalk made of pristine cotton
fibers is utilized. The new design helps to solve some of the
critical issues associated with the use of carbonized materials in
solar steam generation such as material's shedding, conductive
heat loss, and durability.>**

To evaluate the performance of the CC solar steam genera-
tion device, the steam generation rates were measured at
different solar intensities of 1 kW m ™2 (1 sun), 5 kW m ™ (5 sun)
and 8 kW m ™ (8 sun). The solar steam generation rate of the CC
device was compared with a similar device using pristine cotton
(PC) fibers as a solar absorber instead of the CC fibers and also
with the steam rate of pure DI water in the absence of any solar
absorber. The results presented in Fig. 7(A) and (B) show the

normalized steam generation rates of the CC, PC and DI water
samples at solar illumination of 1 sun and 8 sun, respectively
(the results obtained at 5 sun are shown in Fig. S2, ESI{). It is
clear that the CC device exhibits significantly higher evapora-
tion rates compared to the PC device at both solar intensities of
1 and 8 sun as shown in Fig. 7(A) and (B), respectively. The solar
evaporation rates of the CC device are 0.9, 6.4 and 10.9 kg m >
h™" at solar illumination intensities of 1, 5 and 8 sun, respec-
tively. For comparison, the rates of the PC device are 0.4, 1.7 and
2.4 kg m> h™" at the solar intensities of 1, 5 and 8 sun,
respectively. Therefore, the solar evaporation rate of the CC
device at 8 sun is almost 5 times higher than that of the PC
devise mainly due to the high solar absorption of the CC fibers
as compared to the white color PC fibers which reflect solar light
efficiently. In spite of the lack of solar absorption, the steam
generation rate of the PC fibers is higher than that of DI water
since the hydrophilic fibrous structure enhances water surface
evaporation.

Carbonized cotton layer
Pure cotton layer

Polyethylene foam block

Pure cotton stalk

Fig. 6 Schematic representation of the CC solar steam generation device.

© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig.7 Solar steam generation data for carbonized cotton (CC), pristine cotton (PC) and DI water at solar intensities of (A) 1 kW m™2 (1 sun) and (B)
8 kW m~2 (8 sun). (C) The solar-to-vapor evaporation efficiency of CC, PC and DI water at 1, 5 and 8 sun solar illuminations. (D) Surface

temperature profiles of CC, PC and DI water at 8 sun solar illumination.

The solar-to-vapor efficiency is calculated based on the
equation ny = mhyy/Copeg; Where 7y is the thermal efficiency,
i is the mass fluxin g m™2 h™", Ay is the total enthalpy for the
phase change from liquid to vapor in J, C,p is the optical
concentration (number of suns) and ¢; is the nominal solar
intensity defined as 1 kW m™2.23%% Ag shown in Fig. 7(C), the
calculated solar-to-vapor efficiencies of the CC device are 59.2,
88.7 and 94.9% at solar intensities of 1, 5 and 8 sun, respec-
tively. The calculated efficiency at 8 sun is among the highest
values reported for photothermal energy conversion materials

used for solar water desalination as demonstrated by the date
displayed in Table 1.

The surface temperature profiles of the CC and PC devices and
DI water during the operation at 8 sun of solar intensity are
plotted in Fig. 7(D). For the CC device, the surface temperature
increased from room temperature to 80 °C within 5 min a steady
state of ~85 °C is reached after 15 min. However, the surface
temperature of the PC device only reached 51 °C after 5 min and
its equilibrium temperature was only ~57 °C. Due to the special
design of the CC device, the heat loss to bulk water is greatly

Table 1 Solar water evaporation rates and efficiencies of various photothermal conversion materials reported in literature

Number of Evaporation Evaporation rate
Photo thermal conversion materials suns efficiency (%) (kgm>h™) References
Functionalized carbonized cotton (CC) fibers 1 59.2% 0.9 This work

5 88.7% 6.4

8 94.9% 10.9
rGO-MCE 1 60.0 — 46
P-wood 10 85% 11.8 34
C foam-graphite 10 85% — 23
Natural wood with artificial channel-array 1 75.1% 1.04 47
CNT-modified flexible wood 10 81.0% 11.22 48
Plasmonic wood 10 85.0% 11.8 34
BNC-RGO 10 83.0% 11.8 49
rGO-PU 10 81.0% 11.24 31
Au/Ag-PFC fibers 8 94.3% 11.3 8
Graphene oxide-wood 12 82.8% 10.08 50
PDMS-wood 6 78.0 6.4 51
Graphite-wood 10 89.0% 12.31 52
Au/Ag-PGPU foams 8 96.5% 11.34 7

1048 | RSC Adv, 2022, 12, 1043-1050
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Fig. 8 (A) UV-Vis spectra of 10 ppm MB dye solution and condensed steam sample (a photograph of the steam collection setup is shown in the

inset). (B) Recyclability test of the CC device during 10 cycles of constant solar irradiation under the solar intensity of 5 sun.

minimized. At all solar intensities, the temperature increment
in bulk water was less than 1 °C. Conduction heat loss is
considered one of the main contributors to energy loss in solar
steam generation devices. Conduction heat loss can be quan-
tified using Fourier's law where the conductive heat flux j is
given by j = k AT/L where « is the thermal conductivity of the
cotton stalk (0.026 W m~' K™') and AT/L is the temperature
gradient across the cotton stalk. In our CC device, the pure
cotton stalk was about 5 cm in length and 0.8 cm in diameter.
Therefore, the calculated conductive heat flux is around 6.3 W
m~ 2, which is about 0.6% heat loss at 1 sun and even lower at 8
sun (~0.4%).>* Moreover, the frame of the CC solar steam
generation device is made of polyethylene foam which has
a low thermal conductivity (~0.04 W m~" K~ ')** and therefore,
it helps to confine the heat within the irradiation area of the
CC fibers. The percentage conductive heat loss of the CC
device (~0.4-0.6%) is significantly lower than the 2.2%
calculated for the plasmonic functionalized cotton fibers
where the irradiation area was in direct contact with bulk
water.”® Thus, it is palpable that the novel low-cost design of
the CC solar steam generation device effectively reduces the
heat loss to bulk water.

Another application of the CC device is to extract pure water
from contaminated and wastewater. Fig. 8(A) displays the UV-
Vis spectra of the 10 ppm methylene blue (MB) dye solution
and the condensed water of the steam generated from the dye
solution under solar irradiation at 5 sun using the CC device. As
expected, a complete removal of the dye from the condensed
steam is confirmed.

Fig. 8(B) displays the recyclability data of the CC device during
10 steam generation cycles under the solar intensity of 5 sun. The
average normalized steam generation rate after 10 cycles is 3.2 &
0.03 kg m~> which demonstrates the excellent stability and
reusability of the CC fibers for solar steam generation.

Conclusions

In conclusion, we designed and developed metal-free, low weight
and cost effective functionalized carbonized cotton (CC) fibers for

© 2022 The Author(s). Published by the Royal Society of Chemistry

efficient solar water desalination and wastewater treatment. The
CC fibers with nearly full solar spectrum absorption, efficient
photo-thermal conversion and low-cost could provide excellent
alternatives to the high-cost plasmonic-based materials for solar
water desalination. The CC fibers are used as an irradiation
surface placed on a low-density and low thermal conductivity
polyethylene foam that floats on the surface of seawater, which
helps to efficiently localize the heat within the fibers and mini-
mize the conductive heat loss.

The CC solar steam generation device exhibits average
water evaporation rates of 0.9, 6.4 and 10.9 kg m > h™' with
impressive solar-to-vapor efficiencies of 59.2, 88.7 and 94.9%
under 1, 5 and 8 sun illumination, respectively. Moreover, the
device displays excellent durability showing stable evapora-
tion rates over 10 steam generation cycles under 5 sun of solar
intensity. Furthermore, the applicability of the CC device for
the removal of organic dyes from contaminated water through
the solar steam generation is also demonstrated. The low-
cost, simple design, high solar thermal evaporation effi-
ciency, excellent stability and long-time durability make this
CC device a perfect candidate for applications in seawater
desalination and wastewater treatment by solar-steam
generation.
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