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A peanut-like hollow silica (denoted as p-1-hSiO,) adsorbent is prepared in a facile method, which is
composed of several silica nanospheres and has an average diameter of 22 nm, with thickness of 5 nm.

Ilts Brunauer—Emmett—Teller (BET) surface area, pore volume and pore size are 258.9 m? gfl, 1.56 cm®

) 4 15th N ber 2001 g~ and 3.9 nm, respectively. Then the afforded p-1-hSiO,/GSH adsorbent is applied to purify glutathione
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exhibits a specific adsorption, a high binding capacity (6.80 mg g™, good recycling performance and

DOI: 10.1039/d1ra083629 high recovery (90.1%) to the target proteins, showing promising potential for the affinity separation of
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Introduction

The separation and purification of proteins is an important
topic in the field of proteomics.’” Traditional protein isolation
and purification methods are usually highly selective for the
target protein, however, these methods require multi-step
processes such as precipitation, dialysis, filtration, and chro-
matography.®® These processes are complex, time-consuming,
and costly to process. With the development of biology,
proteins can be expressed with certain tags, so that proteins can
be specifically separated and purified by this tag.®™* Glutathione
S-transferases (GST) are a multigene family of detoxification
enzymes that protect the body against chemical carcinogenesis
as well as a family of multifunctional dimeric proteins that can
conjugate reduced glutathione with a wide range of electro-
philic substrates. Therefore, it is significant to separate and
purify GST-tagged proteins for molecular immunology as well as
structural, biochemical and cell biological studies.

Affinity chromatography is currently available for the sepa-
ration and purification of GST-tagged proteins.'*® However,
this method needs pretreatment and requires long operation
time as well as good solubility of the proteins, which limits its
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application in engineering. These drawbacks, fortunately, can
be overcome by applying nanomaterials to assist the affinity
separation of the target proteins."*? For example, bio-
functionalized silica nanospheres (NSs) can be employed to
realize specific separation of GST,”* and several iron oxide
nanoparticles can be applied to well separate His-tagged
proteins.* The separation efficiency of these inorganic nano-
particles (NPs) towards the proteins, unfortunately, is degraded
by their limited surface area and low -GSH group density.

To break the bottleneck, we draw special attention to silica
hollow nanospheres, because they may have much larger
specific surface area and can greatly increase separation effi-
ciency towards the target proteins than conventional silica
NPs.”® In this research, therefore, we prepare peanut-like
glutathione-functionalized silica hollow NSs (denoted as p-l-
hSiO, adsorbent), which are composed of several hollow silica
NSs by doped Sn bridge. The prepared p-1-hSiO, adsorbent has
a bigger BET surface aera. Then the GSH group can be modified
on the surface of the adsorbent. Finally, GST-tagged proteins
were purified from E. coli lysate with the prepared p-l-hSiO,
adsorbent with a high capacity.

Results and discussion

Fig. 1a and b shows the SEM and TEM images of the synthesized
samples. It can be seen that the prepared sample is hollow
spheres, which is about 22 nm in size (Fig. 1a and b). Interest-
ingly, when SnO, QDs is added in the solution, the gotten p-l-
hSiO, sample is of a peanut-like shape and consisted of several
silica hollow nanospheres with an average diameter of 20 nm
and thickness of 5 nm (Fig. 1c and d). Meanwhile, the p-1-hSiO,—
GSH sample shows the same peanut-like shape (Fig. 1e and f),
meaning there is little effect on the morphology of the sample.
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Fig. 1 SEM (a, c and e) and TEM (b, d and f) images of prepared
samples. (a and b) Hollow silica without SnO,; (c and d) p-1-hSiO,; (e
and f) p-1-hSiO,—SH.

Fig. 2a and c display the nitrogen adsorption-desorption
isotherms of the prepared hollow SiO, and p-1-hSiO, samples.
From Fig. 2a, it can be seen that the BET surface area, pore
volume and pore size are 122.5 m> g ', 0.27 cm® g ', and
1.5 nm, respectively. Compared with hollow SiO,, the gotten p-1-
hSiO, sample has a bigger BET surface area (258.9 m*> ¢~ ') and
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Fig. 2 The pore size distribution and isotherms of the hollow SiO, (a
and b) and p-1-hSiO, (c and d) adsorbent.
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pore size (3.9 nm). Fig. 2b and d displays the pore size distri-
bution of the prepared hollow SiO, and p-1-hSiO, samples. It
can be seen that both the hollow SiO, and p-I-hSiO, have typical
type IV adsorption isotherm with a distinct hysteresis loop.*”

Fig. 3a gives the XRD pattern of the synthesized hollow SiO,
and p-l-hSiO, adsorbent. It can be seen that the XRD pattern
exhibits an obvious broad diffraction peak around 23°, which is
indexed to the scattering of amorphous SiO, (JCPDS 76-0933).
Interestingly, the gotten p-l-hSiO, adsorbent presents multiple
diffraction peaks and a broad back peak. The broad back peak
around 23° is assigned to amorphous silica (JCPDS card no. 76-
0933); the characteristic peak at 2 theta = 15.0° (001), 28.2°
(100), 32.1° (101) and 41.9° (102) are consistent with the stan-
dard XRD data of Berndtite-2T SnS, (JCPDS card no. 23-0677).>
This could be because the solubility of SnS, (ksp(SnS,) = 10) is
smaller than that of SnO, (ksp(SnO,) = 398) and SnO, QDs can
easily react with —-SH group to form -S-Sn-S structure. As
aresult, several SiO,-SH NSs are connected into peanut-like NSs
with the assistance of the Sn—-S bond, and the silica NSs changed
to peanut-like NSs.

Fig. 4 presents the element composition of the p-1-hSiO,
adsorbent determined by EDS analysis. It can be seen that it is
made of Si, O, C, S and Sn elements and exhibits a S : Sn atomic
ratio of about 86 : 1. According to the results of XRD, it can be
seen that there is the characteristic peaks of SnS,, indicating the
atomic ratio of S:Sn should be 2: 1. However, the S: Sn is
86 : 1 from EDS analysis, more than that in SnS,. It may be some
of -SH groups have not react with SnO,, which indicates that
there exists -S-Sn-S and -SH species. And this result is
consistent with that of XRD analysis.

Fig. 5 schematically illustrates the formation of p-l1-hSiO,
adsorbent and their application in separating GST-tagged
proteins. Firstly, the p-1-hSiO,-SH NSs is synthesized by one-
pot method. Then the prepared p-1-hSiO,-SH NSs are modi-
fied with GSH molecule to afford p--hSiO,-GSH NSs. Lastly, the
p-1-hSiO,-GSH NSs are used to separate the GST-tagged proteins
from the E. coli lysate. In particular, the prepared p-l1-hSiO,
adsorbent can be purified the target proteins for several times.

Fig. 6 shows the SDS-PAGE of the GST-tagged GPX3 sepa-
rated by p-I-hSiO, adsorbent from E. coli lysate without
pretreatment. It can be seen that the prepared p-l-hSiO,
adsorbent can separate specifically GST-tagged GPX3 (lane 1 in
Fig. 6), and their binding capacity to the target proteins is
6.80 mg g~ !, which is higher than that of the report in ref. 29

Intensity / a.u.

10 20 30 40 S0 60 70 80 90 0 % 0 40 50 8 70 80 %
2 theta / degree 2theta / degree

Fig. 3 XRD images of the synthesized the hollow SiO, (a) and p-l-
hSiO, (b) adsorbent.
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Fig. 4 EDS analysis of the p-1-hSiO, adsorbent.

indicates the good specificity and separation efficiency. In order
to investigate the reused properties of the prepared p-1-hSiO,
adsorbent, we separated GST-tagged GPX3 for three times by the
same p-1-hSiO, adsorbent. As shown in Fig. 6 lane 2-4, the
adsorbent exhibits specific selectivity to the target proteins
extracted from E. coli lysate in three times reuse, and their
binding capacity of GST-tagged GPX3 is 6.8 mg g ', 6.4 mg g "
and 6.4 mg g ', respectively. Meanwhile, the content of GST-
tagged GPX3 in 1 mL E. coli lysate is about 0.497 mg, and the
content of target protein separated by p-1-hSiO, adsorbent from
1 mL E. coli lysate is about 0.448 mg, so the recovery of the target
protein is about 90.1%. This indicates that the prepared p-l-
hSiO, adsorbent can be well recycled after separating the GST-
tagged GPX3.

Equilibrium studies are performed to determine the capacity
and equilibrium constant of GST-tagged GPX3 protein adsorbed
on p-1-hSiO, nanostructures. Langmuir model and Freundlich
model are employed to show the adsorption relationship. The
Langmuir (1) and Freundlich (2) equations are given.

View Article Online
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Fig. 6 The standard SDS-PAGE of the proteins separated by p-1-hSiO,
adsorbent. Lane 1, GST-tagged GPX3 separated by prepared p-1-hSiO,
adsorbent; lane 2-4, separation after three reuse of p-1-hSiO,
adsorbent: lane 2: 1st separation, lane 3, 2nd separation, lane 4, 3rd
separation; lane 5, Marker; lane 6, E. coli lysate.
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where C. (mg mL™") is the equilibrium concentration of GST-
tagged GPX3 protein in E. coli lysate; Q. (mg g ') is the
adsorption capacity of GST-tagged GPX3 protein per gram of p-1-
hSiO,, and Q,, (mg g~ ') was the maximum adsorption capacity
of p-1-hSiO,; b (L mg™ ") was the Langmuir constant, k (mg g~ )
was the Freundlich isothermal constant, and 1/n was the degree
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Fig. 5 Mechanism diagram of synthesis of p-1-hSiO, adsorbent and separation of GST-tagged protein.
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of nonlinearity between protein concentration and adsorption
capacity.®

Fig. 7 shows the plots of Langmuir (a) and Freundlich (b)
isotherms. As can be seen from Fig. 7a, the regression coeffi-
cient of Langmuir model (R> = 0.99) is higher than that of
Freundlich model (R*> = 0.10), the Langmuir model is more
suitable for the interpretation of experimental data. Meanwhile,
the Q. from Langmuir model was recorded as 6.73 mg g ',
which is consistent with the results of adsorption experiment
(6.8 mg g~ '). The results showed that p-I-hSiO, adsorption
exhibited a good separation ability for GST-tagged GPX3.

Kinetic studies are usually employed to analyze the adsorp-
tion time required for reaction equilibrium. There are two
kinetic models: pseudo 1st (3) and pseudo 2nd (4) models, and
the kinetic equations are as follows:

In(Qe — Q) = —kit +1n Q. (3)

1
ik (@)
where Q. (mg g~ ') and Q, (mg g ') are the amounts of GST-
tagged GPX3 protein adsorbed per gram of p-l-hSiO, at equi-
librium state and at time ¢, respectively. k, (min~") and &, (g (mg
min)™") are the rate constants of pseudo 1st and 2nd models
respectively.®*

Fig. 8a and b are kinetic analysis of GST-tagged GPX3
adsorbed by p-1-hSiO, adsorbent. The R* from the pseudo 1st
was 0.95, while that from the pseudo 2nd was R> = 0.99, which
indicates that the adsorption data is in better agreement with
the pseudo 2nd kinetic model. At the same time, the Q. value of
6.66 mg g~ ! calculated by the pseudo 2nd model is consistent
with the experimental Q. value of 6.80 mg g~ '. This indicates
that synthesized p-1-hSiO, adsorbent can be a promising
regenerated adsorbent for GST-tagged proteins.

t
I/Qt_ QJF

Experimental
Materials

3-Mercaptopropyltrimethoxysilane (MPS) was purchased from
Alfa-Aesar (USA, AR, 95.0%). Tetraethyl orthosilicate (TEOS) was
commercially obtained from Tianjin Fuchen Chemicals (Tian-
jin, China, AR, 98.0%). Hexadecyltrimethylammonium chloride
(CTAC) was purchased from Sinopharm Chemicals (Beijing,
China, AR, 99.0%).
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Fig.7 The Langmuir model (a) and Freundlich model (b), of p-1-hSiO,
adsorbent on GST-tagged GPX3.
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Fig. 8 The pseudo 1st (a) and pseudo 2nd (b) of p-1-hSiO, adsorbent
on GST-tagged GPX3.

Synthesis of the p-1-hSiO, adsorbent

SnO, quantum dots (QDs) are prepared by a hydrothermal
process.** Briefly, 0.2 pmol SnO, QDs, 0.09 g CTAC, 7.0 mL
ethanol, and 2.75 mL TEA are sequentially dispersed in 42.5 mL
H,O. The resultant solution is heated to 60 °C with a water bath,
followed by the slow addition of 3.5 mL TEOS and 0.35 mL MPS.
The mixed solution is kept at 60 °C for 5 h and then transferred
into a Teflon-lined stainless-steel autoclave and heated at
110 °C for 48 h. Upon completion of heating, the solution is
cooled, filtered and washed to obtain the p-1-hSiO,-SH NSs.
Then 6 mL p--hSiO,~SH NSs (0.59 g mL ') are washed with PBS
(0.01 mol L; pH = 7.4) for several times. The washed p-1-hSiO,-
SH NPs are placed in 30 mL GSH solution (16.0 mg mL™"), and
the resultant mixed solution is oscillated at 37 °C for 24 h (120
rpm). Upon completion of oscillation, the mixed solution is
centrifuged and washed to afford p-1-hSiO, adsorbent.

Affinity separation of GST-tagged proteins

The mixed proteins are collected from E. coli lysate. Then 160 pL
p-1-hSiO, adsorbent (0.07 g mL™") is washed with PBS and then
directly introduces into 1.0 mL of cell lysate mixture. The mixed
solution is incubated for 2 h at 4 °C to allow the p-1-hSiO,
adsorbent to capture the GST-tagged glutathione peroxidase 3
(GST-tagged GPX3). Subsequently, the captured GST-tagged
proteins are eluted with 300 pL GSH solution (50 mmol L)
to disassociate the GST-tagged proteins from the surfaces of p-1-
hSiO, adsorbent. The p-1-hSiO, adsorbent can be reused for
several times if desired.

Adsorption thermodynamics and adsorption kinetics

Then the adsorption thermodynamics and adsorption kinetics
of p-I-hSiO, adsorbent on GST-tagged GPX3 are studied. Briefly,
different amounts (0.01 g, 0.015 g, 0.02 g, 0.025 g, 0.03 g, 0.035 &
and 0.04 g) of p-1-hSiO, are added into 1.5 mL E. coli lysate by
incubated at 4 °C for 2 h. Subsequently, the p--hSiO, samples
captured GST-tagged GPX3 adre washed six times by PBS
(0.01 M, pH 7.4). After washing, these precipitates are eluted by
100 pL glutathione (50 mM), and the concentration of gotten
proteins in supernatant are analyzed by an ultraviolet-visible
light spectrophotometer at 280 nm.

In order to further study the kinetics of p-1-hSiO, adsorption
on GST-tagged GPX3, ten p-l1-hSiO, samples are weighed in
parallel (0.02 g each). Then 1.5 mL of E. coli lysate are added into

© 2022 The Author(s). Published by the Royal Society of Chemistry
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these ten p-1-hSiO, samples, respectively, and incubated at 4 °C
at different time intervals (5, 10, 15, 20, 25, 30, 35, 40 and 60
min). After centrifugation, these precipitates are washed by PBS
(0.01 M, pH 7.4) and eluted by 100 pL glutathione (50 mM). And
the concentration of gotten GST-tagged GPX3 proteins in
supernatant are analyzed by the ultraviolet-visible light spec-
trophotometer at 280 nm.

Characterization

The morphology and composition of the p-1-hSiO, adsorbent is
analyzed by scanning electron microscopy (SEM, JSM 5600LV,
Japan), X-ray diffraction (XRD, X' Pert, Holland), energy
dispersive spectrometric (EDS, JSM 5600LV, Japan) and trans-
mission electron microscopy (TEM, JEM-2010, Japan). The
surface area is measured by the Brunauer-Emmett-Teller
method (BET, QUADRASORB, American). Moreover, the sepa-
rated GST-tagged proteins are detected by sodium dode-
cylsulfate polyacrylamide gel electrophoresis (SDS-PAGE, Power
PAC 300; China), and the binding concentration of the proteins
is determined with an ultraviolet-visible light spectrophotom-
eter at 280 nm (Nanodrop 2000c; USA).

Conclusions

Peanut-like silica hollow NSs functionalized by thiol group are
prepared by a facile hydrothermal route. The resultant SiO,-SH
NSs are further modified by GSH to afford p-l-hSiO, adsorbent
for the affinity separation of GST-tagged proteins. They exhibit
specific adsorption, high binding capacity, and good reused
performance, which makes it possible to apply them to the
visual separation and purification of GST-tagged proteins.
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