



Cite this: *RSC Adv.*, 2022, **12**, 14562

Received 8th November 2021  
 Accepted 6th May 2022

DOI: 10.1039/d1ra08183g  
[rsc.li/rsc-advances](http://rsc.li/rsc-advances)

## Solvothermal synthesis of $\text{CeO}_2\text{--ZrO}_2\text{--M}_2\text{O}_3$ ( $\text{M} = \text{La, Y, Bi}$ ) mixed oxide and their soot oxidation activity

Dong Zhang 

$\text{CeO}_2\text{--ZrO}_2\text{--M}_2\text{O}_3$  ( $\text{M} = \text{La, Y, Bi}$ ) mixed oxide has been prepared by a solvothermal synthesis method. The physico-chemical properties of the mixed oxide have been studied by X-ray powder diffraction (XRD), Raman spectroscopy, BET, X-ray photoelectron spectroscopy (XPS), TEM and temperature-programmed reduction (TPR), and the catalytic activity for soot oxidation has been studied by thermogravimetry (TG).  $\text{La}^{3+}$ ,  $\text{Y}^{3+}$  and  $\text{Bi}^{3+}$  exhibit positive effects on lowering the oxidation temperature of the soot. The XRD and Raman results showed formation of mixed oxides and TEM images suggested the nanosized nature of the particles. The benefit of yttrium or lanthana doping on the catalytic activity of ceria can be related to active oxygen formation provoked by the defective structure of ceria due to the presence of  $\text{La}^{3+}$  and  $\text{Y}^{3+}$ . The benefit of  $\text{Bi}^{3+}$  doping on catalytic activity can be related to the reduction at low temperature both with  $\text{Bi}_2\text{O}_3$  and ceria.

### 1. Introduction

Particulate matter (PM) is one of the most serious pollutants emitted from diesel engines. It causes environmental problems as well as acute health problems in human beings.<sup>1,2</sup> In recent years, strict regulations on particulate matter emissions have been established in many countries.<sup>3–5</sup> It is an urgent task to clean PM from the diesel exhaust before it enters the air. In diesel particulate filters (DPFs), the trapped soot is oxidized by a catalyst that is coated on the DPF. As for the oxidation catalyst for soot combustion, the intrinsic redox properties of catalysts play an important role in getting high catalytic capabilities.<sup>6</sup> Among the various kinds of oxidation catalysts, multi-component oxides, such as perovskite oxides,<sup>7,8</sup> supported noble metals,<sup>9</sup> and ceria-based mixed oxides,<sup>10–16</sup> exhibit relatively high capabilities for soot combustion because of the good redox properties, oxygen storage releasing capacity and thermal stability.

It has been reported that the  $\text{CeO}_2$ -based catalysts work for soot oxidation by attempting to utilize active oxygen on the surface of  $\text{CeO}_2$ .<sup>17</sup> However,  $\text{CeO}_2$  has a poor thermal stability. Zirconium oxides are sometimes added to the catalysts to increase the surface area, thermal stability, and oxygen storage capacity (OSC) of ceria, resulting in superior catalytic properties.<sup>18</sup> So far, considerable progress has been achieved in the synthesis of  $\text{CeO}_2\text{--ZrO}_2$  mixed oxide. Although these properties have been improved by the  $\text{ZrO}_2$  addition, the lowest reduction temperature and the highest degree of reducibility are not enough to meet the regulations of the automotive exhaust gases. Up to now, many reports display the effect of trivalent

dopants such as yttria, lanthana and  $\text{Bi}_2\text{O}_3$  on the redox behavior of the  $\text{CeO}_2\text{--ZrO}_2$  materials.<sup>19–27</sup> Bueno-Lopez *et al.* prepared  $\text{La}^{3+}$  doped  $\text{CeO}_2$  catalysts with much better catalytic activity which is due to the increase of BET surface area and enhanced redox properties.<sup>19</sup> Chen Yaoqiang *et al.* showed that  $\text{Y}^{3+}$  added into  $\text{CeO}_2\text{--ZrO}_2$  with high oxygen storage capacity and large surface area.<sup>20</sup> K. Minami *et al.* prepared  $\text{CeO}_2\text{--ZrO}_2\text{--Bi}_2\text{O}_3$  solid solution which can release and store oxygen efficiently at lower temperatures (337 °C) because of the formation of oxygen vacancies to enhance the oxide anion mobility by substituting  $\text{Ce}^{4+}$  site with  $\text{Bi}^{3+}$ .<sup>21</sup> Krishna *et al.* showed that  $T_m$  of  $\text{Ce}_{0.9}\text{Pr}_{0.1}\text{O}_x$  is 419 °C.<sup>23</sup>

In this paper, Ceria was synthesized by a solvothermal synthesis method and subjected to thermal treatments at high temperature. The goal of the current study was to evaluate the catalytic efficiency of  $\text{CeO}_2\text{--ZrO}_2\text{--La}_2\text{O}_3$ ,  $\text{CeO}_2\text{--ZrO}_2\text{--Y}_2\text{O}_3$  and  $\text{CeO}_2\text{--ZrO}_2\text{--Bi}_2\text{O}_3$  mixed oxide regarding soot oxidation and correlate this with the surface and structural properties of the catalysts. The synthesis nano-oxides were evaluated by using X-ray diffraction (XRD), transmission electron microscopy (TEM), BET surface area, X-ray photoelectron spectroscopy (XPS), Raman spectroscopy and temperature programmed reduction (TPR) techniques. The catalytic efficiency was evaluated for soot combustion by a thermogravimetric (TG) method. The molar ratio of  $\text{CeO}_2 : \text{ZrO}_2$  was 60 : 40 and the molar ratio of  $\text{CeO}_2 : \text{ZrO}_2 : \text{M}_2\text{O}_3$  ( $\text{M} = \text{La, Y, Bi}$ ) was adjusted to be 60 : 35 : 5.<sup>19,27</sup>

### 2. Experimental

#### 2.1 Catalyst preparation

The  $\text{CeO}_2\text{--ZrO}_2\text{--M}_2\text{O}_3$  ( $\text{M} = \text{La, Y, Bi}$ ) samples were prepared by a solvothermal synthesis method. In these samples, the

School of Urban Construction and Environment, Dongguan City College, Dongguan, Guangdong 523419, People's Republic of China. E-mail: zhangdong\_zhd@126.com



molar ratio of  $\text{CeO}_2\text{-ZrO}_2\text{-M}_2\text{O}_3$  ( $\text{M} = \text{La, Y, Bi}$ ) was adjusted to be 60 : 35 : 5. In a typical synthesis, a solution of 1 mol L<sup>-1</sup>  $\text{Ce}(\text{NO}_3)_3$ , 1 mol L<sup>-1</sup>  $\text{ZrOCl}_2\cdot 8\text{H}_2\text{O}$ , and 0.1 mol L<sup>-1</sup>  $\text{La}(\text{NO}_3)_3$  aqueous solution was mixed together. Aqueous  $\text{NH}_3$  solution was added drop-wise to the mixture solution under vigorous stirring until the pH reached 10.0, which produced a yellow precipitate in the solution. After aging for 4 h, the obtained precipitate was filtered off and washed with deionized water until it was free from anion impurities. A purified yellow precipitate was then obtained. The obtained cake was redispersed in ethanol solvent and ultrasonically dispersed for 0.5 h. The resulting solvothermal precursor was transferred to a Teflon autoclave lined with Teflon, 70% filled and tightly closed, and then held at 150 °C for 5 h. After the solvothermal crystallization, the prepared  $\text{CeO}_2\text{-ZrO}_2\text{-La}_2\text{O}_3$  was filtered and washed by ethanol again, then dried at 100 °C over night, and subsequently calcined at 500 °C for 4 h in air atmosphere.

## 2.2 Catalyst characterization

The specific surface area of the powders was measured by the BET method using an Autosorb-1-MP 1530VP. The samples were dehydrated in flowing dry nitrogen at 200 °C for 5 h before the adsorption measurement.

X-ray powder diffraction (XRD) patterns were obtained with a D8 Advance operation at 40 kV and 40 mA with  $\text{Cu K}\alpha$  radiation and a goniometer speed of 8° min<sup>-1</sup>. The lattice constants were calculated based on Bragg's law and the crystal sizes were calculated based on Scherrer's equation with the (111) plane.

$$d = 0.089\lambda/[B(2\theta)\cos \theta] \quad (1)$$

where  $B(2\theta)$  is the width of the XRD pattern line at half peak height in radians,  $\lambda$  is the wavelength of the X-rays,  $\theta$  is the angle between the incident and diffracted beams in degrees, and  $d$  is the crystal size of the powder sample in nanometers.

Raman spectra were recorded in a Renishaw Raman imaging microscope with a 20 mW Ar laser (514 nm). Transmission electron microscope (TEM) measurements of some samples were performed in a JEM-2010FEF electron microscope to check the crystal sizes of  $\text{CeO}_2$  mixed oxides.

X-ray photoelectron spectroscopy (XPS) measurements were carried out with PE PHI-1600 system and  $\text{Mg K}\alpha$  ( $\text{h}\nu = 1253.6$  eV) as X-ray source. The hemispherical analyzer functioned with constant pass energy 50 eV for high-resolution spectra. The binding energies were referenced to the C1s peak at 284.6 eV.

Temperature-programmed reduction (TPR) measurement was conducted on a TPDRO 1100 apparatus supplied by Thermo-Finnigan company. Each time, 30 mg of the sample was heated from room temperature to 900 °C at a rate of 10 °C min<sup>-1</sup>. A mixture gas of  $\text{H}_2$  and  $\text{N}_2$  was used as reductant with a flow rate of 20 ml min<sup>-1</sup>. Oxygen storage capacity was measured after the TPR measurement by a pulse method at 427 °C. A given amount of  $\text{O}_2$  was pulsed at specified temperature every 2 min until  $\text{O}_2$  consumption could be detected.

## 2.3 Activity measurements

The catalyzed soot oxidation was studied in a thermogravimetric analyzer (Mettler Toledo, TGA/SDTA851e). Oxidation experiments consisted of heating the soot-catalyst mixtures from room temperature to 800 °C in 20 ml min<sup>-1</sup> flow of air. The activity measurements were performed with the catalyst containing 2 wt% of soot. Before the activity measurement, the catalyst and soot was conducted in the agate mortar with a spatula for 5 min to completely mix the components. The model soot used is Printex-U provided by Degussa. In this work, the soot ignition temperature of soot ( $\text{Ti}$ , the extrapolated starting point of a TG curve), the temperature at which soot oxidation proceeded at the highest rate ( $\text{Tm}$ , the maximum of a DTA curve), the complete conversion temperature of soot ( $\text{Tf}$ , the extrapolated end point of a TG curve) and temperature window ( $\Delta T = \text{Tf} - \text{Ti}$ ) were used to evaluate the performance of the catalysts.

## 3. Results and discussion

### 3.1 Structural properties of the catalysts

Fig. 1 collects the XRD data of the oxides which were formed after the calcination at 500 °C. The molar ratio of  $\text{CeO}_2 : \text{ZrO}_2 : \text{M}_2\text{O}_3$  ( $\text{M} = \text{La, Y, Bi}$ ) was adjusted to be 60 : 35 : 5, while the molar ratio of  $\text{CeO}_2 : \text{ZrO}_2$  was 60 : 40. The  $\text{CeO}_2\text{-ZrO}_2$  sample showed at 28.8°, 33.1°, 47.6°, 56.5° and 59.2° corresponding to the (111), (200), (220), (311) and (222) planes. These peaks are in agreement with the pattern in JCPDS No. 0038143.<sup>28</sup> It presented the broad diffraction lines of cubic fluorite  $\text{Ce}_{0.6}\text{Zr}_{0.4}\text{O}_2$ . Similar profiles were also obtained for the other samples. It demonstrated that all the samples form a single-phase solid solution. The diffraction lines of  $\text{La}_2\text{O}_3$ ,  $\text{Y}_2\text{O}_3$ ,  $\text{Bi}_2\text{O}_3$  were not detected. There may be two possible reasons: (1) no phase formation for  $\text{La}_2\text{O}_3$ ,  $\text{Y}_2\text{O}_3$ ,  $\text{Bi}_2\text{O}_3$  occurs for these catalysts, indicating that the complete formation of a homogenous tetragonal structure; (2) some  $\text{La}_2\text{O}_3$ ,  $\text{Y}_2\text{O}_3$ ,  $\text{Bi}_2\text{O}_3$  crystallites have been formed, however they are too small or good dispersed to be detected by XRD. Papavasiliou reported that the shifting of 2θ degree is an indication of the solid solution formation.<sup>29</sup> From Fig. 1, we can see that the XRD peaks shift to a slightly

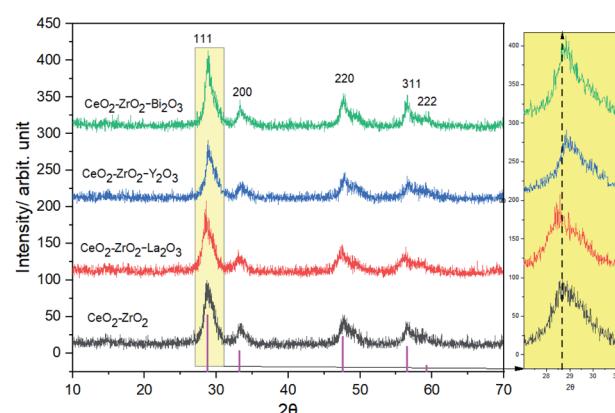



Fig. 1 X-ray powder diffraction patterns of the catalysts.



higher value with the introduction of  $\text{Y}^{3+}$  and  $\text{Bi}^{3+}$ , while the diffraction peak shifts to lower value with the introduction of  $\text{La}^{3+}$ . The substitution of  $\text{Ce}_{0.6}\text{Zr}_{0.4}\text{O}_2$  by a smaller ion such as  $\text{Y}^{3+}$ ,  $\text{Bi}^{3+}$  resulted in a contraction of the cubic cell parameter, decreasing from 0.544 nm to 0.528 and 0.527 nm, and by a larger ion such as  $\text{La}^{3+}$  resulted in an expansion of the cubic cell parameter, increasing from 0.532 nm to 0.535. It is due to the ionic radius of  $\text{La}^{3+}$  (0.116 nm) is greater than that of  $\text{Ce}^{4+}$  (0.097 nm), while the ionic radius of  $\text{Y}^{3+}$  (0.089 nm),  $\text{Bi}^{3+}$  (0.074 nm) is smaller than that of  $\text{Ce}^{4+}$  (0.097 nm). The XRD pattern features broad symmetric peaks attributed to the presence of ultrafine nanoparticles. The mean crystalline size slightly decreased from 11.6 nm of the  $\text{CeO}_2\text{-ZrO}_2$  to 7.73, 7.74 nm for the  $\text{CeO}_2\text{-ZrO}_2\text{-La}_2\text{O}_3$  and  $\text{CeO}_2\text{-ZrO}_2\text{-Y}_2\text{O}_3$ , while remaining at the same size (11.3 nm) for the  $\text{CeO}_2\text{-ZrO}_2\text{-Bi}_2\text{O}_3$ .

Fig. 2 shows the Raman spectra of the oxides to investigate the catalyst structure. The spectra did not present the typical  $\text{ZrO}_2$ ,  $\text{La}_2\text{O}_3$ ,  $\text{Y}_2\text{O}_3$ ,  $\text{Bi}_2\text{O}_3$  band, which suggested that  $\text{Zr}^{4+}$ ,  $\text{La}^{3+}$ ,  $\text{Y}^{3+}$ ,  $\text{Bi}^{3+}$  was located in the  $\text{CeO}_2$  lattice. The main band of  $\text{CeO}_2$  at  $460\text{ cm}^{-1}$  was the main allowed Raman mode ( $F_{2g}$ ) of fluorite-type structure. Fluorite-structure was a cubic structure (fcc) in which the cations were placed in the corners and in the centers of faces and oxygen atoms were located on the tetrahedral site. The Raman spectra for these fluorite-type oxide structures were dominated by oxygen lattice vibrations and were sensitive to crystalline symmetry.<sup>30</sup> On the other hand, some minor peaks were additionally observed at 312 and  $600\text{ cm}^{-1}$  in these four samples in addition to the main strong band around  $460\text{ cm}^{-1}$ . Such a spectral feature was attributed to the formation of  $\text{t}''$  phase, which is a kind of tetragonal structure containing oxygen displacement. It is suggested that there is more defect structure in these oxides and it helps to improve the redox property. No additional peaks were observed, suggesting that no detectable structural modification occurred and that the  $\text{t}''$  symmetry was conserved.

The nitrogen adsorption/desorption isotherm of the sample  $\text{CeO}_2\text{-ZrO}_2$  is shown in Fig. 3, which exhibits a typical IV shape with an  $\text{H}_2$  type hysteresis loop. It can be seen that the  $P/P_0$  position of the inflection point is related to a diameter in the mesopore range and that the BJH pore size distribution is narrow, which is centered at 7.8 nm as displayed in Fig. 3. The center of the pore size distribution and the surface area are shown in Table 1. The nitrogen adsorption/desorption

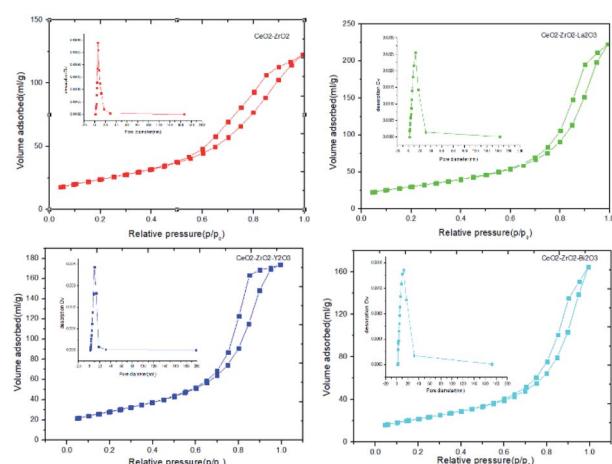



Fig. 3 Nitrogen adsorption/desorption isotherms and pore diameter distribution (inset) of  $\text{CeO}_2\text{-ZrO}_2\text{-M}_2\text{O}_3$ .

isotherms and the BJH pore size distributions of the other three samples  $\text{CeO}_2\text{-ZrO}_2\text{-La}_2\text{O}_3$ ,  $\text{CeO}_2\text{-ZrO}_2\text{-Y}_2\text{O}_3$  and  $\text{CeO}_2\text{-ZrO}_2\text{-Bi}_2\text{O}_3$  are very similar to the  $\text{CeO}_2\text{-ZrO}_2$ . It proved that the meso-porous structure could be stabilized prepared using the same solvothermal synthesis method. In general, the specific surface areas of the mixed oxides were significantly larger. The surface area of  $\text{CeO}_2\text{-ZrO}_2$  was  $83.75\text{ m}^2\text{ g}^{-1}$ . The surface areas of the  $\text{CeO}_2\text{-ZrO}_2\text{-La}_2\text{O}_3$  and  $\text{CeO}_2\text{-ZrO}_2\text{-Y}_2\text{O}_3$  were  $105.94$  and  $102.58\text{ m}^2\text{ g}^{-1}$ , respectively, showing an increase when the  $\text{La}^{3+}$  and  $\text{Y}^{3+}$  were doped into it. These results reveal that the doping by the  $\text{La}^{3+}$  and  $\text{Y}^{3+}$  show good resistance to thermal sintering. It is accordant with the literature report. Monte *et al.* had used the hydrothermal method to prepare  $\text{CeO}_2\text{-ZrO}_2$ -containing mixed oxides.<sup>31</sup> After hydrothermal treatment, the textural properties of the  $\text{CeO}_2\text{-ZrO}_2$  was shown as a type II isotherm and a hysteresis loop. The surface area of the  $\text{Ce}_{0.75}\text{La}_{0.05}\text{O}_{1.975}$  was  $87\text{ m}^2\text{ g}^{-1}$  after calcinated by  $700\text{ }^\circ\text{C}$ . The surface area of the  $\text{CeO}_2\text{-ZrO}_2\text{-Bi}_2\text{O}_3$  was decrease to  $79\text{ m}^2\text{ g}^{-1}$ . It is probably because of the relatively low melting point of  $\text{Bi}_2\text{O}_3$  ( $824\text{ }^\circ\text{C}$ ) in comparison to those of  $\text{CeO}_2$  ( $2670\text{ }^\circ\text{C}$ ).<sup>32,33</sup>

Fig. 4 shows the TEM images of the oxides. The TEM images showed discrete nanocrystals and weekly agglomerated of  $\text{CeO}_2\text{-ZrO}_2$  for the four samples. A comparable size from X-ray line broadening analysis and TEM measurements of the  $\text{CeO}_2\text{-ZrO}_2$  samples clearly suggest that the preparations with this method lead to a successful control of the crystal size to less than 15 nm. From the perspective of the grain size distribution of the four catalysts (counted from more than 150 crystals), the grain sizes of  $\text{CeO}_2\text{-ZrO}_2\text{-La}_2\text{O}_3$ ,  $\text{CeO}_2\text{-ZrO}_2\text{-Y}_2\text{O}_3$  are smaller than that of  $\text{CeO}_2\text{-ZrO}_2$  indicating that the addition of  $\text{La}_2\text{O}_3$  and  $\text{Y}_2\text{O}_3$  benefit to retain small crystal size of  $\text{CeO}_2\text{-ZrO}_2$ . The grain size of  $\text{CeO}_2\text{-ZrO}_2\text{-Bi}_2\text{O}_3$  is similar with  $\text{CeO}_2\text{-ZrO}_2$ , meaning that the incorporation of Bi into  $\text{CeO}_2\text{-ZrO}_2$  has little effect on the grain size. The lattice fringes are been seen in the HRTEM images. The exposed crystal faces can be determined by the crystal plane spacing. The interplanar spacing of (111) planes are 0.31 nm. It can be seen from the Fig. 4, for the four samples, there are (111) planes exposed, which can be

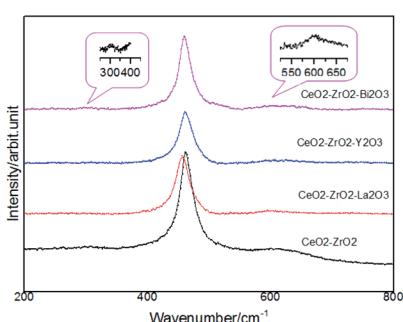



Fig. 2 Raman spectra of the catalysts.



Table 1 Textural properties and particle size of  $\text{CeO}_2\text{-ZrO}_2\text{-M}_2\text{O}_3$  ( $\text{M} = \text{La, Y, Bi}$ )

| Sample                                            | Surface area ( $\text{m}^2 \text{ g}^{-1}$ ) | Centre of pore size distribution (nm) | Average particle size (nm) | OSC ( $\mu\text{mol O}_2 \text{ g}^{-1}$ ) |
|---------------------------------------------------|----------------------------------------------|---------------------------------------|----------------------------|--------------------------------------------|
| $\text{CeO}_2\text{-ZrO}_2$                       | 83.75                                        | 7.8                                   | 11.61                      | 493                                        |
| $\text{CeO}_2\text{-ZrO}_2\text{-La}_2\text{O}_3$ | 105.94                                       | 12.5                                  | 7.73                       | 602                                        |
| $\text{CeO}_2\text{-ZrO}_2\text{-Y}_2\text{O}_3$  | 102.58                                       | 9.6                                   | 7.74                       | 575                                        |
| $\text{CeO}_2\text{-ZrO}_2\text{-Bi}_2\text{O}_3$ | 78.98                                        | 12.5                                  | 11.32                      | 1094                                       |

attributed to the (111) plane of  $\text{CeO}_2\text{-ZrO}_2$ . R. O. Fuentes *et al.*<sup>34</sup> used a citrate complexation route to prepare nanocrystalline  $\text{CeO}_2\text{-ZrO}_2$  mixed oxide. The HRTEM images showed the cubic fluorite structure. Clear lattice images were obtained which

could be indexed to the fluorite structure. Chen Yaoqiang *et al.* prepare  $\text{CeO}_2\text{-ZrO}_2\text{-Y}_2\text{O}_3\text{-La}_2\text{O}_3$  nano materials. The HRTEM images showed the cubic fluorite structure of  $\text{CeO}_2\text{-ZrO}_2\text{-Y}_2\text{O}_3\text{-La}_2\text{O}_3$ .<sup>28</sup>

The OSC results of various samples are shown in Table 1. The OSC of  $\text{CeO}_2\text{-ZrO}_2\text{-La}_2\text{O}_3$  and  $\text{CeO}_2\text{-ZrO}_2\text{-Y}_2\text{O}_3$  is higher than  $\text{CeO}_2\text{-ZrO}_2$ . On the one hand, after the La or Y incorporation into the ceria lattice both geometric and electronic properties (M-O distance and positive charge on the metal ion are changed.<sup>35</sup> On the other hand, in the case of  $\text{La}^{3+}$  doped ceria, doping of every two  $\text{La}^{3+}$  creates one oxygen vacancy due to the charge neutralization.<sup>36</sup> The defects created during the incorporation of  $\text{La}^{3+}$  leads to ease of formation of labile oxygen vacancies, which facilitate relatively high mobility of bulk oxygen species within the lattice cell thereby enhancement in the OSC.<sup>37</sup> The OSC value of  $\text{CeO}_2\text{-ZrO}_2\text{-Bi}_2\text{O}_3$  is about twice as high as that of  $\text{CeO}_2\text{-ZrO}_2$ . The reason for such characteristics was that  $\text{Bi}_2\text{O}_3$  was reduced to metallic Bi easily and that both  $\text{Ce}^{4+}$  and  $\text{Bi}^{3+}$  were reduced simultaneously.<sup>38</sup>

The reduction properties of Ce mixed oxides were studied by TPR technique. Fig. 5 illustrates the  $\text{H}_2$ -TPR profiles of the oxides. The  $\text{CeO}_2\text{-ZrO}_2$  featured a peak at 551 °C with a shoulder at 395 °C. By increasing the  $\text{La}^{3+}$  into the  $\text{CeO}_2\text{-ZrO}_2$ , the maximum of the peak shifts down to 533 °C while the contribution of the shoulder at about 395 °C became smaller. The reduction profiles of the  $\text{CeO}_2\text{-ZrO}_2\text{-La}_2\text{O}_3$  and  $\text{CeO}_2\text{-ZrO}_2\text{-Y}_2\text{O}_3$  were very similar. This indicated that there were at least two types of adsorbed surface oxygen species located at lower temperatures and the reduction peak centered at 530–550 °C

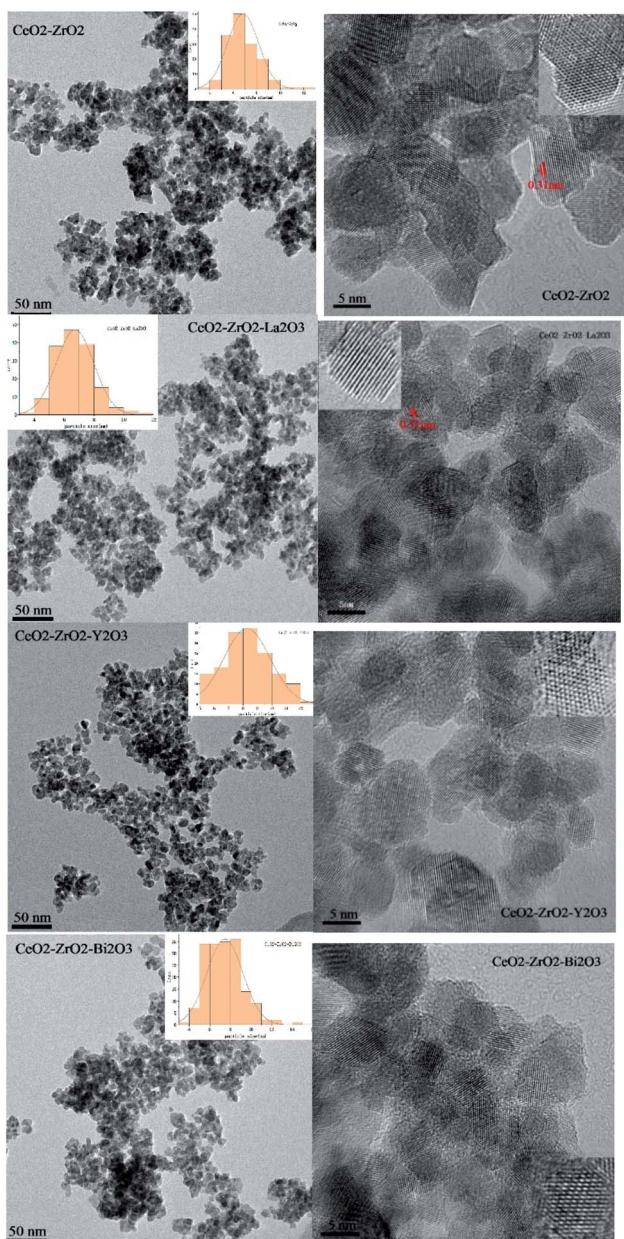



Fig. 4 TEM image of the catalysts.

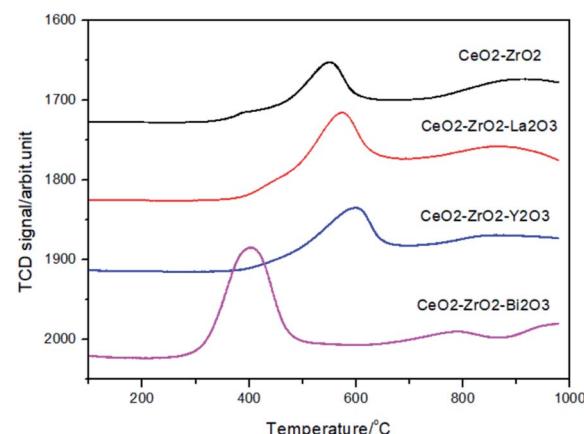



Fig. 5 Temperature programmed reduction profiles of the catalyst.



could be assigned to the  $\text{Ce}^{4+}$  reduction of surface or subsurface. The easy reduction of  $\text{CeO}_2\text{-ZrO}_2\text{-La}_2\text{O}_3$ ,  $\text{CeO}_2\text{-ZrO}_2\text{-Y}_2\text{O}_3$  compared to  $\text{CeO}_2\text{-ZrO}_2$  indicated that the introduction of trivalent dopants (La and Y) to the  $\text{CeO}_2\text{-ZrO}_2$  mixed oxide can change the surface chemical property of mixed oxide, which increased the adsorption capacity of oxygen species on the surface of mixed oxide. Yao and Yao have found that the reduction peaks of the surface capping oxygen and the bulk oxygen of  $\text{CeO}_2$  were centered at 500 and 800 °C, respectively.<sup>39</sup> The peak at around 400 °C was ascribed to the reduction of surface capping oxygen ( $\text{O}^{2-}$ , O) species due to the defects of structure and electronic properties of nonstoichiometric ceria. He *et al.* have found that  $\text{Y}^{3+}$  doping into the  $\text{CeO}_2\text{-ZrO}_2$  lattice can increase the concentrations of oxygen vacancies and  $\text{Ce}^{3+}$  ions, and the reduction peaks at 528 and 825 °C in the first TPR run were observed.<sup>40</sup>

For the  $\text{CeO}_2\text{-ZrO}_2\text{-Bi}_2\text{O}_3$  mixed oxide, a broad reduction peak at 400 °C with one small peak at 790 °C were observed, suggesting that the reduction at the higher temperature belongs to the bulk reduction of  $\text{CeO}_2$ , whereas the reduction at the lower temperature is attributable to the reduction of  $\text{Bi}^{3+}$  in addition to the different extent of the oxygen displacement on or near the surface of the catalyst. In  $\text{CeO}_2\text{-ZrO}_2\text{-Bi}_2\text{O}_3$  mixed oxide, both  $\text{Ce}^{4+}$  and  $\text{Bi}^{3+}$  were reduced simultaneously, while only  $\text{Ce}^{4+}$  were reduced in  $\text{CeO}_2\text{-ZrO}_2\text{-La}_2\text{O}_3$  and  $\text{CeO}_2\text{-ZrO}_2\text{-Y}_2\text{O}_3$ . As a result, the reduction temperature of  $\text{CeO}_2\text{-ZrO}_2\text{-Bi}_2\text{O}_3$  became much lower than those of the latter.<sup>41</sup>

$\text{CeO}_2\text{-ZrO}_2\text{-Bi}_2\text{O}_3$  was measured by XPS before and after TPR to obtain a deeper insight into the role of  $\text{Bi}_2\text{O}_3$ . Surface atomic ratios of Ce, Zr, Bi, O elements before and after the TPR measurement are included in Table 2. The surface cerium fraction of the sample  $\text{CeO}_2\text{-ZrO}_2\text{-Bi}_2\text{O}_3$  is higher than its nominal ratio, which implies the formation of a cerium-rich phase at the periphery of the particles and a good incorporation of zirconium into the bulk. The surface Bi fraction was accumulated on the catalyst surface. After the TPR measurement, the surface Bi fraction was almost zero.

Fig. 6 shows the general survey spectrum of the  $\text{CeO}_2\text{-ZrO}_2\text{-Bi}_2\text{O}_3$  before and after the TPR measurement. Fig. 6a gives the Ce 3d spectra for two samples. The series of V and U peaks are from the  $3d_{5/2}$  and  $3d_{3/2}$  states, respectively. The peak of v and  $v''$  could be assigned to a mixing configuration of  $3d^{94}f^2(\text{O}2p^4)$  and  $3d^{94}f^1(\text{O}2p^5)$   $\text{Ce}^{4+}$  states, and  $v'''$  to the  $3d^{94}f^0(\text{O}2p^6)$   $\text{Ce}^{4+}$  state. The peak of  $v'$  is attributed to  $3d^{94}f^1(\text{O}2p^6)$   $\text{Ce}^{3+}$  final state.<sup>42</sup> The series of U structures can be explained in the same way.<sup>43</sup> It is shown that the intensities of the peaks of  $\text{Ce}^{4+}$  is the main oxidation state. The proportion of  $\text{Ce}^{3+}$  contents in Ce are listed

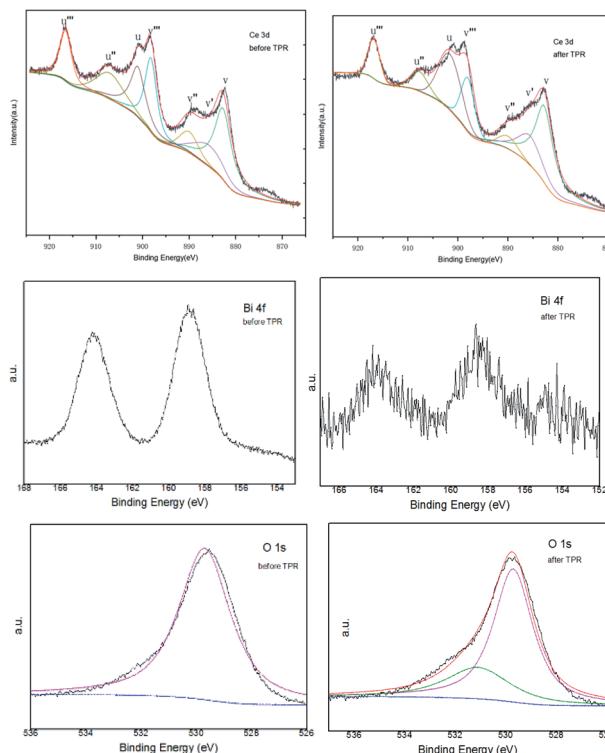



Fig. 6 The XPS spectra of  $\text{CeO}_2\text{-ZrO}_2\text{-Bi}_2\text{O}_3$  sample before and after TPR measurement.

in Table 2, which are calculated by the ratio of the sum of peak areas of  $\text{Ce}^{3+}$  to the total peak areas of all Ce species. The  $\text{Ce}^{3+}$  concentration of  $\text{CeO}_2\text{-ZrO}_2\text{-Bi}_2\text{O}_3$  after TPR is approximately 15.06%, which is larger than that of  $\text{CeO}_2\text{-ZrO}_2\text{-Bi}_2\text{O}_3$  before TPR. It is known that the existence of  $\text{Ce}^{3+}$  species could cause a charge imbalance and facilitate the formation of oxygen vacancies and unsaturated chemical bonds, which will result in an augment of chemisorbed oxygen on the surface of the catalyst.<sup>44</sup> The oxygen vacancies can improve the redox property because of the increase of oxygen migration.<sup>45</sup>

The Bi 4f spectrum displayed the main peaks of  $\text{Bi} 4f_{7/2}$  and  $\text{Bi} 4f_{5/2}$  at the binding energies of 158.7 and 163.9 eV, respectively. These parameters correspond to the  $\text{Bi}^{3+}$  surface species, indicating that Bi was at the 3+ state in the sample.<sup>46,47</sup> While after the TPR measurement, the peaks of Bi 4f were weakened.

The O 1s peak of the oxide before the TPR present at 529.7 eV. It has been revealed that the peak in the 529.5–530.5 eV range is the O 1s peak that characterizes the  $\text{O}^{2-}$  ions of the lattice oxygen. After the TPR, the O 1s peak can be deconvoluted into two peaks at about 529.7 and 531.1 eV, which indicated the existence of two different oxygen species. The main peak at 529.7 eV is characterized the  $\text{O}^{2-}$  ions of the lattice oxygen. The second peak at 531.1 eV corresponds to the ionizations of weakly adsorbed species and also the ionizations of oxygen ions with particular coordinations, more specifically integrated in the subsurface, suggesting the existence, in the subsurface, of oxygen ions with lower electron density, described as  $\text{O}^-$  species or excess oxygen.

Table 2 The XPS results of the  $\text{CeO}_2\text{-ZrO}_2\text{-Bi}_2\text{O}_3$  before and after TPR measurement

| Sample ( $\text{CeO}_2\text{-ZrO}_2\text{-Bi}_2\text{O}_3$ ) | Element content (at%) |      |      |       |
|--------------------------------------------------------------|-----------------------|------|------|-------|
|                                                              | Ce                    | Zr   | Bi   | O     |
| Before the TPR                                               | 24.69                 | 6.98 | 4.92 | 63.41 |
| After the TPR                                                | 25.37                 | 7.57 | 0.33 | 66.73 |



XPS investigations are used to get some information of the surface chemical compositions of catalysts. As shown in Fig. 7, some peaks are involved in Ce 3d spectra corresponding to four pairs of spin-orbit doublets. The surface elemental concentrations of catalyst which are calculated are summarized in Table 3. It can be seen that the surface elemental concentration of the four catalysts do not show much difference. This means that the elemental compositions of the four catalysts are almost the same. The surface content of Ce is higher than that nominal ration, which means that the cerium-rich phase is formed on the surface of catalyst.

### 3.2 Soot oxidation

The soot conversion profiles corresponding to the catalytic tests performed with the different catalysts are included in Fig. 8. The characteristic temperature for soot oxidation are listed in Table 4. Without catalyst, the soot oxidation begins at 487 °C and the Tm is around 677 °C. The temperature values Ti, Tm, Tf and  $\Delta T$  were significantly low when CeO<sub>2</sub> was used as catalyst compared with that of the un-catalyzed soot oxidation. Tm of the CeO<sub>2</sub>-ZrO<sub>2</sub> was 399 °C, decreasing about 266 °C as compared with the un-catalyzed reaction (Tm = 625 °C). The effect of the catalyst is also indicated by a narrowing of the temperature window. The value of  $\Delta T$  of the CeO<sub>2</sub>-ZrO<sub>2</sub> was decreased by 115 °C as compared with the un-catalyzed reaction ( $\Delta T$  = 190). The influence of trivalent cation doped into the CeO<sub>2</sub>-ZrO<sub>2</sub> on soot oxidation is compared. It can be seen that the addition of trivalent cation improved the catalytic activity for soot oxidation and the characteristic temperatures including Ti, Tf, Tm and  $\Delta T$



Fig. 8 Thermogravimetric analysis curves of carbon black combustion for the catalysts.

Table 4 Soot oxidation activity of CeO<sub>2</sub>-ZrO<sub>2</sub>-M<sub>2</sub>O<sub>3</sub> (M = La, Y, Bi)

| Sample                                                             | Ti (°C) | Tf (°C) | $\Delta T$ (°C) | Tm (°C) |
|--------------------------------------------------------------------|---------|---------|-----------------|---------|
| CeO <sub>2</sub> -ZrO <sub>2</sub>                                 | 357     | 432     | 75              | 399     |
| CeO <sub>2</sub> -ZrO <sub>2</sub> -La <sub>2</sub> O <sub>3</sub> | 346     | 418     | 72              | 387     |
| CeO <sub>2</sub> -ZrO <sub>2</sub> -Y <sub>2</sub> O <sub>3</sub>  | 351     | 416     | 65              | 386     |
| CeO <sub>2</sub> -ZrO <sub>2</sub> -Bi <sub>2</sub> O <sub>3</sub> | 348     | 413     | 65              | 384     |
| C                                                                  | 487     | 677     | 190             | 625     |

were significantly lower than that of CeO<sub>2</sub>-ZrO<sub>2</sub>. The CeO<sub>2</sub>-ZrO<sub>2</sub>-La<sub>2</sub>O<sub>3</sub> has the lowest soot ignition temperature. The lowest Tm and  $\Delta T$  for soot combustion were obtained using CeO<sub>2</sub>-ZrO<sub>2</sub>-Bi<sub>2</sub>O<sub>3</sub>. Analogously, CeO<sub>2</sub>-ZrO<sub>2</sub> high soot combustion activity, over which the Tm was at about 414 °C.<sup>48</sup> N. Imanaka *et al.* showed that Ce<sub>0.47</sub>Pr<sub>0.21</sub>Bi<sub>0.32</sub>O<sub>1.805</sub> catalyst had a good catalytic performance for soot oxidation, which exhibited a soot complete oxidation temperature of about 389 °C.<sup>49</sup>

Accounting from the characterization results, the La<sup>3+</sup> and Y<sup>3+</sup> incorporation into ceria lattice induces more lattice deformation and more oxygen vacancies. Moreover, larger ionic radius La<sup>3+</sup> and Y<sup>3+</sup> in the lattice can exert a lattice strain in the mixed oxide and thereby, making the more oxygen vacancies, hence these vacancies allow more amount of gaseous oxygen to be adsorbed, due to which the rate of oxygen transfer to the soot adsorbed surface is increased with subsequent improvement in the soot conversion. It is known that low temperature reduction of a catalyst favor soot oxidation at low temperatures. When Bi oxide was dissolved into the CeO<sub>2</sub>-ZrO<sub>2</sub> lattice, it can storage and release oxygen at low temperature. The CeO<sub>2</sub>-ZrO<sub>2</sub>-Bi<sub>2</sub>O<sub>3</sub> can release oxygen at the temperature lower than 400 °C. This behavior was not observed in the other catalyst. This can be attributed to the synergistic effect of the easy reduction Bi<sub>2</sub>O<sub>3</sub> and Ce<sup>4+</sup> to Ce<sup>3+</sup>, which accelerates oxide ion migration at low temperature. However, according to the results of XPS, after the TPR measurement, the content of Bi was almost zero. Therefore, we should be careful to apply Bi<sup>3+</sup> as alternative catalyst components, especially for the catalyst work at higher temperature.

Solvothermal reactions are easy to control over crystal growth: precipitation at room temperature give smaller particles. The replacement of water as solvent by alcohols offers

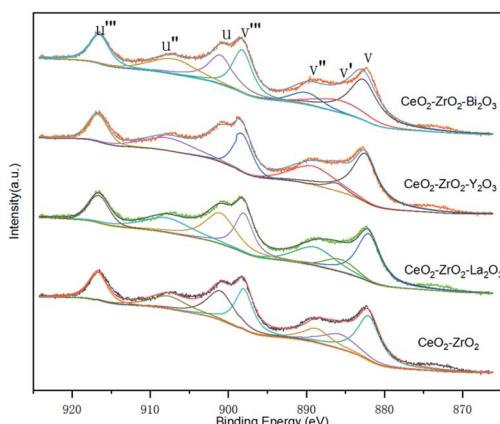



Fig. 7 Ce 3d spectra of the catalysts.

Table 3 The XPS results of the CeO<sub>2</sub>-ZrO<sub>2</sub>-M<sub>2</sub>O<sub>3</sub>

| Sample (CeO <sub>2</sub> -ZrO <sub>2</sub> -M <sub>2</sub> O <sub>3</sub> ) | Element content (at%) |       |      |       |
|-----------------------------------------------------------------------------|-----------------------|-------|------|-------|
|                                                                             | Ce                    | Zr    | M    | O     |
| CeO <sub>2</sub> -ZrO <sub>2</sub>                                          | 27.47                 | 10.26 | —    | 62.27 |
| CeO <sub>2</sub> -ZrO <sub>2</sub> -La <sub>2</sub> O <sub>3</sub>          | 24.31                 | 7.03  | 4.38 | 64.29 |
| CeO <sub>2</sub> -ZrO <sub>2</sub> -Y <sub>2</sub> O <sub>3</sub>           | 24.14                 | 6.95  | 4.57 | 64.34 |
| CeO <sub>2</sub> -ZrO <sub>2</sub> -Bi <sub>2</sub> O <sub>3</sub>          | 24.69                 | 6.98  | 4.92 | 63.41 |



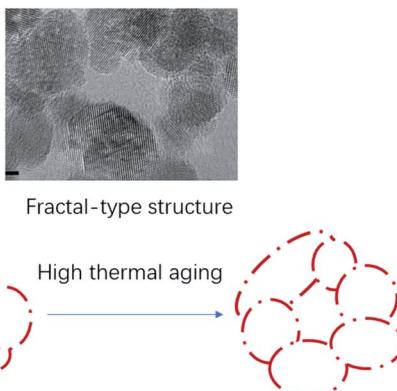



Fig. 9 Proposed sintering mechanism of  $\text{CeO}_2$  oxides.

further control over crystal growth, particularly to allow mono-disperse samples of small crystals to be formed:<sup>50</sup> in our results, we can see that crystallites of  $\text{CeO}_2$  are less than 15 nm in dimension. The use of solvothermal conditions can allow Ostwald ripening to occur, whereby smaller crystallites first produced are consumed at the expense of growing larger crystals, then by selecting solvent or solution additive, some degree of control of crystal form can be achieved in the final product. Researchers from Rhodia showed that the bimodal-fractal type of pore distribution was useful for the thermal stability of the mixed oxides.<sup>51</sup> We can see that the ceria oxides by the solvothermal synthesis method. The primary particles (diameter 5–15 nm) stick together to form large aggregates. Within these aggregates, the pores are very heterogeneous in size and shape. The aggregates set in a fractal type texture, with less contact points between aggregates. This texture is less temperature sensitive than a compact texture (Fig. 9).

## 4. Conclusions

Ceria–zirconia–lanthana, ceria–zirconia–yttria and ceria–zirconia–Bi mixed oxides were prepared successfully by a solvothermal method and characterized by XRD, Raman, TEM, XPS, BET surface area and TPR methods. The formation of mixed oxides was confirmed from both XRD and Raman results. The TEM studies confirmed that the formation of nanosized  $\text{CeO}_2$ – $\text{ZrO}_2$ – $\text{M}_2\text{O}_3$  ( $\text{M} = \text{La, Y, Bi}$ ) crystallites. The third element dopants can improve the reducing capacity at low temperature in the  $\text{CeO}_2$ – $\text{ZrO}_2$  mixed oxide and promote the catalytic activity, which can be gauged by the lowering of the soot oxidation temperature by more than 200 °C compared with the uncatalyzed reaction. The benefit of yttrium or lanthana doping in catalytic activity of ceria can be in terms of active oxygen formation provoked by defective structure of ceria due to the presence of  $\text{La}^{3+}$  and  $\text{Y}^{3+}$ . The benefit of Bi doping in catalytic activity can be related to the reduction at low temperature both  $\text{Bi}_2\text{O}_3$  and ceria.

## Conflicts of interest

There are no conflicts to declare.

## Acknowledgements

This research was funded by Significant Scientific Research Cultivation Project of Dongguan City College 2021YZDY02Z; This work has been supported by the National Nature Science Foundation of China under contract number 51106033.

## References

- 1 T. Andana, M. Piumwrri, S. Bensaid, N. Russo, D. Fino and R. Pirone, *Appl. Catal., B*, 2016, **197**, 125–137.
- 2 D. Fino, E. Cauda, D. Mescia, N. Russo, G. Saracco and V. Specchia, *Catal. Today*, 2007, **119**, 257–261.
- 3 P. Dulgheru and J. A. Sullivan, *Top. Catal.*, 2013, **56**, 504–510.
- 4 B. Giechaskiel, A. Joshi, L. Ntziachristos and P. Dilara, *Catalysis*, 2019, **9**, 586.
- 5 A. oshi and T. V. Johnson, *Emiss. Control Sci. Technol.*, 2018, **4**, 219–239.
- 6 E. Aneggi and A. Trovarelli, *Catalysis*, 2020, **10**, 768.
- 7 C. Moreno-Marcos, V. Torregrosa-Rivero, V. Albaladejo-Fuentes, M. S. Sánchez-Adsuar and M. J. Illán-Gómez, *Top. Catal.*, 2018, **62**, 413–418.
- 8 T. R. Veronica, A. F. Vicente, S. S. Maria and J. G. Maria, *RSC Adv.*, 2017, **7**, 35228–35238.
- 9 X. D. Wu, S. Liu and D. Weng, *Catal. Sci. Technol.*, 2011, **1**, 644–651.
- 10 Z. Yang, N. Zhang, H. Xu, Y. Li, L. Ren, Y. Liao and Y. Chen, *Combust. Flame*, 2022, **235**, 111700.
- 11 L. Katta, P. Sudarsanam, G. Thrimurthulu and B. M. Reddy, *Appl. Catal., B*, 2010, **101**, 101–108.
- 12 S. Liu, X. D. Wu, J. Tang, P. Y. Cui, X. Q. Jiang, C. G. Chang, W. Liu, Y. X. Gao, M. Li and D. Weng, *Catal. Today*, 2017, **281**, 454–459.
- 13 J. C. Martinez-Munuera, M. Zoccoli, J. Gimenez-Manogil and A. Garcia-Garcia, *Appl. Catal., B*, 2019, **245**, 706–720.
- 14 M. Casapu, A. Bernhard, D. Peitz, M. Mehring, M. Elsener and O. Kröcher, *Appl. Catal., B*, 2011, **103**, 79–84.
- 15 P. Miceli, S. Bensaid, N. Russo and D. Fino, *Chem. Eng. J.*, 2015, **278**, 190–198.
- 16 H. Zhao, X. X. Zhou, M. Wang, Z. Xie, H. R. Chen and J. L. Shi, *RSC Adv.*, 2017, **7**, 3233–3239.
- 17 Q. Shen, M. F. Wu, H. Wang, C. He, Z. P. Hao, W. Wei and Y. H. Sun, *Catal. Sci. Technol.*, 2015, **5**, 1941–1952.
- 18 R. D. Monte and J. Kaspar, *J. Mater. Chem.*, 2005, **15**, 633–648.
- 19 A. Bueno-Lopez, K. Krishna, M. Makkee and J. A. Moulijn, *J. Catal.*, 2005, **230**, 237–248.
- 20 Y. Zhou, X. Q. Cheng, S. H. Li, L. Xiong, S. Yan, J. L. Wang and Y. Q. Chen, *Mater. Sci. Eng. B*, 2017, **225**, 10–19.
- 21 K. Minami, T. Masui, N. Imanaka, L. Dai and B. Pacaud, *J. Alloys Compd.*, 2006, **408–412**, 1132.
- 22 J. Wang, M. Shen, J. Wang, J. Gao, J. Ma and S. Liu, *J. Rare Earths*, 2012, **30**, 878–883.
- 23 K. Krishna, A. Bueno-López, M. Makkee and J. A. Moulijn, *Appl. Catal., B*, 2007, **75**, 210–220.
- 24 I. Atribak, A. Bueno-Lopez and A. Garcia-Garcia, *J. Mol. Catal. A: Chem.*, 2009, **300**, 103–110.



25 J. Mikulova, S. Rossignol, F. Gerard, D. Mesnard, C. Kappenstein and D. Duprez, *J. Solid State Chem.*, 2006, **179**, 2511–2520.

26 L. Xiong, P. Yao, S. Liu, S. Li, J. Deng, Y. Jiao, Y. Chen and J. Wang, *Mol. Catal.*, 2019, **467**, 16–23.

27 P. Vidmar, P. Fornasiero, J. Kaspar, G. Gubitosa and M. Graziani, *J. Catal.*, 1997, **171**, 160–168.

28 M. C. Li, J. Deng, X. Y. Yin, W. Wang, Y. Zhao, H. D. Xu, J. L. Wang and Y. Q. Chen, *J. Alloys Compd.*, 2022, **894**, 162301.

29 A. Papavasiliou, A. Tsetsekou, V. Matsouka, M. Konsolakis, I. V. Yentekakis and N. Boukos, *Appl. Catal., B*, 2009, **90**, 162–174.

30 M. Fernandez-Garcia, A. Martinez-Arias, A. Lglesias-Juez, C. Belver, A. B. Hungria, J. C. Conesa and J. Soria, *J. Catal.*, 2000, **194**, 385–392.

31 R. D. Monte, J. Kaspar, H. Bradshaw and C. Norman, *J. Rare Earths*, 2008, **26**, 136–140.

32 G. Gattow and H. Schröder, *Z. Anorg. Allg. Chem.*, 1962, **318**, 176.

33 O. A. Mordovin, N. I. Timofeeva and L. N. Drozdova, *Izv. Akad. Nauk SSSR, Neorg. Mater.*, 1967, **3**, 187.

34 R. O. Fuentes and R. T. Baker, *J. Phys. Chem. C*, 2009, **113**, 914–924.

35 M. F. Garcia, A. M. Arias, J. C. Hanson and J. A. Rodrigues, *Chem. Rev.*, 2004, **104**, 4063–4104.

36 R. Thanneeru, S. Patil, S. Deshpande and S. Seal, *Acta Mater.*, 2007, **55**, 3457–3466.

37 E. Mamontov, T. Egami, R. Brezny, M. Koranne and S. Tyagi, *J. Phys. Chem. B*, 2000, **104**, 11110–11116.

38 K. Minami, T. Masui, N. Imanaka, L. Dai and B. Pacaud, *J. Alloys Compd.*, 2006, **408–412**, 1132.

39 H. C. Yao and Y. F. Y. Yao, *J. Catal.*, 1984, **86**, 254–265.

40 H. He, H. X. Dai, K. W. Wong and C. T. Au, *Appl. Catal., A*, 2003, **251**, 61–74.

41 K. Minami, T. Masui, N. Imanaka, L. Dai and B. Pacaud, *J. Alloys Compd.*, 2006, **408–412**, 1132–1135.

42 P. F. Ji, J. L. Zhang, F. Chen and M. Anpo, *J. Phys. Chem. C*, 2008, **112**, 17809–17813.

43 P. Larsson and A. Andersson, *J. Catal.*, 1998, **179**, 72–89.

44 H. Wang, X. Chen, S. Gao, Z. Wu, Y. Liu and X. Weng, *Catal. Sci. Technol.*, 2013, **3**, 715.

45 Y. D. Chen, L. Wang, X. X. Guan, Y. B. Liu, M. C. Gong and Y. Q. Chen, *Acta Phys.-Chim. Sin.*, 2013, **29**, 1048.

46 M. Romeo, K. Bak, J. El Fallah, F. Le Normand and L. Hilaire, *Surf. Interface Anal.*, 1993, **20**, 508–512.

47 M. Paulis, H. Peyrard and M. Montes, *J. Catal.*, 2001, **199**, 30–40.

48 M. Daturi, C. Binet, J. C. Lavalle, A. Galtayries and R. Sporken, *Phys. Chem. Chem. Phys.*, 1999, **1**, 5717–5724.

49 N. Imanaka, T. Masui, T. Egawa and H. Imadzu, *J. Mater. Chem.*, 2009, **19**, 208–210.

50 X. H. Wu, W. Qin and W. D. He, *J. Mol. Catal. A: Chem.*, 2007, **261**, 167–171.

51 E. Rohart, O. Larcher, S. Deutsch, C. Heduin, H. Aimin, F. Fajardie, M. Allain and P. Macaudiere, *Top. Catal.*, 2004, **30–31**, 417–423.

