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A novel copper-catalyzed thioetherification reaction has been developed to afford benzyl thioethers in

moderate to excellent yields. Under the mild and easy-to-operate conditions, a variety of thioethers are

efficiently prepared from readily available benzyl alcohols (primary, secondary, and tertiary) and thiols in

the presence of Cu(OTf)2 as the Lewis acid catalysis. This C–S bond formation protocol furnishes

exceptional chemoselectivity, and the preliminary mechanism studies show that the reaction should

proceed through a Lewis-acid-mediated SN1-type nucleophilic attack of the carbocations formed in situ.
Introduction

Sulfur compounds oen show different biological activities and
have important application value in the pharmaceutical
industry.1 Thioethers are a type of sulfur-containing compound
with diverse physiological activities2 and unique physicochem-
ical properties.3 As an important structural unit, thioethers
widely exist in natural products,4 drugs2,5 and organic func-
tional materials.3a,6 For example (Scheme 1A), montelukast7 is
a selective leukotriene receptor antagonist approved for oral
treatment of asthma and allergic rhinitis. Uprazole8 can be
used to treat acid related diseases such as peptic ulcer and
gastroesophageal reux disease. Diltiazem9 is a safe and effec-
tive drug for the treatment of supraventricular arrhythmia,
angina pectoris and hypertension in the elderly. Ranitidine10 is
a digestive system drug used to relieve stomachache, heartburn
and acid reux caused by excessive gastric acid. In addition,
studies have shown that thioethers can also be used as bio-
pheromones for animal communication.11

In view of the signicant and broad potential applications of
thioethers, chemists have developed a series of methods to
construct thioethers based on the alkyl alcohol substrates,12,18–20

which constitute an important part of our chemical feed-
stocks.13–15 A variety of sulde compounds were synthesized
through these methods,16 but the disadvantages of the tradi-
tional methods are usually accompanied that can not be
ignored,17 such as largely they require harsh or strong acidic
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tion (ESI) available. See DOI:
conditions to stimulate the reaction of alkyl alcohols with thi-
oalcohols or thiophenols,18 and the reaction have poor step
economy and atomic economy. These shortcomings limit the
applications of these reactions to a certain extent. Recently,
Lewis acid and transition metal catalyzed construction of thio-
ethers using activated or non-activated alkyl alcohols have been
greatly developed,19,20 which oen have the following charac-
teristics compared with the traditional synthesis methods: (1)
higher atomic economy; (2) mild and easy-to-operate manners;
(3) shorter synthesis steps and less-waste generation. Therefore,
some examples have been discretely reported for the thiolation
of benzyl alcohols under Lewis acid catalyzed reaction condi-
tions, such as Zn-, Zr-, In-, Fe-complexes, etc. (Scheme 1B)20
Scheme 1 Benzyl thioethers and thioetherification reactions.
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However, there is still a great demand for the preparation of
benzyl thioethers from readily accessible alcohol precursors
under more available and mild catalytic conditions.

From this initiative, we explored a process for thioether-
ication of benzyl alcohols with thiols catalyzed by a Cu-
complex with intriguing results (Scheme 1C). More speci-
cally, most reactions were highly chemoselective with near
equimolar quantities of the products, and occurred at mild
temperature. Multiple functional groups were well tolerated.
The preliminary mechanistic studies were also discussed.
Results and discussion

We initiated our investigation by exploring the thioether-
ication of 2-phenylpropan-2-ol 1 with 4-uorobenzenethiol 2
as the model substrates (Table 1).21 An extensive screening of
the reaction parameters revealed that the use of Cu(OTf)2
(3 mol%) in DCM (dichloromethane) at an air atmosphere of
25 �C delivered benzyl sulde product 3 in 96% yield (entry 1).
Under the selected conditions, Lewis acids appeared to have
great inuence on this C–S bond transformation. Aer the
screening for Cu sources, Cu(OTf)2 was the best copper catalyst
for this thioetherication reaction (Table S5†).21 Without
Cu(OTf)2, the reaction could not afford 3 (entry 2). Next, the
amount of Cu(OTf)2 was briey screened in Table 1, the use of
1 mol% Cu(OTf)2 generated 3 in a low yield (entry 3) and when
added more Cu(OTf)2 could produce 3 in reasonable high yields
(entries 4 and 5), whereas replacing Cu(OTf)2 with other Lewis
acids did not result in better outcomes (entries 6–8). Replace-
ment of DCM by DCE (1,2-dichloroethane) led to an inferior
yield, that was shown to be an unsuitable solvent (entry 9).
Table 1 Optimization for the formation of 3

Entry Variation from standard conditionsa Yieldb [%]

1 None 96
2 W/o Cu(OTf)2 No reaction
3 Cu(OTf)2 (1 mol%) 65
4 Cu(OTf)2 (5 mol%) 99
5 Cu(OTf)2 (8 mol%) 99
6 Ni(OTf)2 instead of Cu(OTf)2 61
7 Zn(OTf)2 instead of Cu(OTf)2 15
8 Sc(OTf)2 instead of Cu(OTf)2 44
9 DCE instead of DCM 91
10 0 �C 34
11 50 �C 98
12 80 �C 75
13 1 (0.60 mmol) 84
14 2 (1.5 equiv.) 99

a Standard conditions: 1 (1.2 equiv.), 2 (0.30 mmol, 1.0 equiv.), Cu(OTf)2
(3 mol%), DCM (1.0 mL), 25 �C, 12 h. b Isolated yield (average of 2
independent runs). DCE ¼ 1,2-dichloroethane, DCM ¼
dichloromethane.

© 2022 The Author(s). Published by the Royal Society of Chemistry
Reaction at 50 �C (entry 11) obtained a comparable yield, while
somewhat lower yields were obtained at 0 �C and 80 �C (entries
10 and 12). Change of other parameters such as the amount of
the substrates were also have an impact on this transformation
(entries 13 and 14).

With the optimal reaction conditions in hand, we sought to
explore the generality of this thioetherication reaction. Firstly,
a wide range of thiophenols bearing electron-poor (3–10) or
electron-rich substituents (11–14) on the arene afforded the
desired products smoothly (Fig. 1). The electronic properties of
alkenyl halides did not show an obvious effect on the efficiency
of this transformation. Notably, the 4-Cl substituted thiophenol
(4) was shown to participate in the reaction to provide better
satisfying result than the 2- or 3-positions (5–6). In addition,
polysubstituted thiophenols (9–10, 14) were also proved to be
compatible. Excellent coupling results with good chemo-
selectivity were also observed for the substituents on the thio-
phenols with active hydrogen, such as containing carboxyl or
hydroxyl groups or moieties (15–16). It was found that naphthyl-
(17) and heteroaromatic-substituted thiophenols such as thio-
phene (18) were also suitable substrates with good yields.
Furthermore, the primary and secondary thioalcohols, as
exemplied in 19–24, were effective to couple with 2-
phenylpropan-2-ol 1, manifesting that the scope of thioalcohols
was broad. The compatible functional groups on the primary
thioalcohols include terminal alkane, and ester. The secondary
thioalcohols derived from alkane (22) afforded the product in
good yield. However, a slight decrease in yields were observed
when cyclic alkyl thioalcohols include 5-, and 6-membered rings
(23–24) were used as the substrates. No reaction took place
when tertiary butyl thiol was subjected to the reaction, which is
indicative of the dependence of coupling efficiency on the steric
encumbrance. Finally, the thioetherication protocol was
extendable to the coupling of symmetrical alkyl or aryl
dithioalcohol with 2-phenylpropan-2-ol 1, which furnished 25
and 26 in 99% and 85% yields, respectively. In this case, two
sulfur containing quaternary carbon centers were established
simultaneously in an efficient manner.

Our attention was then shied to the scope of the benzyl
alcohol partner. As shown in Fig. 1, primary, secondary and
tertiary benzyl alcohols bearing a variety of substituents
underwent this thioetherication smoothly with gratifying
yields. Signally, this Cu-catalyst system coupled a thioalcohol in
the presence of different edition of tertiary benzyl alcohols with
moderate to high yields (27–29). Under these exceptionally mild
reaction conditions, even a sensitive functional group like the
alkynyl group (29) remained intact. It was found that secondary
benzyl alcohols (30–36) were also suitable substrates. Notably,
benzyl alcohols bearing a variety of electron-rich substituents
(32–33) such as Me, and MeO on the aromatic ring underwent
this transformation efficiently with better yields than electron-
decient substituents. 1,2,3,4-Tetrahydronaphthalen-1-ol (35)
could also undergo the reaction, providing access to benzocy-
clohexane derivative in 90% yield. Moreover, a-hydroxy alcohol
derived product (36) could be prepared by this method as well in
satised result. To further expand the usefulness of this tactic,
we attached thioalcohol moiety to a variety of primary benzyl
RSC Adv., 2022, 12, 692–697 | 693
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Fig. 1 The scope of thiols and benzyl alcohols. a The standard reaction conditions; isolated yields are provided (average of 2 independent runs).
b 2-Phenylpropan-2-ol 1 (2.4 equiv.). c Cu(OTf)2 (8 mol%), DCE instead of DCM, 40 �C. d Cu(OTf)2 (8 mol%), DCE instead of DCM, 80 �C.
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alcohols. Remarkably, all of these substrates bearing electron-
poor or -rich substituents include Ph, CF3, and Me on the
arene examined in our hand underwent the transformation in
moderate to excellent yields (39–45). Emphatically, the meta-
substituted primary benzyl alcohol (43) was shown to partici-
pate in the reaction to provide better result than the ortho- or
para-positions (42, 44). Besides, naphthalene (46), and thio-
phene (47) activated primary alcohols were also competent
coupling partners in this reaction system. Moreover, the
secondary and primary benzyl alcohols could also reacted with
694 | RSC Adv., 2022, 12, 692–697
aliphatic thiols (primary and secondary) in moderate yields (37–
38, 48–49).

Aer an additional screening of the reaction conditions
revealed that the use of Cu(OTf)2 (8 mol%) in DCE at an air
atmosphere of 70 �C that were also applicable for the amination
of benzyl alcohols with benzenamine (Fig. 2). Whereas, the
amination process was competent with a set of primary,
secondary and tertiary benzyl alcohols that delivered the benzyl
amines 50–51 in moderate yields, in which a molecular sieve or
a base additive was not needed.22,23 The stability of carbocation
© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 The amination of benzyl alcohols with benzenamine. a The
standard reaction conditions; isolated yields are provided (average of 2
independent runs). b Determined by 1H NMR using 2,5-dimethylfuran
as internal reference.
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appeared to affect the amination efficiency. For instance, the
amination process was not compatible with primary benzyl
alcohol 52.

(1)

Several mechanism experiments were conducted to get
insight into the details on the C–S bond transformation reac-
tion.21 Firstly, cyclopropyl-containing alcohol 1a was subjected
to the reaction conditions to test whether the C–O bond
cleavage event involves formation of alkyl radicals. The
cyclopropane-containing product 53 was obtained in 79% yield
and didn't accompany by the producing of ring-opening
product, which inconsistent with a proposal of the participa-
tion of a radical intermediate (eqn (1), top). To further verify the
reaction mechanism, the thioetherication of (R)-1-
phenylethan-1-ol 1b (99% ee, commercial) with 4-uo-
robenzenethiol 2 was carried out under the standard condition,
giving the thioether 30 in 64% yield constituting a 1 : 1 mixture
of enantiomers (eqn (1), bottom). The racemization of the
alcohol in the thioetherication event supports a mechanistic
scenario that proceeds through a carbocation intermediate.
These results reveal that the reaction should proceed through
a Lewis acid mediated SN1-type nucleophilic attack of in situ
formed carbocations24
Conclusions

In conclusion, we have developed a Cu-catalyzed coupling of
benzyl alcohols with thiols via C–O bond cleavage to forge C–S
bond. A set of thioethers, signicant pharmaceutically inter-
ested scaffolds, were efficiently synthesized from easily acces-
sible primary, secondary and tertiary benzyl alcohols and thio-
alcohols/phenols in the presence of Cu(OTf)2 as the Lewis
acid catalysis under mild conditions. Signicantly, the present
method tolerates a variety of functional groups, affording the
© 2022 The Author(s). Published by the Royal Society of Chemistry
coupling products generally in modest to excellent yields. The
preliminary mechanistic study indicates that the reaction likely
to go through the process of carbocation species. Further
mechanistic studies are currently in progress in our laboratory.

Author contributions

B. X. and Y. L. performed experiments and analyzed data. Y. Y.
designed research and wrote the paper. L. X. analyzed part of
data. T. X. and X.-Y. Y. revised the paper.

Conflicts of interest

There are no conicts to declare.

Acknowledgements

This work was supported by the National Natural Science
Foundation of China (82073686, 81730108, and 81973635),
Hangzhou Normal University startup fund (2021QDL042,
2019QDL003), the Ministry of Science and Technology of China
(High-end foreign experts program, G20200217005 and
G2021017004), Hangzhou City ”115” plan to introduce overseas
intelligence projects (20200215), Hangzhou Normal University
School of Medicine Teaching Reform Fund (4125b30100112).

Notes and references

1 (a) M. Wang and X. Jiang, The Same Oxidation-State
Introduction of Hypervalent Sulfur via Transition-Metal
Catalysis, Chem. Rec., 2021, 21, 1–19; (b) N. Wang,
P. Saidhareddy and X. Jiang, Construction of Sulfur-
containing Moieties In the Total Synthesis of Natural
Products, Nat. Prod. Res., 2020, 37, 246–275; (c) M. Wang
and X. Jiang, Recent Advances in Sulfuration Chemistry
Enabled by Bunte Salts, Aldrichimica Acta, 2020, 53, 19–35.

2 (a) E. A. Ilardi, E. Vitaku and J. T. Njardarson, Data-mining
for Sulfur and Fluorine: An Evaluation of Pharmaceuticals
to Reveal Opportunities for Drug Design and Discovery, J.
Med. Chem., 2014, 57, 2832–2842; (b) B. R. Smith,
C. M. Eastman and J. T. Njardarson, Beyond C, H, O, and
N! Analysis of the Elemental Composition of U.S. FDA
Approved Drug Architectures, J. Med. Chem., 2014, 57,
9764–9773; (c) H.-Y. Xiong, X. Pannecoucke and T. Besset,
Recent Advances in the Synthesis of SCF2H- and SCF2FG-
Containing Molecules, Chem.–Eur. J., 2016, 22, 16734–16749.

3 (a) A. Mishra, C. Q. Ma and P. Bäuerle, Functional
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