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channel blockers with directed
message passing neural networks†

Mengyi Shan,‡a Chen Jiang,‡ab Jing Chen,ac Lu-Ping Qin,*a Jiang-Jiang Qin*d

and Gang Cheng *a

Compounds with human ether-à-go-go related gene (hERG) blockade activity may cause severe

cardiotoxicity. Assessing the hERG liability in the early stages of the drug discovery process is important,

and the in silico methods for predicting hERG channel blockers are actively pursued. In the present

study, the directed message passing neural network (D-MPNN) was applied to construct classification

models for identifying hERG blockers based on diverse datasets. Several descriptors and fingerprints

were tested along with the D-MPNN model. Among all these combinations, D-MPNN with the moe206

descriptors generated from MOE (D-MPNN + moe206) showed significantly improved performances.

The AUC-ROC values of the D-MPNN + moe206 model reached 0.956 � 0.005 under random split and

0.922 � 0.015 under scaffold split on Cai's hERG dataset, respectively. Moreover, the comparisons

between our models and several recently reported machine learning models were made based on

various datasets. Our results indicated that the D-MPNN + moe206 model is among the best

classification models. Overall, the excellent performance of the DMPNN + moe206 model achieved in

this study highlights its potential application in the discovery of novel and effective hERG blockers.
Introduction

The human ether-a-go-go-related gene (hERG) encodes
a voltage-gated potassium channel, which plays a major role in
cardiac action potential.1 Blockage of this hERG potassium ion
channel will cause a prolonged QT interval and lead to severe
cardiotoxicity such as cardiac arrhythmia.2 Several marketed
drugs, including astemizole,3 terfenadine,4 and cisapride,5 have
been withdrawn due to their unintended hERG-related car-
diotoxicity. Consequently, the assessment of hERG-blocking
activity is essential in drug discovery projects. Various in vitro
and in vivo assays, including uorescent measurements,6 radi-
oligand binding assay,7 patch-clamp electrophysiology,8 and
QTc assays,9 have been developed to evaluate the inhibitory
effects of small molecules on hERG channel. However, these
assays are usually time-consuming and expensive. Thus, it is
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important to develop reliable in silico methods for the predic-
tion of hERG inhibition in an early stage of the drug discovery
and development process. Over the past decade, many in silico
models for predicting hERG channel inhibition have been re-
ported.10 Most of these methods can be categorized as structure-
based methods (including quantitative structure–activity rela-
tionships (QSAR) and pharmacophore searching) and machine
learning methods (such as support vector machine (SVM) and
random forest (RF)).11–13

More recently, as the accumulation of data about hERG
inhibition of small molecules or their binding affinity to hERG,
several large-scale datasets consisting of thousands of hERG
blockers and hERG non-blockers are now publicly available.14–16

Utilizing these datasets, many machine learning (ML) algo-
rithms have been utilized for predicting hERG blocking activity.
For instance, Hou et al. have developed pharmacophore-based
models with Naive Bayes (NB) and SVM, and their best SVM
model achieved the prediction accuracy of 84.7% for the
training set and 82.1% for the external test set.17 Siramshetty
et al. have employed three machine learning methods k-nearest
neighbors (kNN), RF, and SVM with different molecular
descriptors, and the area under the receiver operating charac-
teristic curve (AUC-ROC) value of the best model reached 0.94.18

Ogura et al. have established an SVM classication model with
the descriptor selected by non-dominated Sorting Genetic
Algorithm-II (NSGA-II), and the accuracy reached out to 0.984
for their test dataset.19 With the development of the deep
learning technique, Cai et al. have collected 7889 compounds
RSC Adv., 2022, 12, 3423–3430 | 3423
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with well-dened experimental data on hERG, built multi-task
deep learning-based prediction models (deephERG) based on
the DeepChem20 open-source platform, and obtained accuracy
of 0.93 and AUC-ROC of 0.967 for the best model.21 In addition,
multiple other deep learning-based models have been reported,
including Capsule Networks and platforms such as deepHit,22

hERG-Att,23 hERG-ml,24 and CardioTox net.25 Despite the above
substantial progress in hERG blockers prediction, the accuracy
performance needs to be further improved in real drug
discovery settings.

Recently, Yang et al. have proposed a Directed Message
Passing Neural Network (D-MPNN),26 which showed excellent
performances across 19 public datasets, including QM7, QM8,
QM9, ESOL, FreeSolv, lipophilicity, BBBP, PDBbind-F, PCBA,
BACE, Tox21, and ClinTox. Moreover, it is worth noting that
Stokes et al. have successfully applied D-MPNN in identifying
novel antibacterial compounds from the ZINC15 database,
which strongly proved the superiority of D-MPNN.27 In this
study, we applied the D-MPNN model on hERG datasets for
predicting the hERG blockers. We tested different combina-
tions of D-MPNN with several ngerprints or descriptors
(ECFP4,28 ECFP6,28 FCFP4,28 MACCS,29 PubchemFP,30 RDkit 2D
normalized,31 Mol2vec,32 MOE53,33 and moe206 34 (206 2D
descriptors generated by MOE)), and found that some of these
descriptors can signicantly boost the performance of D-MPNN.
The best combination is D-MPNN incorporated with moe206
descriptors (D-MPNN + moe206), which obtained AUC-ROC
values up to 0.956 � 0.005 and 0.922 � 0.015 in the ve-fold
cross-validation on random split and scaffold split, respec-
tively. Various comparisons were also made between our
models and those developed by other machine learning
methods on their datasets. All the results conrmed that the D-
MPNN + moe206 model is one of the best classication models
for predicting hERG blockers.
Experimental section
Dataset

Initially, Cai's hERG dataset21 was rst used to evaluate the D-
MPNN model and search the premium descriptors combina-
tions with the D-MPNN model. It contains a total of 7889
compounds and has 6 thresholds (10 mM, 20 mM, 40 mM, 60 mM,
80 mM, and 100 mM) for distinguishing hERG blockers from
non-blockers. To compare the performance of our best model
(D-MPNN + moe206) with other machine learning models, we
used several other hERG datasets reported by Doddareddy,11

Hou,17 Ogura,19 Siramshetty,24 and Karim's.25 Additionally, we
conducted principal component analysis (PCA) on Cai's,21 Sir-
amshetty's,24 and Hou's17 datasets in Table S1, Fig. S1 and S2.†
D-MPNN model

Yang et al. have described the directed-message passing neural
network (D-MPNN) in detail and built the open-source package
Chemprop for implementation of D-MPNN (see more in https://
github.com/chemprop/chemprop).26 Similar to other message
passing neural networks (MPNN), D-MPNN constructs a learned
3424 | RSC Adv., 2022, 12, 3423–3430
molecular representation by operating on the graph structure of
the molecule. Different from the generic MPNN that uses an
atom-dependent neural network to pass a message, D-MPNN
uses the edge-dependent neural network to pass a message.

In Chemprop, initially, each SMILES string was converted to
their corresponding molecular graph (G) via the open-source
package RDKit,35 where the atoms in the chemical structures
were described as nodes (v), and the bonds between atoms were
considered as edges. Next, node (atom) features xv and edge
(bond) features evw were computed. Prior to the rst step of
message passing, edge hidden states h0vw were initialized with
the following equation:

h0vw ¼ s(Wi cat(xv, evw))

where s is the rectied linear activation function (ReLU), Wi is
a learned matrix, and cat(xv, evw) represents the concatenation
of the atom features xv for atom v and the bond features evw for
bond vw. Aerward, the D-MPNN functions on hidden states
hvw

t and messages mvw
t to spread messages based on the graph

structure. On each directed message passing step t, each bond's
featurization is updated by summing the featurization of
neighboring bonds, concatenating the current bond's featuri-
zation with the sum. The calculations are according to the
following equations:

mvw
tþ1 ¼

X
k˛fNðvÞ=wg

hkv
t

hvw
t+1 ¼ s(h0kv + Wmmvw

t+1)

where N(v) is the set of neighbors of v in graph G, t ˛ {1, ., T}
and T is total steps of the message passing phase, and Wm ˛
Rh�h is a learned matrix. Then each atom representation of the
molecule was calculated by aggregating the incoming bond
features according to

mv ¼
X

w˛NðvÞ
hvw

T

In the readout phase of D-MPNN, the feature vector h for the
whole molecule was obtained by summing the hidden states of
all atoms.

h ¼
X
v˛G

hv

Finally, the feature vector h is fed through a feed-forward
neural network to generate property predictions.

ŷ ¼ f ðhÞ

D-MPNN with molecular characterization

As noted by Yang et al., the original D-MPNN model might not
be so efficient at extracting global molecular features, especially
for large molecules. To enhance the D-MPNN performance,
© 2022 The Author(s). Published by the Royal Society of Chemistry
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various molecular features26,27 could be incorporated into the D-
MPNN model.

Here, 9 types of molecular descriptors or ngerprints are
used to represent the characteristics of the compounds,
including mol2vec,32 RDkit 2d normalized,31 MACCS,29 Pub-
ChemFP,30 ECFP,28 ECFP6,28 FCFP4,28 MOE53,33 and moe206.34

The rst 8 descriptors or ngerprints were computed by RDkit,31

Molmap,36 or mol2vec.32 The last one, moe206, was calculated
by Molecular Operating Environment (MOE),34 representing the
206 2D descriptors for each molecule, mainly composed of
physicochemical properties, kappa shape index, surface area,
atomic and bond number, etc.

The list of descriptors is shown in Table S2.†
Fig. 1 Comparison of the AUC-ROC values of D-MPNN and deep-
hERG model across different decoy thresholds on Cai's validation set.
Model assessment

The model performance is mainly measured by AUC-ROC. In
addition to AUC-ROC, sensitivity (SE), specicity (SP), Negative
Predictive Value (NPV), Positive Predictive Value (PPV), Accuracy
(ACC), Balanced Accuracy (BA), and Matthews Correlation
Coefficient (MCC) were evaluated. The formula for calculating
the index is as follow:

SE ¼ TP

TPþ FN

SP ¼ TN

TNþ FP

NPV ¼ TN

TNþ FN

PPV ¼ TP

TPþ FP

ACC ¼ TPþ TN

TPþ FPþ TNþ FN

B�ACC ¼
�

TP

TPþ FN
þ TN

FPþ TN

��
2

MCC ¼ TP� TN� FP� FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTPþ FPÞðTPþ FNÞðTNþ FPÞðTNþ FNÞp

True positive (TP): the ratio correctly judged to be positive in
all actually positive samples. True negative (TN): a ratio that is
correctly predicted to be negative in all actually negative
samples. False positive (FP): the rate of being wrongly judged
positive in all actually negative samples. False negative (FN): the
ratio of false predictions to negative in all actually positive
samples.
© 2022 The Author(s). Published by the Royal Society of Chemistry
Hyperparameter optimization

Like other machine learning models, hyperparameter optimi-
zation might be an important step for the D-MPNN model.
Bayesian hyperparameter optimization37 implemented on
chemprop26 was adapted to search the optimum parameters
including the number of the model, the hidden size of the
neural network, the dropout probability, the number of feed-
forward network layers.
Results
Performance on Cai's dataset

Recently, Cai et al. collected an hERG dataset containing 7889
compounds and proposed a deep learning model (deephERG)
based on DeepChem module for hERG blockers prediction.21

Initially, we compared the performance between the D-MPNN
model and the deephERG model. To make a fair comparison,
we used the same datasets to train and test the D-MPNN
models. Using the same valid dataset and evaluation metric
as those reported in Cai's, the D-MPNN model (AUC range from
0.989 to 0.998) showed an improved performance than their
deephERG (AUC range from 0.883 to 0.958) (Fig. 1). The distri-
bution of the prediction probabilities by the D-MPNNmodel for
all compounds in Cai's dataset at a threshold of 10 mM were
plotted (Fig S3†). It showed that most non-blockers (red color)
were predicted as non-blockers whose probabilities are around
zero, while a majority of blockers (blue color) have probabilities
near 100%.

Inspired by the excellent performances of the original D-
MPNN, we next evaluated the performance of the D-MPNN
model coupled with 9 different molecular descriptors
(including ECFP, ECFP4, ECFP6, FCFP4, MACCS, PubchemFP,
RDkit 2D normalized, MOE53, moe206, mol2vec, MOE53 +
mol2vec, and MOE53 + RDkit 2D normalized). At this time, we
also used the same total of 7889 compounds from Cai's dataset
but applied a ve-fold cross-validation mode instead of using
the pre-splitted data for training and testing. In the ve-fold
cross-validation mode, the whole 7889 compounds were
divided into ve subsets by random select or scaffold split. In
RSC Adv., 2022, 12, 3423–3430 | 3425
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View Article Online
each run, four of the ve subsets were selected as the training
data, and the remaining subset was used as the testing data for
evaluating performance. This process was repeated 5 times
until each of the ve subsets has used as the testing data once.
The average testing result from the ve runs was used to
calculate the nal AUC-ROC.

The ve-fold cross-validation results based on the random
split are given in Fig. 2A. It is believed that k-fold cross-valida-
tion38 can effectively avoid overtting and undertting. As ex-
pected, D-MPNN using the ve-fold cross-validation (set as the
control in Fig. 2A) showed a signicantly poor performance
than the above D-MPNN using pre-split data (AUC-ROC: 0.947�
0.005 versus 0.996 � 0.004). And with the incorporation of the
molecular characterizations or their combinations, the D-
MPNN performances have about 2% uctuation (AUC-ROC
from 0.935 to 0.956). The D-MPNN coupled with moe206
descriptor (D-MPNN + moe206) provides optimal performance
with AUC-ROC reaching 0.956 � 0.005, which is better than the
original D-MPNN (AUC-ROC 0.947� 0.005). The combination of
D-MPNN with FCFP4 ngerprint provided the worst results.

Similarly, all these models with molecular characterizations
were tested using ve-fold cross-validation under the scaffold
split mode (Fig. 2B). In this circumstance, D-MPNN with
MOE53, moe206, and RDkit2D obtained slightly higher
Fig. 2 (A) Performances of the D-MPNN with the single molecular ch
(control, ECFP4, ECFP6, FCFP4, MACCS, PubchemFP, RDkit 2D normaliz
normalized) on the validation set under random split. (B) Performances

3426 | RSC Adv., 2022, 12, 3423–3430
performance than others, with AUC-ROC reaching from 0.922 to
0.925. Since AUC-ROC on random split has less uctuation than
that on scaffold split, so the ve-fold cross-validation random
split mode was chosen for further investigation. D-MPNN +
moe206 was considered to be the best incorporated descriptor
for D-MPNN.

Performance comparison with other models

To compare the performance of D-MPNN + moe206 with other
machine learning methods reported in the literature, we
applied the D-MPNN + moe206 model on the same datasets as
those methods including Hou et al.,17,39 Zhang et al.,40 and Sun
et al.41 To make a fair comparison, the datasets (including
training datasets, valid datasets, and test datasets) were kept the
same as the reference methods in each comparison case. AUC-
ROC, SE, SP, NPV, PPV, ACC, BA, and MCC were selected as
performance indexes. To our delight, D-MPNN + moe206 show
generally better or comparable performance over all these
models and (Table 1), and it is signicantly better than the
original D-MPNN in all 6 entries.

Table 1 entry 1 used the dataset from Doddareddy11 et al.,
since their representative model performed better on Dataset3
(D3), which contains training set (blockers:1004, non-
blockers:1385) and test set (blockers:108, non-blockers: 147).
aracterization and the combinations of molecular characterizations
ed, MOE53, moe206, mol2vec, MOE53 + mol2vec, MOE53 + RDkit 2D
on the validation set under scaffold balanced split.

© 2022 The Author(s). Published by the Royal Society of Chemistry
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Table 1 Comparison the performance of D-MPNN + moe206 model with other best models

Model Training set Test set AUC-ROC SE SP ACC

1a SVM + FCFP D3 training D3 test 0.93 0.81 0.89 0.86
D-MPNN + moe206 0.958 � 0.005 0.900 � 0.019 0.913 � 0.016 0.907 � 0.010
D-MPNN 0.955 � 0.005 0.881 � 0.032 0.907 � 0.027 0.896 � 0.002

2b Consensus model Training Validation NAc 0.74 0.86 NAc

D-MPNN + moe206 0.864 � 0.021 0.808 � 0.077 0.798 � 0.039 0.798 � 0.033
D-MPNN 0.819 � 0.012 0.638 � 0.065 0.844 � 0.037 0.831 � 0.031

3b Consensus model Training FDA-1 0.79 0.71 0.78 NAc

D-MPNN + moe206 0.882 � 0.013 0.613 � 0.110 0.856 � 0.023 0.835 � 0.018
D-MPNN 0.813 � 0.032 0.413 � 0.099 0.884 � 0.019 0.844 � 0.013

4d SVM Training I Test I 0.842 0.907 0.652 0.821
D-MPNN + moe206 0.871 � 0.010 0.916 � 0.014 0.667 � 0.049 0.832 � 0.010
D-MPNN 0.776 � 0.026 0.907 � 0.031 0.539 � 0.065 0.783 � 0.021

5e SVM Training II Test II 0.839 0.850 0.745 0.821
D-MPNN + moe206 0.876 � 0.015 0.890 � 0.025 0.676 � 0.039 0.830 � 0.010
D-MPNN 0.806 � 0.010 0.909 � 0.037 0.553 � 0.040 0.808 � 0.018

6f SVM + 72descriptors + ECFP4 Training Test 0.962 0.670 0.995 0.984
D-MPNN + moe206 0.968 � 0.001 0.656 � 0.033 0.994 � 0.001 0.983 � 0.001
D-MPNN 0.954 � 0.001 0.627 � 0.038 0.992 � 0.001 0.979 � 0.000

a Doddareddy's dataset. b Siramshetty's dataset. c Not available, this value can NOT be found in the original literature. d Hou's training set I and test
set I. e Hou's training set II and test set II. f Ogura's training and test dataset. For each D-MPNNmodel, the average of different folds (N¼ 5) and the
corresponding standard deviation are listed.
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The blockers are dened with IC50 values <10 mM, non-blockers
are with IC50 values >30 mM, and the optimal model of Dod-
dareddy et al. is the SVM model with Functional Class Finger-
prints (FCFP6), which gave the AUC-ROC of 0.93 and ACC of
0.86 under ve-fold cross-validation. Our D-MPNN + moe206
model showed improved prediction accuracy under the exact
training and test dataset, achieving AUC-ROC of 0.958 � 0.005
and ACC of 0.907 � 0.010, respectively. While the original D-
MPNN model gave a slightly poor performance with AUC-ROC
of 0.955 � 0.005 and ACC of 0.896 � 0.002, conrming
moe206 descriptor incorporation is important for boosting the
prediction power of D-MPNN.

Table 1 entry 2 listed a result from a recent article by Sir-
amshetty24 et al. They combined the best models of RF + RDKit,
XGBoost + RDKit, DNN + MorganFP, and long short-term
memory (LSTM) + ATN-SMILES with their own merits into
a consensus model, providing superior performance. Siram-
shetty's dataset consists of the training set (blockers: 2164, non-
blockers: 5990), prospective validation set (threshold ¼ 30 mM,
blockers: 53, non-blockers: 786), and FDA-approved drugs
(thresholds ¼ 1 mM, blockers: 15, non-blockers: 162; thresholds
¼ 10 mM, blockers: 46, non-blockers: 131), where the training
set comes from Public Domain hERG Bioactivity (ChEMBL)
using a binary threshold (1 and 10 mM) and thallium ux assay
(NCATS) using a threshold of 30 mM. We run the D-MPNN +
moe206 model on the same training dataset as Siramshetty's
consensus model and then evaluated performance on Siram-
shetty's validation dataset and FDA-1 dataset. As shown in Table
1 entry 2, on prediction of Siramshetty's Validation dataset D-
MPNN + moe206 performs better in SE (0.808 � 0.077 versus
0.77), while Siramshetty's consensus model has better SP (0.798
� 0.039 versus 0.86). For prediction of the FDA-1 dataset (Table 1
entry 3), D-MPNN + moe206 performs much better in AUC-ROC
© 2022 The Author(s). Published by the Royal Society of Chemistry
(0.882 � 0.013 versus 0.79) and SP (0.856 � 0.023 versus 0.78),
but not so good as the consensus model in SE (0.613 � 0.110
versus 0.71).

The models of entries 4 and 5 in Table 1 are based on Hou's
dataset,17 which contains training set I (blockers: 352, non-
blockers: 40), training set II (blockers: 352, non-blockers: 40),
test set I (blockers: 175, non-blockers: 20), and test set II
(blockers: 175, non-blockers: 20), blockers and non-blockers are
distinguished with a threshold of 40 mM. According to Hou's
report,17 the performance of the optimal model SVM reaches the
highest AUC-ROC of 0.842 and 0.839 for test I and test II,
respectively. Nevertheless, our D-MPNN + moe206 model
showed more competitive and superior performance, which
gave an AUC-ROC of 0.871� 0.010, ACC of 0.832� 0.010 for test
I, and an AUC-ROC of 0.876 � 0.015, ACC of 0.830 � 0.010 for
test II.

Entry 6 of Table 1 used Ogura's datasets,19 which is the
largest hERG database so far. It contains a training set
(blockers: 6923, non-blockers: 196 918) and a test set (blockers:
2966, non-blockers: 84 395), and as per the criteria of IC50

values #10 mM considered to be hERG blockers and IC50 values
>10 mM considered to be hERG non-blockers. A prediction
model based on the non-dominant sorting genetic algorithm
(NSGA-II) was constructed to obtain the maximum prediction
performance with 72 selected descriptors and ECFP4 structure
ngerprint, reaching an ACC value of 0.984, respectively. D-
MPNN + moe206 achieves comparable performance with AUC-
ROC of 0.968 � 0.001 and ACC value of 0.983 � 0.001 based
on the same training and test dataset as Ogura's model.

Very recently Karim et al. proposed a robust predictor based
on deep learning meta-feature ensembles called CardioTox net,
which showed excellent performance in various classication
indexes for three external test sets.25
RSC Adv., 2022, 12, 3423–3430 | 3427
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We tested the performance of D-MPNN + moe206 by
comparison with CardioTox using Karim's25 datasets in Table 2,
which contains training set (blockers: 6643, non-blockers:
5977), test set-I (blockers: 30, non-blockers: 14), test set-II
(blockers: 11, non-blockers: 30), and test set-III (blockers: 30,
non-blockers: 710). The blockers are dened with IC50 values
<10 mM, and the non-blockers are with IC50 values $ 10 mM. As
shown in Table 2 entries 1 and 3, D-MPNN + moe206 is
comparable to CardioTox on all three dataset. Although D-
MPNN + moe206 performance is slightly inferior to CardioTox
on test set-I and test set-III which achieved MCC of (0.567 �
0.061 versus 0.599, 0.214� 0.016 versus 0.220) and ACC of (0.800
� 0.030 versus 0.810, 0.696 � 0.030 versus 0.746), D-MPNN +
moe206 showed improved performance for all metrics except
ACC on test set-II, which reaches MCC of 0.470 � 0.053, NPV of
0.950 � 0.032, PPV of 0.467 � 0.020, SP of 0.620 � 0.030, SE of
0.909 � 0.064, and B-ACC of 0.764 � 0.030.

According to these comparative analyses, the D-MPNN +
moe206 model the D-MPNN + moe206 model showed excellent
AUC-ROC, accuracy, MCC, sensitivity, and NPV across different
datasets given here, providing one of the best classication
tools for predicting potential hERG-induced cardiotoxicity of
compounds.
Feature importance with Shapley additive explanations

Why the moe206 descriptors can boost the performance of D-
MPNN on predicting hERG blocker? To answer this question,
we attempted to analyze the relationship between the moe206
descriptors and the predictive probability of the model through
the Shapley additive translation (SHAP) (https://github.com/
slundberg/shap),42 which would provide rich visualization of
an individual feature. Lundberg et al.42 proposed SHAP as
a unied measure of feature importance and incorporated their
algorithm into extreme gradient boosting (XGBoost)43 and Light
Gradient Boosting Machine (LightTGBM) in subsequent
studies.44

We rst evaluated the performance of XGBoost based on the
moe206 descriptor and ECFP4 ngerprint on Cai's hERG data-
set. The results showed that the AUC-ROC of XGBoost on
moe206 descriptor is only slightly lower than that of D-MPNN +
Table 2 Comparison the performance of D-MPNN + moe206 model w

Model
Evaluation
data AUC-ROC MCC NPV

1a CardioTox Test set-I NAb 0.599 0.688
D-MPNN +
moe206

0.849 �
0.042

0.567 �
0.061

0.656 �
0.044

2a CardioTox Test set-II NAb 0.452 0.947
D-MPNN +
moe206

0.810 �
0.055

0.470 �
0.053

0.950 �
0.032

3a CardioTox Test set-III NAb 0.220 0.986
D-MPNN +
moe206

0.830 �
0.010

0.214 �
0.016

0.986 �
0.037

a Karim's dataset. b Not available. For each D-MPNN model, the average o
listed.

3428 | RSC Adv., 2022, 12, 3423–3430
moe206 (0.950 � 0.006 versus 0.956 � 0.005) and signicantly
better than AUC-ROC of XGBoost on ECFP4 descriptor (0.950 �
0.006 versus 0.933 � 0.001) (Fig. 3A). This further conrmed the
importance of the moe206 descriptor.

Next, we did SHAP analysis on the moe206 descriptor. As
shown in Fig. 3B, h_pavgQ, logP(o/w), SlogP, vsa_pol, h_logD,
and h_pkB are considered to be the six most important
descriptors of the model. The higher h_pavgQ, logP(o/w), SlogP
and h_logD, and the lower vsa_pol and h_pkB (The list of
descriptors is shown in Table S2†), the more likely it is to be
predicted as a blocker. According to Honma's research,45 posi-
tively charged atoms are the main distinguishing factor.
Approximately 80% of hERG non-blockers do not have but more
than half of the inhibitors contain at least one. The h_pavgQ at
the top of the list not only reects this feature but also reects
the superiority of the model in terms of feature selection.
Similarly, the logP (o/w), SlogP and h_logD (ranked second,
third and h) are related to Log octanol/water partition coef-
cient, representing those fat-soluble fragments or aromatic
heterocycles in the blockers form a P-stacking interaction with
Phe-656 and Tyr-652,46 vsa_pol is also related to the hydropho-
bicity to some extent. Regarding pKb, on account of a number of
hERG blockers have an aromatic ring at the end of the ligand
and a basic amine, causing it to protonate readily at physio-
logical pH and creating with cation–p interaction with Tyr652.47

In short, the top-ranked descriptors are consistent with the
characteristics reported in previous studies that most of the
hERG blockers contained positively charged atom, more lipo-
philic, and more alkaline.2,48

Discussion

In this study, we establish a series of hERG blocker classiers
based on D-MPNN. Although our model has achieved some
relatively better predictive performance compared with previous
studies, there are some limitations. The main limitation lies in
the collection and selection of datasets.35,49 Even larger, unbi-
ased and high-quality datasets are required to train the D-
MPNN + moe206 model.

Compared to D-MPNN without any descriptors, D-MPNN
carries some descriptor prediction performance is even worse,
ith Karim's best model

ACC PPV SP SE B-ACC

0.810 0.893 0.786 0.833 0.810
0.800 �
0.030

0.890 �
0.023

0.786 �
0.051

0.807 �
0.037

0.796 �
0.031

0.755 0.455 0.600 0.909 0.754
0.698 �
0.022

0.467 �
0.020

0.620 �
0.030

0.909 �
0.064

0.764 �
0.030

0.746 0.113 0.698 0.794 0.746
0.696 �
0.030

0.110 �
0.006

0.692 �
0.033

0.788 �
0.064

0.740 �
0.020

f different folds (N ¼ 5) and the corresponding standard deviation are

© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 (A) Comparative prediction performance of XGBoost with D-MPNN under random split through five-fold cross-validation on Cai's
dataset. (B) Relative importance and the SHAP values of the 20 highest ranked molecular descriptors of XGBoost with moe206. Each molecule
represents a point to form a descriptor line. A molecule with a high (red) SHAP value will increase the probability of being predicted by the model
as a blocker.
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some descriptor values may stay the same, or some descriptors
are meaningless to reect molecular characteristics, etc. It may
be due to the fact that some descriptors cannot be used to
classify blockers and non-blockers signicantly, leading to
ineffective work of deep learning, which requires us to intervene
in the selection of descriptors. Thus, the complexity of the
model is reduced and the generalization ability of the model is
improved, and the computational resources and time are
saved.50
Conclusions

Cardiotoxicity is one of the common side effects of drugs in
clinical practice. Since traditional detection methods are time-
consuming and laborious, a variety of methods have emerged
to establish models in in silico to predict hERG cardiotoxicity in
recent years. In this study, we use D-MPNN to build the model
based on different datasets, and screen difference descriptors
incorporated into D-MPNN to further improve the performance.
D-MPNN with moe206 descriptor was found performing better
than with other descriptors. Its AUC-ROC value can reach 0.922
� 0.015 under scaffold split and 0.956 � 0.005 under random
split on Cai's hERG dataset. In addition, we made a quite
comprehensive comparison with 5 other recent models re-
ported. All the results showed that the D-MPNN + moe206
model is among the best classication models for evaluating
hERG blockers. In conclusion, this study provides a new
approach for predicting compounds with potential hERG-
induced cardiotoxicity.
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