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Polyacrylonitrile (PAN) nanofibers were prepared by electrospinning and coated with zeolitic imidazolate
framework-8 (ZIF-8) by a phase conversion growth method and investigated for CO, capture. The PAN
nanofibers were pre-treated with NaOH, and further coated with zinc hydroxide, which was
subsequently converted into ZIF-8 by the addition of 2-methyl imidazolate. In the resulting flexible ZIF-
8/PAN composite nanofibers, ZIF-8 loadings of up to 57 wt% were achieved. Scanning electron
microscopy and energy-dispersive X-ray spectroscopy (EDS) showed the formation of evenly distributed
submicron-sized ZIF-8 crystals on the surface of the PAN nanofibers with sizes between 20 and 75 nm.
X-ray photoelectron spectroscopy (XPS) and carbon-13 nuclear magnetic resonance (**C NMR)
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Accepted 1st December 2021 investigations indicated electrostatic interactions and hydrogen bonds between the ZIF-8 structure and
the PAN nanofiber. The ZIF-8/composite nanofibers showed a high BET surface area of 887 m? g~. CO,

DOI: 10.1035/d1ra06480k adsorption isotherms of the ZIF-8/PAN composites revealed gravimetric CO, uptake capacities of
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1. Introduction

Recently, the NET-ZERO 2050 report was published by the
European Climate Foundation,' which pointed out the urgency
to achieve zero carbon emission by 2050 by making the energy
system and transportation more sustainable and energy-
efficient with the goal to eliminate carbon emissions. A part
of the activities to achieve these goals is more efficient gas
separation, capture and storage technologies for carbon capture
and storage (CCS). Adsorption-based methods, such as pressure
swing adsorption (PSA)? or temperature swing adsorption (TSA)?
technologies offer opportunities for tailor-made gas separation
of CO, from gas mixtures* and subsequent storage, for example
in biogas upgrading® and storage as biomethane (CH,).® CH,
produced from sustainable sources such as biogas, can help to
reduce anthropogenic CO, emissions. One key point to improve
adsorption-based technologies is exploring and improving
advanced microporous materials (sorbents),” such as zeolites,®
carbon molecular sieves® and active carbon.'® It has been shown
that by heteroatom-doping the CO, adsorption can be
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130 mg g~ (at 298 K and 40 bar) of the ZIF-8/PAN nanofiber and stable cyclic adsorption performance.

significantly affected (e.g. in activated carbons) by creating
highly polar adsorption sites for the CO, molecule and Lewis
acid-base interactions. This usually results in improved selec-
tivities in CO, separation.’*** Another promising new class of
materials are metal-organic frameworks (MOFs), which are
assembled from metal ions/clusters and organic linkers.*
These materials can be prepared from a variety of chemical
compositions, resulting in structures with ultrahigh surface
area of several thousand m” g~ ', large pore volumes with tail-
orable pore size and specific chemical sites for capturing guest
molecules by adsorption. In these materials, the extremely large
internal surface area and pore channels can be modified to
introduce  specific  surface  charges, hydrophilicity/
hydrophobicity or uniformity of pore channels. Zeolitic Imida-
zolate Frameworks (ZIFs), a sub-class of MOFs, have been
proposed for gas separation and storage applications.” These
materials have first been synthesized by Yaghi's group.'® The
structure consists of zinc(u) cations and 2-methylimidazole
anions (2-mim). Within the class of MOF materials, ZIFs have
an interesting framework structure with high thermal and
chemical stability. According to a report from Park et al.,** ZIF-8
has a large sodalite (SOD) zeolite-like cavity (11.6 A) and smaller
apertures (3.4 A). The size of these pores, the high achievable
specific surface area of more than 1000 m”> g ', and large
micropore volumes indicate that this material has promising
potential for CO, capture and separation.

Beneath shaping of microporous materials into useful
structures, such as pellets, granules or extrudates,*® recently,
new approaches have been proposed to structure adsorbents

© 2022 The Author(s). Published by the Royal Society of Chemistry
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(carbons, zeolites, MOFs etc.) into nanofibers to enhance gas
transport,"” adsorption capacity'® and adsorption kinetics.*® For
example, zeolite nanofibers of ZSM-5 have been fabricated by
electrospinning, post shaping and carbonization of poly-
vinylpyrrolidone (PVP)** the performance has been evaluated for
CO, separation from CO,/CH, mixtures in synthetic biogas
mixtures.

Due to the temperature instability of MOF materials, this
approach to fabricate MOF-nanofiber composite materials is
not feasible for the majority of MOF-based nanofibers. However,
different approaches for the structuring of MOF-nanofiber
materials for energy and environmental applications have
been recently reviewed by Dou et al.,** including in situ growth
of MOF nanocrystals on the surface of polymer nanofibers. The
preparation of MOF-polymer nanofibers through electro-
spinning is an elegant way to shape MOF materials into hier-
archical porous nanofibrous sorbent materials at mild
conditions with large surface-to-volume ratio, tailored pore size,
and high permeability for gas separation processes. In this
study we propose a phase inversion method to grow ZIF-8 on the
surface of electrospun polyacrylonitrile (PAN) nanofibers for
CO, capture. We investigated the influence of the growth of the
ZIF-8 nanoparticles on PAN nanofibers as a function of reaction
time to maximize the CO, gas uptake, which was expected to
increase with the amount of the microporous ZIF-8 sorbent
loaded on the inactive PAN nanofiber as backbone.

The resulting ZIF-8/PAN composite nanofibers have been
characterized by scanning electron microscope-energy disper-
sive X-ray spectroscopy (SEM-EDS), X-ray diffraction pattern
(XRD), surface area and pore size distribution analysis and by
more advanced characterization techniques, such as X-ray
photoelectron spectroscopy (XPS) and nuclear magnetic reso-
nance spectroscopy (NMR).

Finally, the CO, uptake of the ZIF-8/PAN composite nano-
fibers have been tested at pressures up to 40 bars and the cyclic
adsorption-desorption properties of the composites have been
investigated.

2. Experimental
2.1 Materials

For the in situ growth of ZIF-8, the raw chemicals zinc nitrate
hexahydrate (Zn(NO3),-6H,0), sodium hydroxide (NaOH) and
2-methylimidazole (2-mim) with purity over 99.0% were
purchased from Sigma-Aldrich. For the electrospinning (ES),
polyacrylonitrile (PAN) with an average molecular weight of
150 000 was chosen as polymer with a purity of 99.0%. The PAN
was purchased from Parchem fine & specialty Co., Ltd N,N-
Dimethylformamide (DMF) with purity of 99.0% was purchased
from Sigma-Aldrich. Besides, the solvent of methanol and
ethanol with purity of 99.9% were purchased from Sigma-
Aldrich. The deionized water (D.L.W) was produced in the
laboratory by an ultrapure system with a resistivity of 18.0
mQ cm . All chemicals used in this work have not been further
treated or purified. High purity gases of CO, (99.99 mol%), CH,
(99.99 mol%), He (99.99 mol%) and N, (99.99 mol%) (Foshan
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Huate Gas Co., Ltd, China) were used for gas adsorption
experiments.

2.2 Preparation of ZIF-8/PAN composite nanofibers

The preparation of the ZIF-8/PAN composite nanofibers can be
divided into four steps: in the 1°* step, the PAN solution was
electrospun into PAN nanofibers. In the 2" step, the PAN
nanofibers were immerged into a heated sodium hydroxide
solution (75 °C) to activate the surface. In the 3™ step, the metal-
contained (Zn") precursors were attached on the active PAN
surface. In the last step, the in situ growth process of ZIF-8 was
initiated by the addition of the complementary precursor (2-
mim solution).

For the preparation of the PAN nanofibers, 1 g PAN and 10 g
DMF were mixed and sealed into a 50 mL plastic bottle with
cylindrical zirconia balls to ball-mill by regular ball milling at
50 rpm for 24 hours. Then the dispersion solution was elec-
trospun by needle-based electrospinning equipment
(Linari s.r.1) with the voltage of 30 kV and a distance of 140 mm
between the electrospinning needle and receiving substrate to
prepare PAN nanofibers.

For the activation of the PAN nanofiber surface with
hydroxide groups, 0.5 g of PAN nanofibers were immerged into
the 50 mL NaOH-D.L.W solution (60 g NaOH dissolved into
500 mL D.I.W) and heated at 75 °C for 20 min to activate the
fiber surface. The treated PAN nanofibers were 3 times washed
with ethanol and dried afterwards in air at room temperature.

For the application of the metal precursor, the surface-
treated PAN nanofibers were immersed into 100 mL of a 120
millimole per liter (mM) Zn(NO3), solution for 20 min to form
Zn(OH), on the surface of PAN nanofibers. The applied
Zn(NOj3), solution consisted of 6.29 g Zn(NOj3),-6H,0 in 180 mL
of a 1: 1 volumetric solvent mixture of methanol and ethanol.

For the final in situ growth process, 100 mL 480 mM 2-mim
solution was added to the Zn(NOj), solution directly, where the
Zn(OH),-coated PAN fiber had been immerged already to
complete the in situ growth process. Every 30 minutes, the
samples were taken and dried after ethanol washing to identify
the optimum loading and structure of ZIF-8 in the composite.
The applied 2-mim solution consisted of 7.49 g 2-methyl-
imidazole in 190 mL of a 1:1 volumetric solvent mixture of
methanol and ethanol. According to reaction time the samples
were labelled ZIF-8/PAN-X (with X resembling 30, 60 and 90
minutes of reaction time, see Table 1 further below).

2.3 Preparation of ZIF-8 nanopowder

For the synthesis of ZIF-8 nanocrystals in powder form, 50 mL
120 mM Zn(NOj3), solution and 50 mL 480 mL 2-mim solution
were prepared (as described in Section 2.2) and mixed by
vigorously magnetic stirring for 1 hour at room temperature,
then the suspension solution was centrifuged to obtain the ZIF-
8 colloids. Followed, the ZIF-8 colloids were washed with
ethanol for 3 times. Finally, the ZIF-8 nanocrystals were dried at
100 °C to remove the residual ethanol, methanol and moisture.

RSC Adv, 2022, 12, 664-670 | 665
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Table 1 Summary of textural properties and crystallite size of ZIF-8/PAN composites
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Average crystal

Average pore

BET surface

Total pore volume

Micro pore volume*

Sample ID size (nm) size (A) area (m* g ") (em® g™ (em® g™
ZIF-8 powder 101 13.8 1015 0.70 0.51
ZIF-8/PAN-30 20 15.2 495 0.38 —
ZIF-8/PAN-60 36 13.0 862 0.56 —
ZIF-8/PAN-90 76 11.2 888 0.50 0.31

“ The micro-pore volumes have been calculated from a T-plot, following a method reported by Galarneau et al.**

2.4 Characterization of the materials

Scanning electron microscope-energy dispersive X-ray spec-
troscopy (SEM-EDS) were performed by a Zeisis Merlin FEG-
SEM, the samples were sputter-coated with the thin layer of the
gold (around 12-16 nm).

X-ray diffraction (XRD) measurements were performed by
a Rigaku Smartlab X-ray diffractometer, which was operated at
40 kV and 30 mA using Cu Ko radiation with step speed of
5° min . All of the samples were attached on a silicon-substrate
sample holder. The miller indexes were identified by Match! 3
software.

X-ray photoelectron spectroscopy (XPS) was performed in the
range of 200 to 1200 eV with ZIF-8 nanocrystals, pure PAN fiber
and ZIF-8/PAN composite nanofibers in a angle resolved XPS
chamber for depth profiling of surfaces (equipment from
Thermo Scientific Nexsa).

3C nuclear magnetic resonance spectroscopy (NMR) was
performed on a Bruker Avence III 300 Wide Bore solid state
NMR spectrometer, using a 4 mm probe. The frequency of *C
was 75 MHz with the pulse program of CP-Toss, using 4 mm
rotors at a MAS spinning frequency of 6500 Hz. The 90° *C
pulse-length was 4 ps, and pulse length in decoupling
sequence is 7. Recycle delay is 5 s, while the sweep wide is
30 241.94 Hz. The carbon resonance line of adamantane was
used as an external chemical shift standard and was assigned
a value of 38.48 ppm. The scans for CP-Toss experiments was
1k. Besides, the samples were frozen and milled into powder
with help of liquid nitrogen before it was filled into NMR
tube.

The surface area as well as pore-related information (size
distribution, total pore volume, micro-pore volume) determi-
nation of ZIF-8/PAN composite materials and ZIF-8 powders
were measured by nitrogen adsorption isotherms at —196 °C
(Autosorb-iQ-2, specific analysis for microstructure). The CO,
uptake measurements were also carried out in this equipment.
All samples were degassed to below 10° bar and 383 K for 8
hours prior to the measurement.

The high-pressure CO, adsorption performance was
measured by an IsoSORP adsorption analyzer (TA instruments,
New Castle, DE, USA), on samples with a weight of about 0.5 g.
All samples were degassed at 110 °C under high vacuum for 4 h,
following a buoyancy test with helium at 22 °C to determine the
mass and volume of each sample. Then, the CO, adsorption—
desorption isotherms of the obtained ZIF-8/PAN composite
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were measured with CO, dosing from high vacuum to 40 bar,
then to high vacuum with an equilibrium point every 10 bar.
The equilibrium for each step was set until the deviation of
mass was less than 0.1 mg per 10 min.

3. Result and discussion

The in situ growth of the ZIF-8 on the surface of electrospun PAN
nanofibers resulted in flexible, paper-like ZIF-8/PAN composite
nanofiber mats with light yellow colour, whereas the sol-
vothermally synthesized ZIF-8 powder showed white
nanocrystals.

3.1 Microstructure of ZIF-8/PAN nanofiber structures

Fig. 1 shows scanning electron microscope (SEM) images of
the different ZIF-8/PAN composite nanofibers after different in
situ growth durations of 30 min (Fig. 1a), 60 min (Fig. 1b) and
90 min (Fig. 1c). Small ZIF-8 nanoparticles (with rhombic
dodecahedral form) have evenly grown on the surface of the
PAN nanofibers, forming a core-shell structure. Visual
inspection indicate a good mechanical adhesion of the ZIF-8
crystal on the PAN polymer surface and this has also been
observed in previous studies on ZIF-8/nanofiber composites
and nanocrystals.**?* X-ray diffractograms of the ZIF-8/PAN
composites after 30, 60, 90 minutes reaction time are given

llO?_:\n ‘:‘

400 nm 3
Ty

P
B .08

Fig. 1 Scanning electron microscopy (SEM) images of ZIF-8/PAN
composite nanofibers prepared by in situ growth and sampled after
different reaction times of: 30 min (a), 60 min (b), 90 min (c) and a ZIF-
8 nanopowder (d), synthesized under similar solvothermal conditions.

© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 X-ray diffractograms of ZIF-8/PAN composites and a sol-
vothermally synthesized ZIF-8 powder.

in Fig. 2 together with the solvothermally synthesized ZIF-8
nanopowder.

The pattern-ray diffractogram of the synthesized ZIF-8/PAN
composite nanofibers matched closely with the simulated X-
ray diffractogram of ZIF-8 powder, which can be assigned to
cubic I43m space group,*® confirming the growth of ZIF-8
nanoparticles on the surface of PAN nanofibers. Lower rela-
tive diffraction intensity of X-rays and broadening of diffrac-
tion peaks at FWHM (full width at half maximum) can be
observed for the ZIF-8/PAN composites samples with
decreasing reaction time, Fig. 2. This suggests that the crys-
tallinity and crystallite size of the ZIF-8 particles, attached to
the PAN nanofibers, increases with reaction time. Crystallite
sizes increase from 20 to 70 nm for increasing reaction time
between 30 to 90 minutes. Effects of crystallite growth and size
in ZIF-8 nanopowder has previously been investigated by
Tanaka et al.**

Table 1 summarizes the average crystal size of the ZIF-8
crystals along with the surface textural properties of the ZIF-8/
PAN composite nanofiber and the ZIF-8 nanopowder, which
are discussed in Section 3.3.

Fig. 3a and ¢ show the SEM micrographs and Fig. 3b and
d the Zinc elemental mappings of the Zn(OH),/PAN
composite nanofibers (zinc hydroxide attached to the PAN
nanofiber before the in situ growth of the MOF) and of the
ZIF-8/PAN composite-90 nanofiber structure. The larger size
and broader distribution of the Zinc in the initial Zn(OH),/
PAN composite (Fig. 3b) compared to the final ZIF-8/PAN-90
composite nanofiber (Fig. 3d) indicate that there occurs
aredistribution of zinc atoms from the initial Zn(OH), phase
during the phase conversion process into the ZIF-8 crystal-
lites. The explanation is that during the growth of the ZIF-8
on the surface of nanofiber, zinc ions from the hydroxide
phase are finally incorporated on a molecular level into the
crystal structure of the MOF particles, which results in
a more even and finer coverage of the PAN nanofiber surface
with Zn.

© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 SEM micrographs and EDS mapping of Zn(OH),/PAN nano-
fibers with (a) SEM microstructure, (b) distribution of Zn (in the top);
and of ZIF-8/PAN-90 nanofibers with (c) SEM microstructure and (d)
distribution of Zn (in the bottom).

3.2 Chemical interaction between PAN nanofiber and ZIF-8

In order to reveal chemical interactions between the ZIF-8 phase
and the PAN nanofibers, X-ray photoelectron spectroscopy (XPS)
was carried out. The scan of a XPS spectrum of ZIF-8/PAN-90
and ZIF-8 powder exhibit peaks of Zn 2p;, and Zn 2p,,, at
1022.08 and 1044.88 eV, respectively (Fig. 4).

To verify interaction between the PAN nanofiber and ZIF-8
framework, narrow scans of the N 1s and C 1s were analyzed*
for the ZIF-8/PAN-90 composite nanofiber, the ZIF-8 powder and
pure PAN nanofibers, respectively (Fig. 4). The energy peak of
the N 1s exhibits a 0.80 eV red shift from 400.8 to 399.3 eV after
in situ growth of ZIF-8 on the PAN nanofiber. Similarly, the C 1s
signal shows a red shift of 1.9 eV after the PAN nanofiber has

Counts (a.u.)

ZIF-8/PAN-90

/

800 600 400

Binding Energy (eV)

1200 1000 200

Fig.4 X-ray photoelectron spectroscopy (XPS) spectra of ZIF-8/PAN-
90 composite nanofiber (blue) and the ZIF-8 nanopowder (red). For
comparison, the XPS signals at 399 eV and 287 eV for N 1s and C 1s are
zoomed in with addition of the peaks for the pure PAN fiber (in orange
colour).
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been coated with ZIF-8 and resulting in ZIF-8/PAN-90
composite. These shifts are related to the change of the
atomic chemical environment of carbon and nitrogen, indi-
cating interaction between the PAN nanofiber and the ZIF-8
structure.

13C NMR spectroscopy was conducted to further analyse the
atomic chemical environment. As shown in Fig. 5, the location
of the resonance peaks at 152.0 and 14.6 ppm, respectively, can
be assigned to protonated aromatic carbon atoms (C1, carbon)
and the methyl group (C3, -CHj3). These peaks have no major
chemical shift.

However, there is a visible chemical shift by 1.7 ppm from
123.7 ppm to 125.4 ppm for the double-bond carbon (C2, -CH=
CH-) when comparing the spectra for the ZIF-8 nanopowder
with the ZIF-8 crystallites attached to the ZIF-8/PAN-90
composite nanofiber. Similar chemical shift of the C2 peak in
ZIF-8 has been observed when organic molecules, such as
caffeine, were encapsulated in the pores of ZIF-8 to form van der
Waals bonds.”® However, more detailed analysis supported by
DFT calculations® would be required to further proof electro-
static interactions and hydrogen bonding between the ZIF-8 and
C-N groups of the PAN nanofiber (as visualized by the chemical
formulas in Fig. 5).

3.3 Surface textural properties of ZIF-8/PAN composite
nanofibers

Fig. 6 shows the pore size distribution of the different type of
ZIF-8/PAN nanofiber structures (for the chosen synthesis time
between 30 and 90 minutes).

A large peak centered around a pore radius of about 11 A
can be assigned to micropores, whereas two smaller and
broader peaks between 20 to 70 A are related to micro and
mesopores. Table 1 summarizes the micropore and total pore
volume and BET surface area of all ZIF-8/PAN nanofibers and

— ZIF-8/PAN-90 c3

— Z|F-8 Powder

C3

PAN c1

oAb
Z:z; CENDINICHIC ,g

€
& &t c2
Ligand group

g1 ri-

Counts (a.u.)

C5C4

14.6
- |- 410 »
T

152.0‘1

125.4—”< 123.7 46.0
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the ZIF-8 nanopowder. The comparably low total pore volume
of 0.38 cm® g™" and specific surface area (495 m”> g™ ') of the
sample obtained after short reaction time (30 minutes), indi-
cate that the ZIF-8 has not been fully crystallized or has major
surface defects. The broad and slightly displaced XRD peaks
for this sample in Fig. 2 support this thesis. After longer
reaction time (90 minutes), the total pore volume increases to
0.51 cm® ¢~ ' and the surface area to 888 m> g~ " for the sample
ZIF-8/PAN-90. Considering a maximum ZIF-8 loading of
57.19 wt% in ZIF-8/PAN-90 achieved in this work, the surface
area of the pure ZIF-8 crystallites in the composite can be
calculated to 1552 m* g~ ', assuming negligible surface area of
the PAN nanofibers. Using similar estimates (43 wt% PAN in
the composite), the actual micropore and total pore volumes of
the ZIF-8 crystallites in the ZIF-8/PAN-90 composite should be
about 0.54 and 0.88 cm® g7, respectively. This indicates that
by the in situ growth method proposed in this work, ZIF-8/PAN
nanofiber composites with high surface area, pore volume and
ZIF-8 particle loadings have been achieved compared to ZIF-8-
nanofibers in other studies. Table 2, further below, gives
a comparision of the CO, uptake performance of the ZIF-8
nanofiber composite materials in this study compared to
other studies.

Fig. 7 shows the cyclic CO, uptake and re-generation of the
ZIF-8/PAN-90 at 25 °C for 1 bar and for 40 bars for four cycles
in Fig. 7a and b, respectively. The CO, uptake of ZIF-8/PAN-
90 nanofibers at 1 bar and 40 bars is 7 cm® ¢! and 130 mg
g

These initial results demonstrate good initial cyclic stability
for CO, separation with fast adsorption-desorption kinetics.
Reasonable high CO, uptake of ZIF-8/PAN-90 nanofiber
composites have been achieved compared to similar studies on
ZIF-8,%¢ suggesting that these materials are interesting for CO,
separation from gas streams.

150

100

50 0

3C Chemical Shift (ppm)

Fig.5 *C NMR spectra for ZIF-8/PAN-90 composite nanofiber (blue)
and ZIF-8 nanopowder (red) and chemical formulas of PAN (nanofiber)
and methyl-imidazole (organic ligand in ZIF-8) with labelling of
carbons.
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Fig. 6 Pore size distribution and cumulative pore volume of ZIF-8/
PAN composites.
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Table 2 Comparison of ZIF-8 loading, BET surface area and CO, uptake of different ZIF-8 powder and ZIF-8-nanofiber composites

ZIF-8 loading

BET surface

Material (Wt%) area (m> g™ ") CO, uptake® (cm?® g™) Reference
ZIF-8/PAN-90 57.2 888 7.0 This work
ZIF-8 powder 100 1016 14.7 This work
ZIF-8/PAN-90 57.2 888 130 (mg g~ ', 40 bar) This work
ZIF-8 powder 100 1813 374 (mg g, 40 bar) Autié et al. '
ZIF-8/ZnO core-shell — 733 7.6 Thomas et al.**
ZIF-8/PAN b 983 13.3 (20 °C) Gao et al.*®
ZIF-8 powder 100 880 16.5 Gao et al.>
ZIF-8 powder 100 — 15.3 Huang et al.**
ZIF-8 powder 100 1264 350 (mg g~ ', RT, 30 bar) Nune et al.*®

@ CO, uptake values at low pressures are given at 25 °C, 1 bar and in ecm® g™'. If CO, uptake was measured under other conditions, for example

higher pressures or lower temperature, these values are given in brackets.
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Fig. 7 (a) Cyclic adsorption isotherms up to 1 bar at 25 °C and (b) the

cyclic CO, uptake of ZIF-8/PAN-90 composite at high pressure of 40
bars.
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4. Conclusion

In summary, we successfully demonstrated a phase inversion
method to grow ZIF-8 crystals on the surface of a PAN polymer
nanofiber matrix without sacrificing the surface properties of
the material. XPS and "*C NMR analysis indicate electrostatic
interaction and hydrogen bonds between the PAN matrix and
the ZIF-8 nanocrystals confined to the PAN nanofiber surface,
resulting in good attachment of the ZIF-8 nanoparticles and
relatively high CO, uptake. We believe that this method to grow
MOF structures into polymer nanofiber structures offers further
opportunities to produce nanofibrous adsorbent materials for
other applications, such as air or liquid filtration or in medical
applications.
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