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Vinyl sulfonyl chemistry-driven unidirectional
transport of a macrocycle through a [2]rotaxane†

Arthur H. G. David, Pablo García–Cerezo, Araceli G. Campaña,
Francisco Santoyo–González * and Victor Blanco *

By applying a combination of the coupling-and-decoupling (CAD) chemistry of the vinyl sulfonate group

with the click thia-Michael addition to the vinyl sulfone group (MAVS) we performed the irreversible uni-

directional transportation of the ring through the linear component in a [2]rotaxane by a chemically and pH-

driven flashing energy ratchet mechanism. The design is based on a monostoppered thread precursor

bearing a sulfonate stopper, a vinyl sulfone group on the unstoppered end and a dibenzylammonium unit as

recognition site for the dibenzo-24-crown-8 macrocycle. First, the ring enters from the vinyl sulfone side

and the rotaxane is capped through a thia-Michael addition reaction. Then, the cleavage of the sulfonate

group of the opposite stopper using MgBr2 as chemical stimulus and subsequent addition of base (Et3N) pro-

moted the controlled and directional release of the macrocycle into the bulk under mild conditions. The

efficiency of the system allowed the in situ operation as demonstrated by NMR and HRMS techniques.

Introduction

The main reason for the importance and relevance of
mechanically interlocked molecules (MIMs),1 such as rotax-
anes2 and catenanes,3 is probably their use to design, prepare
and operate artificial molecular machines in an attempt to
mimic nature or to perform a certain task.4 Typically, mole-
cular machines built on the basis of MIMs rely on molecular
switches in which the position of the macrocycle can be con-
trolled through the use of external stimuli. For rotaxanes, the
translational motion of the macrocycle along its axle induced
by these stimuli gave rise to the preparation of nanovalves,5

the production of macroscopic work,6 the modulation of
photophysical properties,7 and to applications in switchable
catalysis8 or molecular electronics.9 Moreover, the rotaxane
architecture also enabled the generation of synthesizers,10 ele-
vators11 or muscles.12

The development of directional transport systems using
interlocked structures is one of the most significant progress
in the field of molecular machines since it allows an operation
away from the equilibrium, a crucial element for the develop-
ment of molecular motors or pumps.13 Indeed, the key feature

of these synthetic devices is the unidirectional movement of a
component of the system respect to another. This net trans-
port is produced following Brownian ratchet mechanisms14

and is generally controlled by photo-switches,15 redox pro-
cesses,16 or chemical fuels.17

Recently, cleavable rotaxanes18 started to attract attention
and arose as an interesting alternative to induce a net transport
of the macrocycle along the axle. Thus, Chen and co-workers
reported the unidirectional transportation of a ring in a rotax-
ane architecture by performing a CuAAC reaction on one side of
a mono-stoppered thread in a pseudorotaxane as the capping
step of the process, followed by a selective DBU-catalyzed elim-
ination on the vicinity of a triazolium group on the other side of
the rotaxane as a stopper cleavage reaction (decoupling step)
that enabled the release of the macrocycle.19 Later on, they pro-
posed another design based on the use of fluoride to release
the wheel by cleavage of a tert-butyldiphenylsilyl group.20 More
recently, Stoddart and co-workers have applied the same
concept of stopper cleavage, in this case light-triggered, to
release the macrocycle from a molecular pump.21

On the other hand, the click Michael-type addition reaction
of nucleophiles to vinyl sulfonyl groups (MAVS),22 such as vinyl
sulfone or vinyl sulfonate, is an efficient and versatile tool for
the synthesis of rotaxanes, as we recently demonstrated.23

Furthermore, the vinyl sulfonate moiety is an appropriate
group for coupling–and–decoupling chemistry (CAD),24 since
after the MAVS, it can undergo substitution by nucleophiles
under relatively mild conditions.25 Thus, we demonstrated the
utility of this CAD chemistry both to build a rotaxane and to
subsequently chemically cleave it in a controlled manner to
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disassemble it into its components, thus, allowing the devel-
opment of a cleavable rotaxane.23

Therefore, we envisaged that the chemistry of vinyl sulfone
and vinyl sulfonate groups could be an efficient tool for the
development of rotaxanes that could enable the pH- and
chemically-controlled unidirectional transport of the ring
through the linear component. In this context, here we report
an irreversible unidirectional transportation system of a
macrocycle based on a [2]rotaxane architecture that relies on
both the MAVS and the vinyl sulfonate CAD chemistry.

Results and discussion
Strategy and system design

The proposed operation for the unidirectional macrocycle
transport is based on a flashing energy ratchet mechanism
employing chemical and acid/base stimuli. For this purpose
we designed a monostoppered axle precursor bearing a vinyl
sulfone group on one end while on the other a sulfonate
stopper was previously introduced through a thia-Michael
addition to a vinyl sulfonate moiety. The system also incorpor-
ates a dibenzylammonium unit as binding site for the
dibenzo-24-crown-8 (DB24C8) macrocycle (Ka = 2.7 × 104 M−1

in CDCl3).
26 The operation would start with the pseudorotax-

ane assembly under thermodyamic control driven by the estab-
lishment of hydrogen bond interactions between the
ammonium unit and the macrocycle followed by the rotaxane
formation via a capping approach through a MAVS reaction to
the vinyl sulfone unit. Nucleophilic displacement of the sulfo-
nate group to cleave the corresponding sulfonate-functiona-
lized stopper group and addition of base to deprotonate the
amine and remove the hydrogen bond interactions with the
macrocycle would lead to the release of the macrocycle
through the opposite side of its entrance, thus, achieving the
unidirectional transport of the macrocycle (Fig. 1).

During this operation, the establishment of a pseudorotax-
ane would represent a lower energy situation than the free axle

and macrocycle and, therefore, it would be energetically
favoured. Although the complexation is an equilibrium
process, the relatively high binding constant along with the
appropriate experimental conditions would allow a high
degree of complexation. In this process, the bulky stopper
would constitute an unsurmountable energy barrier, thus, the
ring would be threaded through the vinyl sulfone side. After
the subsequent capping and formation of the [2]rotaxane, the
potential energy barrier of the vinyl sulfone side would
increase, avoiding the dissassembly of the system. The sub-
sequent decoupling of the sulfonate moiety would cause a
decrease of the potential energy barrier on that side, while the
addition of base would imply a destabilization of the resulting
pseudorotaxane as the hydrogen bonding interactions are no
longer present and complexation cannot occur. As result, the
macrocycle would be released into the bulk towards a lower
energy status, completing its unidirectional path (Fig. 1).

Synthesis, operation and characterization

The synthetic route towards our system started with the
preparation of aldehyde 6 (Scheme 1). Williamson reaction
between 4-hydroxybenzaldehyde (1) and 3-bromo-1-propanol,
followed by a protection of the aldehyde group as an acetal
employing 2,2-dimethyl-1,3-propanediol afforded intermedi-
ate 2 in good yield (85% and 73% for the first and second
step, respectively). Treatment with 2-chloroethanesulfonyl
chloride in basic medium gave vinyl sulfonate 3 in 80% yield.
Subsequent MAVS reaction with thiol stopper 4 23 yielded
compound 5 in excellent yield (quant). Finally, cleavage of
the acetal moiety with trifluoroacetic acid afforded aldehyde
6 in 95% yield.

To obtain the target thread precursor we performed a reduc-
tive amination between aldehyde 6 and amine 7 (see the ESI†
for its synthesis) followed by a Boc-protection of the resulting
dibenzylamine derivative giving intermediate 8 in very good
yield (80%). Finally, treatment with CF3CO2H and Et3SiH
cleaved both trityl and Boc protecting groups. Subsequent
reprotection of the amine followed by a MAVS reaction

Fig. 1 Proposed strategy for the unidirectional and irreversible transportation of a macrocycle through the linear element of a [2]rotaxane following
a flashing energy ratchet mechanism and exploiting the reactivity of the vinyl sulfone and vinyl sulfonate groups. The binding constant between
DB24C8 and the dibenzylammonium motif in CDCl3 has been taken from ref. 26.
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between the resulting thiol and divinyl sulfone afforded 9. A
final deprotection of the amine, followed by protonation and
counterion exchange, afforded the thread precursor 10·PF6

− in
an overall 44% yield (from 8) (Scheme 2).

Having synthesized the thread precursor 10·PF6
−, we

carried out the synthesis of free thread S12·PF6
− (see ESI†) as

reference for the 1H NMR analysis and to test the thia-Michael
addition reaction, which afforded good results. Then, we
started the stepwise transportation of macrocycle 12 through
the linear component, tackling the synthesis of rotaxane
13·PF6

−. Therefore, we carried out the supramolecular assem-
bly of the pseudorotaxane composed by 10·PF6

− and DB24C8
(12). This threading is an equilibrium process, being the com-
plexation between macrocycle and dibenzylammonium deri-
vate favoured by the moderately high binding constant in
CDCl3, which ensures a good degree of association at NMR
concentrations. However, to further displace the equilibrium
towards the pseudorotaxane and maximize the extent of com-
plexation, higher concentrations (0.021 M or higher for
10·PF6

−) and an excess of DB24C8 (5 equiv.) were used (see
Experimental section in the ESI†).27 1H NMR analysis showed,
once equilibrium was reached, two set of signals, one for the
pseudorotaxane and a second one for the excess of macrocycle.
In this sense, the right integration of the diagnostic NMR
signals (see below) and the fact that no free 10·PF6

− was
detected (e.g. no signals for uncomplexed Hd and He were
observed), supported a high degree of association (Fig. S1 and
S2†). Subsequently we performed a DMAP-catalyzed MAVS
reaction23,28 of thiol stopper 11 (see ESI† for the synthesis) to
the terminal vinyl sulfone group in 10·PF6

− at 0 °C, yielding
the target [2]rotaxane 13·PF6

− in 66% yield (Scheme 3a).

Scheme 1 Synthesis of aldehyde 6: reagents and conditions: (a)
3-Bromo-1-propanol, K2CO3, CH3CN, 75 °C, 24 h, 85%. (b) 2,2-
dimethyl-1,3-propanediol, DL-10-camphorsulfonic acid, molecular
sieves (3 Å), toluene, 100 °C, 18 h, 73%. (c) 2-chloroethanesulfonyl
chloride, Et3N, CH2Cl2, 0–4 °C, 1 h, 80%. (d) Et3N, PPh3, CH2Cl2/

iPrOH
(8 : 1), r.t., 24 h, quant. (e) CF3CO2H, H2O, CH2Cl2, r.t., 5 h, 95%.

Scheme 2 Synthesis of thread precursor 10·PF6
−: reagents and conditions: (a) 1. MeOH/THF (8 : 5), r.t., 24 h; 2. NaBH4, MeOH/THF (8 : 5), r.t., 24 h;

3. Boc2O, Et3N, CH2Cl2, r.t., 24 h, 80%. (b) 1. CF3CO2H, Et3SiH, CH2Cl2, r.t., 6 h; 2. Boc2O, Et3N, CH2Cl2, r.t., 5 h; 3. divinyl sulfone, Et3N, CH2Cl2, r.t.,
14 h, 52% (over 3 steps). (c) 1. CF3CO2H, CH2Cl2, r.t., 5 h; 2. HCl (2 M in Et2O), CH2Cl2, r.t., 3 h; 3. KPF6, CH2Cl2/acetone/H2O (4 : 5 : 5), r.t., 18 h, 84%
(over 3 steps).
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[2]rotaxane 13·PF6
− was characterized by means of 1D and

2D NMR techniques. As it can be seen on the comparison of
its 1H NMR spectrum with those of the free thread and macro-
cycle, the aromatic hydrogen nuclei on both rotaxane com-
ponents suffered some changes (Fig. 2). Thus, the signals of
the crown ether aromatic H atoms (H4 and H5) no longer
showed the same chemical shift observed in the spectrum of
the free macrocycle in CDCl3 as a result of a more pronounced
difference in the chemical environment of those nuclei, while
those from the axle suffer an upfield shift. Regarding the CH2

signals, the benzylic protons from the thread show the typical
downfield shift (ΔδHb,Hc = 0.53 ppm) associated with the estab-
lishment of hydrogen bonds between the ammonium unit and
the macrocycle, meanwhile those from the ring are shielded
(ΔδH1 = −0.40 ppm; ΔδH2 = −0.17 ppm; ΔδH3 = −0.03 ppm).
These variations in the 1H NMR spectrum are typical for this
type of recognition motif based on hydrogen bonding, sup-
porting the formation of the interlocked rotaxane architecture.
Furthermore, the ammonium H atoms also exhibit an upfield
shift (ΔδHa = −1.03 ppm), because of their interaction with the
crown ether macrocycle (Fig. 2). Moreover, the DOSY NMR
spectrum of 13·PF6

− exhibits the signals from the both the
ring and the axle diffusing at the same diffusion coefficient
(Fig. 3a).

To further confirm the interlocked nature of 13·PF6 we also
recorded and analyzed the NMR spectrum of the isolated com-
pound in DMSO-d6. DMSO is a hydrogen bond acceptor, so its

strong competitive character in hydrogen bonding interactions
precludes any binding between macrocycle and dibenzylam-
monium motifs in non-interlocked species.26 In this case, we
could observe changes in the chemical shift of the signals of
the dibenzylammonium unit and that of macrocycle H1 that
follow the same trends already seen and discussed in CDCl3
(Fig. S3†). Moreover, the DOSY experiment in DMSO-d6 also
shows that the structure diffuses as a whole, with the signals
corresponding to the macrocycle and the thread showing the
same diffusion coefficient (Fig. S4†).

Lastly, analysis by ESI-TOF high-resolution mass spec-
trometry confirmed the identity of [2]rotaxane 13·PF6

−. Indeed,
the spectrum shows a signal corresponding to an ion resulting
from the loss of the PF6

− counterion with an exact mass (m/z =
1708.7335) and isotopic distribution that nicely match the
theoretical ones (Fig. 3b).

The next step was the cleavage of [2]rotaxane 13·PF6
−

exploiting the CAD chemistry of the vinyl sulfonate group. For
this purpose, we ideally wanted to find a nucleophilic substi-
tution proceeding without the need of a base, at room temp-
erature and in a chlorinated solvent. After a few unsuccessful
attempts, we rediscovered a reaction described by Gore and co-
workers in 1976,29 which was scarcely employed since then.
Thus, MgBr2 was capable of displacing sulfonate groups in
CH2Cl2 or CHCl3 at room temperature in a near quantitative
fashion, creating bromoalkanes. Therefore, after successfully
testing this reaction with thread S11 (see ESI†) we applied it to

Scheme 3 Unidirectional transport of DB24C8 (12) through the formation and cleavage of rotaxane 13·PF6
−: reagents and conditions: (a) DMAP(cat),

CHCl3, 0 °C, 72 h, 66%. (b) 1. MgBr2, CHCl3, r.t., 48 h; 2. Et3N, CDCl3, r.t., 10 min, 92% (for 12) and 70% (for 14/15 (1 : 1)).
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our system. [2]rotaxane 13·PF6
− was treated with MgBr2, result-

ing in the controlled cleavage of its sulfonate unit. As no hydro-
gen bonding interactions are established between DB24C8 and
non-protonated secondary amines, the addition of a base to
deprotonate the dibenzylamine moiety led to a full release of
the macrocycle from the cleaved thread (Fig. S5b in the ESI†).
After treatment with Et3N, the compounds in the reaction
mixture were separated by column chromatography. In this
fashion we could isolate macrocycle 12 and a mixture of thread
fragments 14/15 (1 : 1) in very good isolated yields (92% and
70% respectively) (Scheme 3b). Their identity was confirmed by
NMR and MS techniques (see experimental procedure and
Fig. S5, S61–S65 and S82–S85 in the ESI† for further details).
The isolation of these compounds confirms the cleavage in a
selective and controlled manner of the sulfonate moiety, sup-
porting the release of the macrocycle through the opposite side
of its entrance and the proposed operation mechanism.

In situ operation

Having demonstrated that the transportation can be accom-
plished stepwise, our final goal was the in situ unidirectional
transport of DB24C8 (12). For this purpose, we performed the
sequence of reactions of the previous stepwise operation in
CDCl3 and monitored them by HRMS and 1H NMR spectroscopy.

The first step was the assembly of a pseudorotaxane
between DB24C8 (12) and thread precursor 10·PF6

−, with an

Fig. 2 1H NMR (500 MHz, CDCl3) spectra of: (a) Macrocycle 12. (b) Rotaxane 13·PF6
−. (c) Thread S12·PF6

−.

Fig. 3 (a) DOSY NMR (500 MHz, CDCl3) spectrum of rotaxane 13·PF6
−.

(b) HRMS (ESI+) spectrum of rotaxane 13·PF6
−. Inset: Calculated (top)

and experimental (bottom) isotopic distribution for the [M−PF6−]+ peak.
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unstoppered vinyl sulfone group on one end and a bulky sulfo-
nate stopper on the opposite one. Therefore, by stirring both
compounds in CDCl3 under the concentration and stoichio-
metry conditions discussed for the rotaxane synthesis, the
generation of the pseudorotaxane was achieved. This was con-
firmed by the analysis of the chemical shift and integration of
the diagnostic signals (e.g. those of Ha, Hb, Hc or H1) in the

1H NMR spectrum. These signals displayed chemical shifts
and integration similar to those already discussed for the step-
wise operation that can be associated with the establishment
of hydrogen bond interactions between the crown ether and
the ammonium unit (Fig. 4a–c). As previously observed, only
one set of signals was oberved for 10·PF6

−, supporting a high
degree of complexation with the concentration of free 10·PF6

−

Fig. 4 In situ unidirectional transport experiment of macrocycle 12. 1H NMR (CDCl3) spectra of: (a) Macrocycle 12 (500 MHz). (b) Thread precursor
10·PF6

− (500 MHz). (c) Mixture of 10·PF6
− (21 mM) and 12 (5 equiv.) after stirring for 72 h (400 MHz). (d) Mixture c 96 h after the addition of stopper

11 and DMAP(cat) (signals at 8.1–8.2 ppm, 6.5 ppm and 3.0 ppm) (400 MHz). (e) Mixture d stirred for 48 h in the presence of MgBr2 and for additional
60 min after the addition of Et3N (400 MHz). (f ) Compound 14 (500 MHz). The signals marked with an asterisk correspond to the excess of DB24C8.
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below the NMR detection limit. The pseudorotaxane was also
detected by HRMS. Thus, the spectra of the mixture of 12 and
10·PF6

− showed a peak (m/z = 1428.5527), which matched the
threaded species (Fig. S10 and S11†).30

Subsequent addition of thiol stopper 11 and a catalytic
amount of DMAP as catalyst for the MAVS reaction between
the thiol and the vinyl sulfone moieties afforded rotaxane
13·PF6

−. As shown in Fig. 4d, the chemical shifts of the key
signals remained essentially unaltered respect to the pseudoro-
taxane and were comparable to those of pure rotaxane 13·PF6

−

(Fig. 4d).31 Moreover, the existence of rotaxane 13·PF6
− was

confirmed by HRMS since we detected the peak corresponding
to its exact mass (m/z = 1708.7354 for [M–PF6

−]+) (Fig. S13 and
S14†), which displayed an isotopic distribution that nicely
matched the calculated one. In this way, the threading of the
macrocycle through the unstoppered side of the thread and its
capture by capping was achieved, completing the first part of
the directional transport.

To finish the operation and release the macrocycle through
the opposite side of the thread we performed the cleavage of
the bulky sulfonate group of rotaxane 13·PF6

− with MgBr2.
Positive-mode HRMS allowed the detection of a new signal
belonging to the pseudorotaxane formed by macrocycle 12 and
cleaved axle 14-H+·PF6

− (m/z: 1270.5002 [M–PF6
−]+) (Fig. S16

and S17†).30 Moreover, in negative mode, a signal corres-
ponding to the sulfonate cleaved stopper 15 (m/z: 517.1504
[M]−) was also present (Fig. S18 and S19†). Lastly, after the
addition of Et3N, the

1H NMR spectrum showed the appear-
ance of a triplet at δ = 3.60 ppm, which matches a CH2–Br
bond newly created, thus, corresponding to Hj. In addition,
those of DB24C8 (12) shifted back to their original position
(Fig. 4e). These results confirm the second part of the oper-
ation, in which the negigible interaction between crown ethers
and non-protonated secondary amines promotes the macro-
cycle to be relased from the thread through the opposite side
of its entrance by cleavage of the sulfonate group, initially
stoppered.

Therefore, the in situ unidirectional transport of DB24C8 in
a [2]rotaxane by a combination of click MAVS reactions and the
CAD chemistry of the vinyl sulfonate group is demonstrated.

Conclusions

In summary, we have described the irreversible unidirectional
transportation of a DB24C8 macrocycle along a dibenzyla-
mine/ammonium axle, through a [2]rotaxane, exploiting the
chemistry of the vinyl sulfone and the vinyl sulfonate groups.
This system is based on a pH- and chemically-driven flashing
ratchet mechanism. Indeed, initially, the macrocycle enters by
the non-stoppered vinyl sulfone side of the molecule and via a
thia-Michael addition of a thiol stopper to the latter, the rotax-
ane is capped. Subsequently, the MIM is cleaved through a
nucleophilic attack on the sulfonate moiety derived from a
vinyl sulfonate group on the opposite side and, finally, after
addition of base, the macrocycle is liberated through the oppo-

site side to its entrance, achieving the unidirectional transpor-
tation. During the operation, the efficiency of the click MAVS
chemistry and the CAD chemistry of the vinyl sulfonate group
has again been demonstrated. As result, the operation of the
system has also been demonstrated in situ.

Thus, the CAD chemistry of the vinyl sulfonate group is an
efficient tool for the development of cleavable rotaxanes.
Moreover, since it is possible to control the unidirectional
translational movement of a ring through a rotaxane using a
combination of the MAVS and CAD chemistries, the latter
could be interesting potential tools for the development of
future advanced delivery systems.
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