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Electrocatalytic CO, reduction provides a possible method for carbon neutralization. Electrode materials
with efficient electron transfer, high selectivity and large current density are highly desirable. Herein, we
have developed a couple of tetraphenyl-p-phenylenediamine and metalloporphyrin-based 2D COFs for the
electrocatalytic CO, reduction. TPPDA-MPor-COFs (M = Co and Ni) were obtained by the cross-conden-
sation of tetraphenyl-p-phenylenediamine (TPPDA) and 5,10,15,20-tetrakis(4-formylphenyl)-metallopor-
phyrin (MPor). The as-prepared TPPDA-CoPor-COF shows high CO faradaic efficiencies of 87-90% from
—0.6 to —0.9 V vs. RHE, and the largest CO partial current density (jco) of TPPDA-CoPor-COF (-22.2 mA
cm™ at —1.0 V vs. RHE) exceeds those of most of the reported COF-based electrocatalysts. Notably, exfo-
liated TPPDA-CoPor-COF nanosheets (TPPDA-CoPor-COF-NSs) show much better electrocatalytic per-
formance. The CO faradaic efficiencies of TPPDA-CoPor-COF-NSs are over 90% in a wider voltage range
(0.7 to —0.9 V), and the maximum jco reaches up to —29.2 mA cm™2 at —1.0 V. Density functional theory
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Introduction

In order to achieve carbon neutralization, photocatalysis,"
electrocatalysis*® and thermal catalysis” have been developed
over the past decades. The electrocatalytic CO, reduction reac-
tion (CO,RR) is considered as a promising strategy among
them, which is clean and mild and can be associated with
renewable energy.®® Varieties of homogeneous and hetero-
geneous catalysts have been developed for the efficient and
selective electrocatalytic CO,RR.**™” Although homogeneous
catalysts have been proved to show low overpotential and high
selectivity by means of smart design and functional group
regulation,"" inefficient electron transfer and poor stability in
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calculations have been performed to rationalize the improved CO,RR performance of TPPDA-CoPor-COF.

homogeneous organic catalytic systems restrain their practical
application. Meanwhile, due to their aqueous compatibility
and great catalytic activity, various heterogeneous catalysts
have been investigated.'®"?

As promising porous crystalline materials, metal-organic
frameworks (MOFs)*** and covalent organic frameworks
(COFs)**?* have been explored for the electrocatalytic CO,RR.
In particular, the building blocks of COFs can be manipulated
precisely for specific activity and selectivity. Some active homo-
geneous molecular catalysts, such as porphyrins®*' and
phthalocyanines,*** could be integrated into COFs as build-
ing blocks for the electrocatalytic CO,RR. Nevertheless, most
of the reported COF materials exhibit limited current density
and relatively low faradaic efficiency. Hence, novel COFs with
high current density and excellent energy conversion efficiency
are highly desirable.

Tetraphenyl-p-phenylenediamine, as a typical electron
donor, has a high electron transfer capability and has been
widely used in preparing electrochemically active
materials.**° On the other hand, metalloporphyrins (MPor)
can function as excellent electron acceptors and charge trans-
fer components due to their conjugated macrocyclic
structures.?” 222 Therefore, efficient intramolecular elec-
tron transfer paths might be constructed by integrating TPPDA
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MPor TPPDA-MPor-COF (M = Co and Ni)

Fig. 1 The synthesis of TPPDA-MPor-COFs (M = Co and Ni).

and MPor into two-dimensional COFs, and enhanced electro-
catalytic CO,RR activities are expected for the obtained COFs.

Herein, MPor and TPPDA-based COFs (TPPDA-MPor-COFs,
M = Co(u) and Ni(u)) have been synthesized for the first time
(Fig. 1). TPPDA-CoPor-COF exhibits high CO faradaic efficien-
cies (FEco) and large CO partial current densities ( jco), which
can be further improved by physical ultrasonic exfoliation. The
obtained TPPDA-CoPor-COF nanosheets (TPPDA-CoPor-
COF-NSs) show a maximum FE¢q of 92% at —0.7 V and a jgo of
—29.2 mA cm™” at —1.0 V vs. RHE. The excellent electrocatalytic
properties can be attributed to the large amount of accessible
Co(u) sites and efficient electron transfer from TPPDA to CoPor
blocks in these COF-based materials.

Results and discussion

Synthesis and characterization

TPPDA-MPor-COFs (M = Co and Ni) were synthesized via
Schiff-base condensation of TPPDA and MPor (M = Co and Ni).
The experimental powder X-ray diffraction (PXRD) patterns
show that TPPDA-MPor-COFs have good crystallinity (Fig. 2a
and S1t). Le Bail refinements of TPPDA-MPor-COFs were
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Fig. 2 (a) Experimental PXRD patterns, (b) FT-IR spectra, (c) N, sorption
isotherm at 77 K and (d) CO, sorption isotherm at 298 K for
TPPDA-CoPor-COF.
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carried out on the basis of experimental PXRD data
(Fig. S27).** Eclipsed (AA) and staggered (AB) stacking models
of TPPDA-CoPor-COF were constructed, where the former one
matches well with the experimental data. Furthermore, the
refined results of TPPDA-CoPor-COF show low residual values
(Rp = 5.04% and Ry, = 7.50%) indicating the validity of the AA
stacking model. The unit cell information of TPPDA-CoPor-
COF has been obtained as follows: triclinic P1 space group, a =
24.56 A, b =25.08 A and ¢ = 4.63 A, @ = 66.76°, f = 104.04°, y =
90.83°. In the experimental PXRD pattern of TPPDA-CoPor-
COF (Fig. 2a), the strong diffraction signals at 3.77°, 5.09° and
5.54° are assigned to the (100), (110) and (1-10) planes,
respectively. A couple of weak signals at 10.20° and 11.12° are
attributed to the (220) and (130) planes, respectively.
TPPDA-NiPor-COF (Fig. S1t) shows similar PXRD results.

In the FT-IR spectra of TPPDA-MPor-COFs (Fig. 2b and
S31), the peaks at 1622 cm™' reveal that the imine bond
(C=N) formed successfully, along with a decrease of C=0
(1699 cm™) and N-H (3458-3348 cm ' and 1620 cm ')
vibrations for MPor and TPPDA monomers, respectively.** In
the solid-state electronic absorption spectrum, the character-
istic absorptions of the MPor moiety (i.e. Q-band, 541 nm;
sorbet band 432 nm) can be observed, suggesting the success-
ful integration of the cobalt porphyrin unit into TPPDA-CoPor-
COF (Fig. S47).

The XPS spectra reveal the presence of C, N and Co/Ni
elements in the two COFs (Fig. S5a and Sé6af), and the two
COFs show three characteristic peaks corresponding to the
C-N (pyrrolic nitrogen) bond (398.6 and 398.7 eV) of MPor, and
the C=N bond (399.0 and 399.1 eV) and the C-N bond (399.6
eV) of TPPDA, respectively (Fig. S5b and S6bt), further indicat-
ing the formation of the imine bond.*> In addition, the XPS
analyses of Co 2p and Ni 2p indicate that all the metal sites in
TPPDA-MPor-COFs are divalent (Fig. S5¢ and Sé6ct).**” The N,
sorption curves of the two COFs display type I-isotherms
(Fig. 2c and S8t). The adsorption curves show a steep increase
when P/P, < 0.01, corresponding to the presence of permanent
micropores. The Brunauer-Emmett-Teller (BET) surface area
and the total pore volume of TPPDA-CoPor-COF were 1209 m?*
g ' and 0.99 cm® g7, respectively (Fig. 2c). TPPDA-CoPor-COF
displays two pore sizes (1.2 nm and 1.5 nm) (Fig. S71), being
consistent with the simulated structure (Fig. 1). TPPDA-NiPor-
COF shows similar N, sorption and porous properties (Fig. S8
and S97). Besides, TPPDA-CoPor-COF and TPPDA-NiPor-COF
show moderate CO, sorption capacities of 26.8 cm® g™ and
28.1 em® g~ at 25 °C and 1.0 bar, respectively (Fig. 2d and
S107), indicating the CO, affinity of TPPDA-MPor-COFs.

The scanning electron microscopy (SEM) and transmission
electron microscopy (TEM) images show that TPPDA-MPor-
COFs have layered morphologies with sizes of 100-500 nm
(Fig. 3a, b and S11}). The element energy dispersive spec-
troscopy (EDS) mapping images (Fig. 3c and S12t) show the
uniform distribution of metal ions (Co or Ni), C and N
elements in TPPDA-CoPor-COF and TPPDA-NiPor-COF, respect-
ively. The total Co content (3.35%) of TPPDA-CoPor-COF and
Ni content (3.20%) of TPPDA-CoPor-COF were measured by

This journal is © the Partner Organisations 2022
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Fig. 3 (a) SEM, (b) TEM and (c) EDS mapping images of TPPDA-CoPor-
COF.
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Fig. 4 (a) Co K-edge XANES spectra of TPPDA-CoPor-COF, CoPc, CoO
and Co foil. (b) FT EXAFS spectra of TPPDA-CoPor-COF, CoPc, CoO and
Co foil. (c) The EXAFS fitting curve of TPPDA-CoPor-COF.

ICP tests (Table S1t), and are reasonably lower than the calcu-
lated metal contents. Thermal gravimetric analyses (TGAs)
were carried out under a nitrogen atmosphere (Fig. S137).
TPPDA-MPor-COFs only displayed a slight weight loss till
500 °C owing to the loss of residual solvents, suggesting the
high thermal stability of the COFs.

The Co K-edge XANES spectra of TPPDA-CoPor-COF and
CoPc exhibit similar curves, suggesting that the coordination
environment of Co atoms in TPPDA-CoPor-COF are the same
as that of CoPc (Fig. 4a). In the Fourier-transform (FT) EXAFS
curves, TPPDA-CoPor-COF displays a strong signal at 1.53 A
corresponding to the Co-N scattering path (Fig. 4b),"® and no
signal of Co-Co bonds was detected. EXAFS fitting for
TPPDA-CoPor-COF was conducted using Co-N, coordination
models. The result also suggests that the Co site in
TPPDA-CoPor-COF is coordinated with four nitrogen atoms
(Fig. 4c and Table S2}). TPPDA-NiPor-COF shows similar
results (Fig. S147).

Electrocatalytic performance

To investigate the catalytic performances of the COFs, a H-cell
with a standard three-electrode system and 0.5 M KHCO; elec-
trolyte solution was used. In order to avoid the accidental
factors, three parallel experiments were conducted. All poten-
tials are presented relative to the reversible hydrogen electrode
(RHE) in this work.

This journal is © the Partner Organisations 2022
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Fig. 5 (a) LSV curves, (b) FEco, (c) jco. (d) TOF and (e) Tafel plots of
TPPDA-MPor-COFs. (f) Lasting stability test for TPPDA-CoPor-COF at
-0.8V.

Linear sweep voltammetry (LSV) curves were obtained in
CO, and Ar-saturated 0.5 M KHCOj3, respectively (Fig. 5a). The
onset potential of TPPDA-CoPor-COF (—0.46 V) is more positive
than that of TPPDA-NiPor-COF (—0.72 V). TPPDA-CoPor-COF
also exhibits larger current densities in CO,-saturated solution
than in Ar-saturated solution from —0.5 to —1.0 V, suggesting
greater electrocatalytic CO,RR activity than the hydrogen evol-
ution reaction (HER) activity. Short-term electrolysis tests and
the corresponding gas chromatography analyses show that the
products of the electrocatalytic CO,RR were carbon monoxide
and hydrogen (Fig. S15 and S167}). The nuclear magnetic reso-
nance experiment shows that no liquid product is generated
during the reduction process (Fig. S171). Only a negligible
amount of CO was detected when the control electrolysis was
conducted in an Ar-saturated 0.5 M KHCO; electrolyte
(Fig. S187). Furthermore, carbon cloth decorated with Vulcan
XC-72R carbon black and Nafion shows almost no electro-
catalytic CO,RR activity in the CO,-saturated electrolyte
(Fig. S19%). According to the above results, the source of CO
and the electrocatalytic CO,RR activity of TPPDA-CoPor-COF
can be confirmed.

TPPDA-CoPor-COF exhibits high CO faradaic efficiencies
(FEco) of 87-90% in the range of —0.6 to —0.9 V (Fig. 5b),
while TPPDA-NiPor-COF shows lower FE¢ (i.e. 60-76% in —0.7
to —0.9 V). The joo values of TPPDA-CoPor-COF increase with
elevated applied potential and reach up to —22.2 mA ecm™> at
—1.0 V, which is 5.7-fold that of TPPDA-NiPor-COF (—3.9 mA
em™?) (Fig. 5¢) and surpasses most of the reported COFs
(Fig. S20 and Table S3f). Moreover, in comparison with
TPPDA-CoPor-COF, the maximum FEg of the CoPor monomer
is only 76% at —0.8 V, and the maximum jgo value is only
—11.8 mA cm™> at —1.0 V (Fig. S21%), and the TPPDA monomer
shows nearly 100% FE of H, in the range of —0.7 to —1.0 V
(Fig. S221). The above results indicate that the TPPDA unit
plays an important role in promoting the electrocatalytic
CO,RR activity of TPPDA-CoPor-COF. Besides, the turnover fre-
quency (TOF) of TPPDA-CoPor-COF was calculated to be 1.4 s
at —0.9 Vand 2.0 s" at —=1.0 V (Fig. 5d).

The Tafel slopes of TPPDA-CoPor-COF and TPPDA-NiPor-
COF are tested to be 224 mV dec™" and 226 mV dec™", respect-
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ively (Fig. 5e). The results imply the slightly superior reactivity
of Co over Ni sites. The Nyquist plots of the electrochemical
impedance test illustrate that TPPDA-CoPor-COF has a smaller
charge-transfer resistance than TPPDA-NiPor-COF during the
electrocatalytic CO,RR process (Fig. S231), confirming its more
efficient electron transfer from the catalyst surface to the CO,
molecules. To compare the electrochemically active surface
areas (ECSAs) of TPPDA-MPor-COFs, electrochemical double-
layer capacitances (Cq) were acquired (Fig. S247).
TPPDA-CoPor-COF presents a Cq value of 2.61 mF cm™2,
which is larger than 1.31 mF c¢cm™> for TPPDA-NiPor-COF,
further indicating that TPPDA-CoPor-COF shows higher
inherent catalytic activity.

Chronoamperometric ~ tests  were  performed  for
TPPDA-CoPor-COF to evaluate the durability at —0.8 V in the
H-cell. The corresponding FEco values remained higher than
80% in the 10 h electrolysis experiment (Fig. 5f), demonstrat-
ing that TPPDA-CoPor-COF has an acceptable electrochemical
catalytic stability in spite of a decrease of the current density
(~20%). The stability of TPPDA-CoPor-COF was further demon-
strated by the almost unchanged XPS (Fig. S251) and PXRD
(Fig. S26%) data after 2 h and 10 h of electrocatalysis at —0.8
V. The SEM and TEM (Fig. S27}) images of TPPDA-CoPor-COF
after 2 h and 10 h of electrolysis suggest that the layered mor-
phology of the catalysts is retained well. The above results well
disclose its good electrochemical catalytic stability.

Based on previous reports,>”*® the high stability and per-
formance of two-dimensional TPPDA-CoPor-COF motivated us
to ultrasonically exfoliate the materials to further improve
their catalytic activity. TPPDA-CoPor-COF was converted into
TPPDA-CoPor-COF-NSs with a thin-layered morphology
(Fig. S28t) and a thickness of ~7 nm as proved by atomic force
microscopy (AFM) measurements (Fig. 6a and b). Almost iden-
tical PXRD curves indicated that the periodic structure of
TPPDA-CoPor-COF was retained in the nanosheets after ultra-
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Fig. 6 (a) The atomic force microscopy topographical image. (b)
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(d) Lasting stability test of TPPDA-CoPor-COF-NSs at —0.7 V.
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sonic exfoliation (Fig. S29t). To evaluate the electrocatalytic
CO,RR performance of TPPDA-CoPor-COF-NSs, the same
short- and long-term electrolysis tests were conducted (Fig. S30
and S317), and the corresponding FEqo and joo were calcu-
lated. The FEo values of TPPDA-CoPor-COF-NSs are above
90% in a wider range (—0.7 to —0.9 V) than those of
TPPDA-CoPor-COF (Fig. 6¢). The maximum FE¢o value of
TPPDA-CoPor-COF-NSs is 92% at —0.7 V and the jco reaches
up to —29.2 mA cm~> at —1.0 V (Fig. 6d), which are higher
than those of the unexfoliated one. The promoted CO,RR per-
formance of TPPDA-CoPor-COF-NSs could be attributed to the
more exposed Co active sites.’”?® Besides, a 10 h chrono-
amperometric test of the nanosheets at —0.7 V was carried out.
Same as the unexfoliated one, the corresponding FEqo can be
kept above 80% in the whole electrolysis process as well
(Fig. S29%), indicating that TPPDA-CoPor-COF-NSs also have
tolerable electrochemical catalytic stability, although
accompanied by a certain degree of current density
attenuation.

DFT calculations

The frontier molecular orbitals of the repeat unit in
TPPDA-MPor-COFs were calculated by DFT calculations
(Fig. S32 and S33f). The HOMO is located on the TPPDA
moiety, while the LUMO is on the MPor moiety, implying the
electronic donor-acceptor configuration of the two COFs,
which usually means decreased band gaps and enhanced elec-
tron transfer properties for organic semiconductors.

To understand the superior CO,RR performance of
TPPDA-CoPor-COF, the CO,RR and HER mechanisms were cal-
culated together with those of TPPDA-NiPor-COF and the
CoPor monomer (Fig. 7a-c). According to the calculated rela-
tive free energies, the rate determining steps (RDSs) for the
CO,RR and HER are the formation of *COOH and *H inter-
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mediates, respectively.”® The AGgrps values of the CO,RR for
TPPDA-CoPor-COF (0.98 eV), TPPDA-NiPor-COF (1.10 eV) and
CoPor (1.13 eV) are all lower than the respective AGgps values
of the HER (1.11 eV, 1.24 eV, and 1.15 eV), indicating their pre-
ferable CO,RR activity. TPPDA-CoPor-COF exhibits dramati-
cally reduced AGgrps of the CO,RR relative to the CoPor
monomer, suggesting that the introduction of the TPPDA unit
and the formation of COFs could promote the CO,RR activity
of the CoPor core. Mulliken population and frontier orbital
analyses afforded consistent results (Fig. 7d and Fig. S347).>°
The Mulliken atom charge of the Co sites in TPPDA-CoPor-
COF (0.76) is lower than that in the CoPor monomer (0.77),
indicating the more electron-rich environment of the Co atom
in TPPDA-CoPor-COF. The LUMO level of TPPDA-CoPor is
—2.29 eV, which is higher than that of CoPor (—2.42 eV),
suggesting the higher reducibility of TPPDA-CoPor-COF in the
electrocatalytic process. TPPDA-NiPor-COF displays a higher
AGgrps of the CO,RR than that of TPPDA-CoPor-COF,
suggesting the harder formation of *COOH intermediates on
TPPDA-NiPor-COF. Furthermore, the desorption of CO from
TPPDA-NiPor-COF (*CO — *+CO) is endothermic, while this
step for TPPDA-CoPor-COF is exothermic (Fig. 7b), indicating
that the Co site shows superior CO,RR activity than the Ni site
in the COFs, which is consistent with the experimental results.

Conclusions

In summary, metalloporphyrin- and TPPDA-based two-dimen-
sional COFs were explored for the electrocatalytic CO,RR in
the H-cell. The obtained TPPDA-CoPor-COF exhibits a high
FEco of 87-90% in the range of —0.6 to —0.9 V and a
maximum jco of —22.2 mA em™? at —1.0 V. The exfoliated
TPPDA-CoPor-COF-NSs show further improved FEqo and jco
than the as-prepared TPPDA-CoPor-COF. DFT calculations
reveal that the integration of the TPPDA block enhances the
electron transfer ability of TPPDA-MPor-COFs and reduces the
CO,RR energy barrier of the CoPor core. This work would be
conducive to the rationally designed novel COF-based electro-
catalysts towards the CO,RR.
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