
Polymer Chemistry

CORRECTION

View Article Online
View Journal | View Issue

Cite this: *Polym. Chem.*, 2022, **13**, 1282

Correction: Thermal response and thermochromism of methyl red-based copolymer systems – coupled responsiveness in critical solution behaviour and optical absorption properties

Thorben Gwydion Jaik, Betty Ciubini, Francesca Frascella and Ulrich Jonas*

DOI: 10.1039/d2py90024f rsc.li/polymers

Correction for 'Thermal response and thermochromism of methyl red-based copolymer systems – coupled responsiveness in critical solution behaviour and optical absorption properties' by Thorben Gwydion Jaik *et al.*, *Polym. Chem.*, 2022, DOI: 10.1039/D1PY01361K.

The Royal Society of Chemistry regrets the incorrect colour scheme applied in Table 7 in the original manuscript. The corrected version of Table 7 of this paper is shown below.

Table 7 Overview of the relevant parameters obtained from van't Hoff analyses of thermochromic solutions of methyl red-based monomers and different polymer systems. "a", "b", and "c term" refer to the raw data from the van't Hoff analyses and the colour code is applied to distinguish categories of thermo-halochromic systems with similar behaviour, both discussed in the main text

System	Solvent	Acid	a term	b term	c term	ΔH_0 [kJ]	$\Delta C_{\rm p} \left[{ m kJ~K}^{-1} ight]$	Linearity factor [°C]
o-MREAm	EtOH	130 mM TFA	-55.7	0.071	-13.7	-34	-0.11	47
m-MREAm	EtOH	130 mM TFA	-56.7	0.062	-13.0	-32	-0.11	84
<i>p</i> -MREAm	EtOH	130 mM TFA	-41.8	0.054	-10.0	-25	-0.08	62
o-MREAm	H_2O : EtOH	2.2 mM HCl	155	-0.081	31.4	78	0.26	26
<i>m</i> -MREAm	H_2O : EtOH	11 mM HCl	102	-0.049	20.4	51	0.17	33
<i>p</i> -MREAm	H_2O : EtOH	5.9 mM HCl	125	-0.063	25.3	63	0.21	28
P1	EtOH	130 mM TFA	-55.5	0.063	-13.2	-33	-0.11	83
P1	H_2O	0.13 mM TFA	13.0	0.016	1.48	3.7	0.01	45
P1gel	H_2O	1.3 mM TFA	-11.6	0.024	-3.23	-8.0	-0.03	97
P2	EtOH	130 mM TFA	-55.4	0.061	-13.0	-32	-0.11	92
P2	H_2O	0.13 mM TFA	14.8	0.023	1.51	3.7	0.01	36
P2gel	H_2O	1.3 mM TFA	-52.7	0.066	-12.6	-31	-0.11	51
P2b	H_2O	0.13 mM TFA	-538	0.46	-119	-295	-0.99	29
P3	H_2O	MAA	18.7	0.014	2.79	6.9	0.02	39
P3gel	H_2O	MAA	-7 3	0.076	-16.6	-41	-0.14	75
P4 0.15 g L^{-1}	$\rm H_2O$	MAA	-367	0.35	-82.2	-204	-0.68	23
P4 0.2 g L^{-1}	H_2O	MAA	-544	0.48	-120	-298	-1.00	27
P4 0.3 g L^{-1}	H_2O	MAA	-633	0.55	-139	-345	-1.2	30
P4gel	H_2O	MAA	-1950	1.53	-422	-1046	-3.51	-34

The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.

^aDepartment of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Strasse 2, D-57076 Siegen, Germany. E-mail: jonas@chemie.uni-siegen.de

^bDepartment of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, IT-10129 Torino, Italy