Nanoscale

View Article Online

CORRECTION

Check for updates

Cite this: Nanoscale, 2022, 14, 6670

Correction: All-purpose nanostrategy based on dose deposition enhancement, cell cycle arrest, DNA damage, and ROS production as prostate cancer radiosensitizer for potential clinical translation

Xiao-xiao Guo,^{a,b} Zhen-hu Guo,^c Jing-song Lu,^c Wen-sheng Xie,^c Qiu-zi Zhong,^d Xiao-dan Sun,^c Xiu-mei Wang,^c Jian-ye Wang,^{*a,b} Ming Liu^{*a} and Ling-yun Zhao^{*c}

DOI: 10.1039/d2nr90081e

Correction for 'All-purpose nanostrategy based on dose deposition enhancement, cell cycle arrest, DNA damage, and ROS production as prostate cancer radiosensitizer for potential clinical translation' by Xiao-xiao Guo *et al.*, *Nanoscale*, 2021, **13**, 14525–14537, https://doi.org/10.1039/D1NR03869A.

The authors regret that there was an error in the affiliation labels for Jian-ye Wang in the original manuscript. The correct affiliations are as shown herein.

The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.

^aDepartment of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China ^bGraduate School of Peking Union Medical College, Beijing, 100730, China

^cKey Laboratory of Advanced Materials, Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China ^dDepartment of Radiotherapy, National Center of Gerontology, Institute of Geriatric Medicine, Beijing Hospital, Chinese Academy of Medical Science, Beijing, 100730, China