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Designing nano-engineered particles capable of the delivery of therapeutic and diagnostic agents to a
specific target remains a significant challenge. Understanding how interactions between particles and

cells are impacted by the physicochemical properties of the particle will help inform rational design

choices. Mathematical and computational techniques allow for details regarding particle—cell interactions

to be isolated from the interwoven set of biological, chemical, and physical phenomena involved in the

particle delivery process. Here we present a machine learning framework capable of elucidating particle—

cell interactions from experimental data. This framework employs a data-driven modelling approach, aug-
mented by established biological knowledge. Crucially, the model of particle—cell interactions learned by
the framework can be interpreted and analysed, in contrast to the ‘black box’ models inherent to other

machine learning approaches. We apply the framework to association data for thirty different particle—cell

pairs. This library of data contains both adherent and suspension cell lines, as well as a diverse collection
of particles. We consider hyperbranched polymer and poly(methacrylic acid) particles, from 6 nm to
1032 nm in diameter, with small molecule, monoclonal antibody, and peptide surface functionalisations.

Despite the diverse nature of the experiments, the learned models of particle—cell interactions for each
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1. Introduction

Nano-engineered particles are an emerging technology that
promise to facilitate the targeted delivery of therapeutic and
diagnostic agents. Despite recent high-profile successes where
nano-engineered particles are employed as delivery vehicles in
novel vaccines,"? it remains a challenge to rationally design
particles for specific applications. A complex sequence of
chemical, biological, and physical processes occurs between
the synthesis and cellular internalisation of a particle.* The
complexity of this sequence obscures how the original particle
characteristics, such as size, shape and surface charge, dictate
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particle—cell pair are remarkably consistent: out of 2048 potential models, only four unique models are
learned. The models reveal that nonlinear saturation effects are a key feature governing particle—cell
interactions. Further, the framework provides robust estimates of particle performance, which facilitates
quantitative evaluation of particle design choices.

interactions with cells.>* An understanding of each step in the
delivery pathway, from synthesis to internalisation, will be
required to determine rational design principles for nano-
engineered particles.’

Mathematical and computational approaches play a crucial
role in elucidating the impact of chemical, biological, and
physical processes on particle-cell interactions.*' Models
that represent particle internalisation as a multistage reaction
process have been used to examine the relative number of par-
ticles that are bound to the cell surface or internalised by the
cells.”™™"® Such models suggest that particle saturation at the
internalisation stage can significantly vary between cell lines,
even if the different cell lines bind to particles at the same
rate.’ Extensions of these models have been presented, which
allow for more complex behaviour to be probed and explored,
such as particle internalisation in tumour spheroids'® or par-
ticle biodistribution."”” Mathematical models have been par-
ticularly successful when employed to untangle the roles of
particle transport and particle-cell interactions.'®>° Models
allow robust metrics of particle performance to be calculated
and compared, independent of the experimental set-up.”®”!
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These models have provided insight into how particle-cell
interactions are impacted by cell heterogeneity,”>>* and par-
ticle polydispersity,>>*® agglomeration,>” and dissolution.>®
Further details of the mathematical and computational
models employed to understand nanoparticle-cell interactions
can be found in the reviews (and references therein) by, for
example, Aberg,® Cohen et al,'® Donahue et al,” Johnston
et al.® and Li et al."”

Mathematical and computational models can be con-
sidered as three distinct groups: first-principle models, phe-
nomenological models and data-driven models. In first-prin-
ciple models, the relevant behaviour is understood at a fun-
damental level. This is rarely the case for models in bionano-
technology, outside of molecular dynamics models, where
the system evolves according to Newton’s laws of motion.>® In
phenomenological models, knowledge is encoded in the
model via specific functional terms. For example, cells may
have a saturating ability to internalise particles.”'®?° The
specific functional form of this phenomenon requires an
assumption, which can be verified by comparing the pro-
posed model against experimental data. However, this does
not preclude the possibility that other functional forms may
explain the experimental data. Existing models of particle-
cell interactions are predominantly phenomenological in
nature.>® In data-driven models, the model arises purely
from the experimental data.>*** For example, random forest
models have been used to predict biomolecular corona for-
mation based on the physicochemical properties of a par-
ticle.>* Here the issue of incorrect assumptions can be ame-
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liorated, as functional forms do not have to be explicitly
incorporated.

Machine learning is a well-known example of data-driven
modelling,* and its usage has become increasingly wide-
spread in a range of fields, from image recognition®® to drug
discovery.’” In bionanotechnology, machine learning has
been harnessed to predict biomolecular corona formation,***°
identify relevant features of gold particles,"* and predict par-
ticle toxicity.> A common criticism levelled at such
approaches is that the resulting model is a ‘black box’ that
cannot be interpreted.**™*> That is, while the model may
describe the data, any insight into the underlying process is
limited.** Further, if certain aspects of the underlying process
are well-understood a priori, data-driven models may not
benefit from this knowledge. Recently, interpretable machine
learning techniques that reveal the dynamics that underlie
data, known as equation learning, have been proposed.’®3*?33
Equation learning has revealed behaviour for a range of
systems, including fluid dynamics,>**"*® collective cell
migration,””*° and enzyme kinetics.’® It remains an open
question whether a data-driven modelling approach, such as
equation learning, augmented by established biological knowl-
edge, can reveal hitherto unknown interactions between par-
ticles and cells.

Here we present an equation learning framework (Fig. 1) to
understand particle-cell interactions in association experi-
ments. In these experiments, the number of particles associ-
ated to cells is measured. We address the dual issues of the
small number of time points and the considerable noise in the
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Fig. 1 The equation learning framework. A combination of experimental data, biological knowledge and a neural network are employed to approxi-
mate the rate of particle—cell association. An interpretable model of particle—cell association is then learned from a set of candidate model com-

ponents via sparse regression.
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data via a constrained neural network.*”*®*" Crucially, the were performed at high confluence (>80% surface coverage for
constraints allow for established knowledge to be encoded in adherent cells®® and 10°-10° cells per ml for suspension
the neural network, which ensures that the network output cells?®*®). The duration of each association experiment was
exhibits biologically-plausible behaviour. Equation learning well below the average doubling time for the relevant cell
techniques are then applied to learn the model that describes line.>»*> As such, cell division is expected to be minimal.
the particle-cell interactions. The equation learning frame- Particle-cell mixtures were then analysed with flow cytometry
work does not rely on mechanistic assumptions to obtain the at specified time points, which provided a measurement of
learned model. We establish the validity of our framework by fluorescence for each measured cell in the sample (~30000
ensuring that it can correctly learn models from synthetic (i.e. cells across at least three experiments for the hyperbranced
model generated) data. We apply the equation learning frame- polymer particles and ~20 000 cells across at least two experi-
work to a library of experimental data for 30 particle-cell pairs. ments for the poly(methacrylic acid) particles). Particle fluo-
This library includes hyperbranched polymer®* and poly rescence was normalised by removal of the fluorescence corres-
(methacrylic acid) particles® that range from 6 nm to 1032 nm  ponding to the cell population, as identified through the cell-
in diameter, with small molecule, peptide, and monoclonal only control experiment.

antibody surface functionalisations, and includes both adher-

ent and suspension cell lines. We demonstrate that despite the 2.2. Modelling details

broad span of experiments, the learned models are remarkably
consistent. The equation learning framework reveals that sat-
uration effects are critical and ubiquitous in particle-cell inter-
actions. Further, the form of the saturation effects are distinct
to those proposed previously, suggesting that hitherto over-
looked mechanisms may play a key role in the interaction
dynamics. Finally, we highlight that the equation learning
framework provides quantitative estimates of particle perform-
ance, and hence allows for the impact of nano-engineered par-
ticle design choices to be analysed.

The goal of equation learning is to infer an interpretable
model, in this case a dynamical systems model, from a
dataset.>®*" A schematic of the equation learning pipeline is
presented in Fig. 2. In standard in vitro particle-cell associ-
ation experiments, the number of particles that have associ-
ated to individual cells is measured.?® If these measurements
are taken throughout a time-course experiment, we have a sig-
nificant number of observations of associated particles per cell
at certain time points. Specifically, at each time point, we have
observations for thousands of individual cells. We denote the
number of particles associated to the ith observed cell, N,
Each observation is paired with a time point ¢;, which denotes

2. Methods the time at which the ith observation is captured. Using
. . equation learning, we aim to determine the model
2.1. Experimental details
Full experimental details can be found in previous literature dlz_(t) =Q.(N,1),
t

for the hyperbranched polymer particles® and for the poly
(methacrylic acid) particles.”® Briefly, particles were syn- where N(t) is the average number of particles associated to a
thesised to include fluorescent tags. Particle and cell fluo- cell at time ¢ obtained from the data and Q;(N,¢) is the learned
rescence were characterised independently of each other as function that describes the association dynamics. The form of
controls. This allows for the number of associated particles this function is what indicates how particles and cells interact.
per cell to be estimated.”’ Time-course data on particle-cell Recall that this is a data-driven model and hence it does not
association was obtained by immersing the cell population in  involve or rely on precise mechanistic assumptions about the
culture media containing a particle suspension. Experiments underlying biology. Instead, the model provides an abstract

Train biologically-informed Calculate derivative from Construct candidate Use sparse regression to
Experimental data (a) neural network on data_(b) neural network () model components (d) identify key model features (e)
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Fig. 2 The equation learning pipeline. (a) The number of associated particles in an experiment is measured at a number of time points. (b) A biologi-
cally-informed neural network is trained on the data to remove noise while maintaining biologically-plausible output. (c) The derivative of the neural
network, i.e. the rate of particle—cell association, is calculated. (d) Candidate model components are constructed from the neural network output.
(e) Sparse regression is used to identify a parsimonious model that describes the rate of particle—cell association, constructed of a subset of the can-
didate model components.
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description of the particle—cell association dynamics at the
level of the available data, and hence does not provide infor-
mation about the specific biological processes that underlie
particle-cell association. It is important to note that the
learned model 2;(N,t) only depends on quantities that have
been experimentally measured: the number of associated par-
ticles for a cell and the time. It is entirely plausible that other
factors impact particle association, such as particle transport
through the culture media.'®*®?> However, without experi-
mental measurements of these factors we cannot directly
include them in the equation learning process, and instead
they will manifest in the model parameters. We are, therefore,
making an implicit assumption that our datasets are not
affected by other factors that change over the course of the
experiment. One important assumption made here is that the
experiments are performed for a near-confluent cell popu-
lation so that there is not significant cell division during the
course of the experiment. When a cell divides, the particles are
split between the parent and daughter cell.’® If there is non-
negligible cell division in the experiment, the average number
of associated particles per cell will be affected.>'*>® This
behaviour could be explicitly captured in the equation learning
framework by measuring the size of the cell population over
time; however, this is not a routine measurement for particle-
cell association experiments. Nonetheless, it is important to be
aware that this assumption is present in this work. For syn-
thetically-generated data, we can simply exclude potentially-
confounding factors in the data synthesis process. For experi-
mentally-generated data, we can perform experiments where
the impact of such factors are minimised. This requires an
experimental design with small and/or light particles, such
that transport is diffusion-dominated, and dosage where only
a small fraction of the particles associate over the course of the
experiment, such that the number of particles that are avail-
able to interact with the cells is approximately constant. The
latter condition is typically satisfied in particle-cell association
experiments, and it only requires a relatively minor change to
the experimental protocol to satisfy the condition, if it is not
initially satisfied. Alternatively, if these factors cannot be
avoided, the equation learning framework can be modified to
accommodate such factors, as we demonstrate in the ESI
(Section 4, SI Fig. 5%).

2.3. Biologically-informed neural networks

The first step in the equation learning process is to obtain the
average time rate of change of the number of associated par-
ticles, dN(t)/d¢, otherwise referred to as the rate of particle-cell
association (Fig. 2). A naive approach is to calculate this deriva-
tive directly from the data using standard finite difference
methods. However, due to the noise inherent to biological
data, this calculation can be highly inaccurate, as finite differ-
ence methods increase the level of noise in data.’” We there-
fore consider the approach proposed by Lagergren et al.,*” in
which a neural network is first used to reduce the noise in the
data. That is, using the paired data (t;N;) from our experiment,
we train a neural network that predicts Ny(t) for 0 < ¢ < teng

This journal is © The Royal Society of Chemistry 2022
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where t.q is the final time point in the experiment and the
subscript p denotes that this is a prediction arising from the
neural network. The neural network is referred to as “biologi-
cally-informed” as it involves constraints that arise from estab-
lished biological knowledge. The learned neural network can
be thought of as the curve that minimises the distance
between itself and the individual data points, while satisfying
any imposed constraints. Hence while it is unlikely that the
learned neural network will provide an exact prediction of the
number of associated particles of any individual cell over time,
it will provide a reasonable estimate of the average number of
associated particles per cell over time.

The advantages of using a neural network here are twofold.
First, we can obtain a smooth function from noisy experi-
mental data, which allows for the calculation of the time rate
of change of the number of associated particles (i.e. the rate of
particle-cell association) without the introduction of
additional noise. Second, we can encode biological knowledge
in the structure of the neural network, referred to as a biologi-
cally-informed neural network, to ensure that the predictions
are biologically plausible.”” In this work we encode three
restrictions on the neural network output, guided by estab-
lished biological knowledge:

« The first restriction is that the number of particles is non-
negative, as it impossible for a negative number of particles to
be associated to a cell. This restriction requires that the output
of the neural network is non-negative (i.e. Ny(t) > 0);

« The second restriction is that the rate of particle-cell
association is non-negative, as the number of associated par-
ticles should, on average, not decrease over time due to
additional particles interacting with the cell. This restriction
requires that the first derivative is non-negative (i.e. dNp(t)/d¢
> 0); and,

« The final restriction is that the rate of particle—cell associ-
ation can represent saturation effects. As particles associate to
the cell, certain cellular processes may become saturated (e.g.
receptors on the cell surface or subcellular compartment
space). As such, the rate of particle-cell association should not
increase with the number of associated particles. This effect is
widespread across many particle-cell combinations.”*® This
restriction requires that the second derivative is non-positive
(i.e. d®Ny(t)/d¢* < 0). We note that a second derivative of zero is
a possible outcome. This reflects the case where saturation
effects do not play a role, and hence we are not enforcing satur-
ation effects in our framework. It is possible that a decrease in
the rate of particle-cell association could be explained by cell
division.® This is most relevant for experiments that are con-
ducted on a cell population that is initially far from full conflu-
ence, and where the experiment is performed over a timescale
similar to (or longer than) the cell doubling time. If this is the
case, the number of cells in the population at each time point
should be measured to determine the effect of cell division on
nanoparticle association. It is also possible that saturation
effects arise due to a balance between particle association and
particle recycling. This possibility is captured under these
constraints.

Nanoscale, 2022, 14,16502-16515 | 16505
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Previous work by Dugas et al.>® describes how to incorpor-
ate knowledge in a neural network such that the output, first
derivative, and second derivative are all non-negative. It is rela-
tively straightforward to transform our experimental data such
that our desired restrictions on the neural network correspond
to the restrictions of Dugas et al.’® To satisfy these restrictions,
the biologically-informed neural network must incorporate a
hidden layer with a softplus activation function

w(s) = In(1 + exp(s)),

and non-negative biases and weights, alongside a linear
output layer with a non-negative bias and weight.® Dugas
et al. prove that the output of such a neural network will be
non-negative, the first and second derivatives will benon-nega-
tive with respect to the input, and that the neural network is a
universal approximator of continuous functions with these
properties.”® The biologically-informed neural network
described here represents a balance between allowing flexi-
bility in the neural network output, and imposing strict con-
ditions on the functional form of the output. This approach
avoids two key issues; unconstrained flexibility may lead to pre-
dictions that are not biologically plausible, while imposing
strict conditions on the output may result in the neglect of
unexpected yet key behaviour. We note that is possible to
proceed without the above constraints in the neural network.
However, there will be no guarantee that the neural network
output is biologically plausible. Hence, if there is any relevant
established biological knowledge, we believe that this knowl-
edge should be encoded in the form of constraints in the
neural network; otherwise prior information about the biologi-
cal process is neglected. Different choices in the constraints
can be made if the aforementioned assumptions are no longer
valid. We demonstrate that the equation learning framework
can learn the correct model under different constraints in the
ESI (SI Fig. 47).

We implement a neural network with a single hidden layer
of 128 nodes using Python’s tensorflow package.>® We allocate
60% of the particle-cell association data as training data, 30%
of the data as validation data, and 10% of the data as testing
data. That is, we fit the neural network to the training data,
and use the validation dataset to identify the weights and
biases that produce the neural network that minimises the
error between the output and the validation data. This reduces
the risk of overfitting the neural network model to the training
data. We then confirm that the neural network is performing
well by comparing the output with the test dataset. After train-
ing, we have a biologically-informed neural network that pro-
vides predictions of the number of associated particles Np(t)
for 0 <t < tena.

2.4. Equation learning

The derivative of the number of associated particles, as pre-
dicted by the neural network, dN,(¢)/d¢, can be obtained via
automatic differentiation.’® As detailed above, we aim to learn
the dynamics (N, t) that describe the evolution of the
number of associated particles over time. Equation learning

16506 | Nanoscale, 2022, 14, 16502-16515
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can be employed to infer parsimonious dynamical systems
models from data, that is, models that contain a small number
of terms and hence strike the vital balance between model
simplicity and descriptive ability.*® Specifically, in our
equation learning approach we propose a set of m candidate
model components 2 = @;(Np,t), ..., @m(Np,t). As such, we
make the assumption that the dynamics can be described via
a linear combination of candidate model components. Note
that these components are constructed directly from the data
(in this case, the biologically-informed neural network output,
Np(t)). We employ sparse regression to determine the subset of
these model components that provides dynamics that match
the experimental data, while penalising the inclusion of many
model components. Without this penalty, complicated models
that fit the data well but are less likely to be biologically plaus-
ible will be selected. A standard approach is to include poly-
nomial model components, ie. Q = {1, Np(t), Np(t)’ ..,
Ny(¢)™'}. We make this standard choice and select m = 11.
However, in principle, any function of N, and ¢ could be
included as a model component. We define

1 Ny(ti) Ny(ta)” Np(t)"™
oo 1 Ny(ta) Np(t)® - Np(t)™!
1 Np(t) Nl o Nyt

as the matrix of model components defined at each time
point t; for j € [1, n]. Note, again, that we only include model
components that are constructed from experimental data. If,
say, the level of receptor expression r(t) is also measured, we
could construct model components that depend on both
Np(t) and r(t). However, in practice, it is not common to
report this information, so we restrict ourselves to particle—
cell association data. We implement the least absolute
shrinkage and selection operator (LASSO) to identify the
sparse solution that best matches our data.®® The LASSO
imposes a L1 regularisation, which penalises non-zero terms
and promotes sparsity in the model components. Specifically,
we seek to find d such that

. . d/—
d= argmdln(H& (Np> — .QdH2 +/1||d\|1),

where 4 Vp) is the vector of the rate of particle-cell associ-
ation values at each time point ¢, d = {dy, di, ..., d} is a
vector where the ith entry corresponds to the contribution of
the ith model component, and 4 is the LASSO regularisation
parameter.®® The regularisation parameter encourages spar-
sity in fl, that is, it causes only a subset of the d; values to be
non-zero. The value of 4 is selected via cross-validation. The
LASSO is implemented using Python’s scikit-learn package.®'
Following the identification of the sparse solution, a pruning
process with tolerance ¢ = 0.25 is implemented.*® That is, we
sequentially set each non-zero d; in d to zero and calculate
d'S, which is the least-squares solution with the remaining
non-zero model components of d and d; = 0. If the error
between the data and the reduced learned model with &ZLS,

This journal is © The Royal Society of Chemistry 2022
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denoted E;, satisfies E; < (1 + ¢)E then we retain d; = 0, where
E is the error between the original learned model and the
data. This approach ensures that each non-zero d; meaning-
fully contributes to a reduction in error between the learned
model and the data, and further promotes sparsity. The
model components that have corresponding non-zero d;
values are, therefore, the relevant components that describe
the dynamics of particle association. These components
capture the form of the saturation effects from the data, but
do not identify the specific biological mechanisms that result
in the model components.

3. Results and discussion

We consider data arising from standard time-course
in vitro particle-cell association experiments
previously.”®”? In association experiments, a cell population is
seeded in a culture dish and allowed to grow. Here we consider
both adherent and suspension cell lines. At the start of the
experiment, the culture media is replaced with media contain-
ing a particle suspension. Over time, the particles undergo
transport through the fluid and interact with the cells. The
number of particles associated to each cell is measured at
specific time points using flow cytometry. The term ‘associated
particles’ refers to particles that are either internalised by the
cell, or are sufficiently strongly bound to the cell membrane
such that they are not dislodged via cell washing. We note that
the number of associated particles is a commonly-reported
metric due to the difficulty of distinguishing between surface-
bound and internalised particles.**"°*®® For example, one
approach employed to distinguish between membrane-bound
and internalised particles involves cooling the cells to 4 °C to
inhibit endocytosis, such that particles bind to the cell surface
but are not internalised.””®? After a time, the cells are returned
to 37 °C, where endocytic processes resume.”®> However, this
approach is not always appropriate due to the variation in time
taken for different endocytosis pathways to return to standard
levels of activity, which implies that kinetic analyses may
provide biased results.®” Due to potential discrepancies in ana-
lysis that arise from the choice of experimental approach used
to distinguish between membrane-bound and internalised par-
ticles, and the fact that reporting particle association is
common practice, here we primarily focus on identifying
models of particle-cell association. We demonstrate that the
equation learning framework is valid in the case where mem-
brane-bound and internalised particles can be distinguished
(ESI, Section 47).

conducted

3.1. Synthetically-generated data

We first ensured that the equation learning framework is
capable of identifying the correct model from particle-cell
association data in an idealised case, where the data is syn-
thetically generated (i.e. generated in silico) from a known
model of particle-cell association. That is, we generated
noisy observations according to a specified model, and then

This journal is © The Royal Society of Chemistry 2022
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attempted to learn that model from these observations.
This allowed for the identification of the conditions under
which the framework can learn the correct model, and pro-
vided confidence in predictions obtained from the appli-
cation of the equation learning framework to experimental
data, where the model of particle-cell association is
unknown.

We generated synthetic particle-cell association data using
a single-stage association model, which is capable of describ-
ing particle-cell association kinetics for a diverse range of par-
ticle-cell combinations.?® This model can be expressed dN/dt
= Qy(N,t) = dy — dyN, where Q4(N,t) is the rate of particle—cell
association, the subscript s denotes that the model generates
synthetic data, ¢ is the time, N is the number of associated par-
ticles, and d, and d, are constants that indicate the relative
strength of the Oth and 1st order terms, respectively. Note that
N(t) is time-dependent, but we neglect this notation for con-
venience. This model represents linear saturation of particle
association, as the rate of particle—cell association decreases
linearly with the number of associated particles.”'*'*?° The
particle properties were chosen such that particle transport
was dominated by diffusion, and that only a small fraction of
the initial dose of particles associated over the experimental
timeframe, thereby avoiding the confounding effects of sedi-
mentation®® and dose depletion.®* We first generated a ‘best-
case’ dataset where the number of associated particles per cell
was recorded each hour for a total of 24 hours and there was
minimal noise in the data. This dataset was the ‘best case’ in
that it is uncommon for the number of associated particles to
be measured so often due to the experimental effort required,
and noise in flow cytometry datasets is rarely minimal. This
approach allowed us to establish whether the equation learn-
ing framework performed in idealised scenarios. If the frame-
work did not provide accurate predictions for such fine time-
resolution and low noise data, we would not expect the frame-
work to provide meaningful results when applied to real
experimental data.

We present the output from the application of the equation
learning framework to the ‘best-case’ synthetic dataset in
Fig. 3(a) and (d). The learned model, presented in Fig. 3(a),
matched the test data well. Crucially, the learned model, £;(N,
t) = do — diN, was consistent with the model used to generate
the synthetic data. The subscript L denotes that this is a
learned model. The consistency between the models demon-
strates that, under ideal conditions, the equation learning
framework can recover the correct model. The framework per-
formed as expected in each of the relevant steps: the learned
rate of particle-cell association was consistent with the corres-
ponding neural network prediction (Fig. 3(d)); the neural
network prediction was consistent with the test dataset (ESI, SI
Fig. 11), and; the neural network converged to both the train-
ing and validation datasets (ESI, SI Fig. 1f). While both the
neural network prediction and the equation learning predic-
tion matched the data well, the benefit of the additional
equation learning step is that we obtained an model that can
be interpreted.

Nanoscale, 2022, 14,16502-16515 | 16507
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A natural question arises as to whether the equation learn-
ing framework can recover the correct model when more realis-
tic numbers of observations and levels of noise are present in
the dataset. We first relaxed the restriction that the data set
does not contain significant noise, and imposed Gaussian
noise with a mean of zero and a standard deviation of 0.5, and
present the output of the equation learning framework in
Fig. 3(b) and (e). We observe that the learned model again
accurately described the number of associated particles per
cell in the dataset, even in the presence of additional noise.
The neural network prediction of the rate of particle-cell
association deviated slightly from the expected straight line
due to this noise (Fig. 3(e)). However, the equation learning
framework favours parsimonious models, that is, models that
accurately explain the data with as few model components as
possible. As such, the learned model was still of the correct
form Q. (N,t) = dy — d;N. We next reduced the number of
observations to be consistent with previous experimental
investigations, where observations are captured every four
hours, while maintaining the increased level of noise, and
present the results in Fig. 3(c) and (f). Despite the decrease in
observations and the increase in noise, the learned model was
of the correct form and described the test data well. These
results indicate that the equation learning framework is suit-
able for recovering the correct model for numbers of obser-
vations and levels of noise that are consistent with standard
experimental investigations. Further output from the equation

16508 | Nanoscale, 2022, 14, 16502-16515

learning framework for these datasets can be found in the ESI
(Section 1).T

It is prudent to examine whether the equation learning
framework can recover more complicated models of particle-
cell interactions, as it is possible that the relevant model form
may contain nonlinear terms or may have more than two com-
ponents. It is not immediately obvious whether the framework
will recover the correct model in such cases as, in general, dis-
tinguishing between sigmoidal curves is not always possible.®®
In Fig. 4 we present the results obtained from applying the
equation learning framework to a dataset generated with Q4(N,
t) =do — d;N — d,N* (Fig. 4(a) and (b)) and Q24(N,t) = dy — d\N
— d,N* — d;N® (Fig. 4(c) and (d)). Again, we observe that the
learned models were consistent with the data. Additionally,
the learned model was of the correct form, which demon-
strates the framework is able to reliably learn more complex
models. We note that the equation learning framework is
capable of learning models of a two-stage particle internalis-
ation process from synthetic data, where the particle first
binds to the cell membrane and is subsequently internalised
(ESI, Section 41). However, as discussed above, obtaining this
data is neither straightforward nor standard practice, so we
restrict the focus of this work to particle-cell association data.

3.2. Experimental data

As the equation learning framework performed well for syn-
thetically-generated data with realistic observation numbers

This journal is © The Royal Society of Chemistry 2022
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and noise, we next applied it to a suite of experimental data.
We considered the signal corresponding to associated particles
for a library of 24 particle—cell association datasets.”> We inves-
tigated PC3-PIP cells, which are PC3 cells that have been trans-
fected to express prostate-specific membrane antigen (PSMA
(+)), and PC3-Flu cells, which are PC3 cells that do not express
prostate-specific membrane antigen (PSMA(-)). We considered
hyperbranched polymer particles with a diameter of ~6 nm
with four different targeting functionalities: a negative control
(i.e. a pristine particle); a small molecule (glutamate urea
(GU)); a peptide ligand; and a monoclonal antibody (J591).>
Experiments were performed at three different particle concen-
trations; at a baseline concentration (1x), and at four (4x) and
sixteen (16x) times the baseline concentration. This experi-
mental design matrix resulted in 24 distinct datasets (2 cell
lines x 4 targeting functionalities x 3 particle concentrations).
Experimental measurements were collected from standard par-
ticle-cell association assays with adherent cell culture at 0, 30,
120 and 240 minutes after the application of the particles.
Here the data is reported in terms of arbitrary fluorescence so
the model output will similarly be in terms of arbitrary
fluorescence.

We applied the equation learning framework to each
dataset in the library and present the results in Fig. 5. Here the
framework included 11 potential model components, which
are the Oth to 10th order polynomial terms. As each model
component can either be included or excluded, the framework
selected from 2'" = 2048 potential models. A different number
of model components could be included; however, we found
that 11 components struck a balance between the descriptive
ability of the span of potential models, and the computational
effort required to determine the learned model. To account for
the stochastic nature of the split of the dataset into training,
validation, and test data, we repeated the equation learning
process 100 times. That is, we randomly split the dataset into
training, validation, and test data 100 times. For each split, we
performed the equation learning process, and recorded the
learned model. The most commonly learned model for each
dataset across the 100 repeats is presented in Table 1. For each
dataset, the learned model described the test data well.
Strikingly, out of the 2048 potential models that could have

This journal is © The Royal Society of Chemistry 2022

arisen from the equation learning process, only four distinct
models were selected:

Model 1
0Q,(N) =d, — diN,
Model 2
2,(N) =dy — diN — d,N?,
Model 3
23(N) =do — diN — dyN? — d3N?3,
Model 4

.Q4(N) = d() - d1N - d\a,]\]3

The most common learned model for this library of data-
sets was Model 2 (11/24 datasets), followed by Model 3 (10/24
datasets) and Model 1 (2/24 datasets). The saturation behav-
iour of each of these models is consistent with previous
investigations, where such effects are observed to be a key
feature governing particle—cell interactions. Interestingly, these
results suggest that saturation may not be a linear function of
the number of associated particles as thought previously,”?° as
the learned model for 22/24 datasets suggests that higher
order saturation effects are necessary to fully describe the
experimental data. It is possible that this represents the com-
bined effect of several biological processes. In Fig. 6, we
present illustrative examples of the rate of particle—cell associ-
ation, as a function of the number of associated particles per
cell, for each of the four models. This highlights the difference
in particle-cell interactions between the models; although the
rate of particle-cell association decreases to zero in each
model, this decrease can occur at a constant rate (Model 1),
linearly (Model 2), or initially slowly, followed by a more preci-
pitous decrease as the number of particles per cell approaches
the carrying capacity (Model 3, Model 4).

We next considered a library of particle—cell association data
for THP-1 cells, a suspension cell line, and particles ranging in
diameter from 150 nm to 1032 nm.? Specifically, we examined
poly(methacrylic acid) capsule particles with diameters of
214 nm, 480 nm and 1032 nm, and poly(methacrylic acid) core-
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the maximum/minimum of the test dataset. To account for outliers, the maximum is defined as the minimum of the upper quartile plus 1.5 times the

interquartile range, and the maximum value in the dataset.

shell particles (i.e. with an intact template core) with diameters
of 150 nm, 282 nm and 633 nm.*° It is instructive to examine
whether the learned models are consistent between the two
libraries, which have pronounced differences in cell type,

16510 | Nanoscale, 2022, 14, 16502-16515

particle size and particle composition. We repeated the appli-
cation of the equation learning framework as detailed above,
and present the results in Fig. 7. Again, the learned model
described the experimental data accurately. As we observed for
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Table 1 The learned models for the library of hyperbranched polymer
model from 100 different divisions of the dataset into training, validation,
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particle datasets. The model reported here is the most commonly learned
and test data

PMSA(-) PMSA(+)
Concentration Control Peptide J591 GU Control Peptide J591 GU
1x Model 2 Model 3 Model 2 Model 2 Model 3 Model 3 Model 4 Model 2
4x Model 2 Model 2 Model 2 Model 3 Model 2 Model 2 Model 2 Model 3
16x Model 3 Model 3 Model 1 Model 3 Model 3 Model 1 Model 2 Model 3
Affinity interaction between a particle and a cell, and the cell carrying

association

Model 1
Model 2

Rate of particle-cell

Carrying

Particles per cell )
capacity

Fig. 6 Illustrative examples of the rate of particle—cell association as a
function of the number of associated particles per cell for Model 1
(grey), Model 2 (purple), Model 3 (orange), and Model 4 (cyan). We
observe that saturation effects are critical, as the rate of particle—cell
association decreases with the number of particles per cell in each
learned model.

the previous library of particle-cell association data, the most
common learned model for the THP-1 data was Model 2 (3/6
datasets), followed by Model 1 (2/6) and Model 3 (1/6), as sum-
marised in Table 2. There is notable consistency in the learned
models, despite both the broad span of experimental designs,
and the wide range of potential models. These results reinforce
the observation that saturation effects are critical, and that the
form of this saturation behaviour does not appear to be linear.
Finally, we examine whether the learned models are trans-
ferable, that is, whether the learned models can describe par-
ticle-cell association data outside of the training/validation/
test datasets. To do this, we fit the most common learned
model (Model 2) to six previously-published datasets,®®°®
which were not used in the equation learning process. The
results are presented in the ESI (Section 3, SI Fig. 41). In all
cases, Model 2 is able to accurately describe the particle—cell
association data. This suggests that the learned models are
transferable beyond the datasets used to train the models.

3.3. Quantifying particle performance

Aside from identifying the model that describes particle-cell
interactions, the equation learning framework allows us to esti-
mate key parameters that quantify particle targeting perform-
ance. The particle-cell affinity, which represents the strength of

This journal is © The Royal Society of Chemistry 2022

capacity, which represents the maximum number of associated
particles per cell, have been identified as critical features that
dictate particle performance.>® The equation learning frame-
work provides estimates of these parameters. It is important to
note that these parameters represent a certain level of abstrac-
tion. The model is necessarily a simplified description of the
many complicated processes involved in particle binding and
internalisation. Accordingly, the parameters in the model do
not have a precise biological definition; they are instead an
abstract, bundled representation of the myriad processes in
particle binding and internalisation. However, such para-
meters are still insightful when employed to compare particle
performance. Additionally, the framework provides an esti-
mate of the relative contribution of each component to the sat-
uration behaviour. This simply requires recasting the learned

model into
Op(N,t) =aCoSa| 1 — 61 K 02 K

al))

where «a is particle—cell affinity (m s™'),%° C, is the initial par-
ticle concentration (m™?), S, is the surface area of the relevant
cell type (m?), K is the cell carrying capacity and §; is the rele-
vant contribution of the ith component, subject to > §; = 1.
The nonzero §; values correspond to the nonzero d; vallies. The
cell carrying capacity may also represent the point at which
particle—cell association and either particle recycling (exocyto-
sis) or degradation are balanced. However, without additional
types of experimental data, we cannot identify the biological
mechanism. We present tables with all parameters for each
learned model in the ESI (SI Tables 1 and 2t). The parameters
Co and S, are determined experimentally, while the remainder
of the parameters are obtained via the equation learning
framework. We note that our estimates of the o and K para-
meters for the particles in the THP-1 data library are consistent
with previous estimates,”® and that these parameters have not
been estimated previously for the hyperbranched polymer par-
ticles. The restrictions on §; enforce that association is no
longer possible when the number of associated particles is
equal to the carrying capacity. While the nonzero §; provide
the functional form of the relevant saturation effects, and their
relative contributions, these parameters do not provide infor-
mation about the specific biological mechanisms that give rise

Nanoscale, 2022, 14,16502-16515 | 16511
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Fig. 7 Equation learning framework applied to experimental data of (a), (c) and (e) coreshell and (b), (d) and (f) capsule poly(methacrylic acid) par-
ticles and THP-1 cells. Comparison between the equation learning prediction of the number of associated particles per cell (cyan) and the test
dataset (mean value in orange) for particles with a diameter of (a) 150 nm, (b) 214 nm, (c) 282 nm, (d) 480 nm, (e) 633 m, and (f) 1032 nm. Box plots
represent the median, interquartile range, and the maximum/minimum of the test dataset. To account for outliers, the maximum is defined as the

minimum of the upper quartile plus 1.5 times the interquartile range, and the maximum value in the dataset.

to saturation in particle association. Nonlinear saturation
effects may represent a single phenomenon with nonlinear
behaviour, or the convolution of two (or more) phenomena
governed by linear behaviour; we do not speculate about the
specific biological phenomena here. Identification of such
mechanisms will likely require measurement of different bio-
logical processes, such as receptor expression and recycling
kinetics, or endosomal trafficking kinetics. However, the detail
revealed by the equation learning framework provides motiv-
ation to investigate the biological phenomena that potentially
dictate particle association, and provides guidance into the
functional form of the corresponding kinetics.

The parameters we identify are directly relevant to particle
optimisation, as we are able to quantify changes in particle
performance parameters due to design changes. For example,
the particle—cell affinity increases with the addition of either a
PSMA targeting peptide (5.90x increase, relative to control) or
monoclonal antibody (5.19x increase) for the PSMA positive
PC3-PIP cells at the 4x concentration condition (ESI, SI
Table 11). Note that optimisation is with respect to the type of
data provided; here we use association data so optimisation
refers to maximisation of the number of associated particles
per cell. If internalisation data is available, we could optimise
particle performance with respect to the number of interna-
lised particles per cell. While quantitative analysis of particle
performance is not the primary focus of this work, it is impor-

16512 | Nanoscale, 2022, 14, 16502-16515

Table 2 The learned models for the library of poly(methacrylic acid)
particle datasets. The model reported here is the most commonly
learned model from 100 different divisions of the dataset into training,
validation, and test data

Coreshell Capsule
Template Diameter Learned model Diameter Learned model
110 nm 150 nm Model 2 214 nm Model 2
235 nm 282 nm Model 1 480 nm Model 3
519 nm 633 nm Model 1 1032 nm  Model 2

tant to note that the equation learning framework provides
robust estimates of particle performance, in addition to an
interpretable model of particle—cell interactions.

4. Conclusions

Understanding the individual biological, chemical, and physi-
cal processes that form the journey from particle synthesis to
cellular internalisation will inform the rational design of par-
ticles.> It remains unclear how physicochemical particle pro-
perties, such as size, shape or surface charge, should be
chosen to achieve optimal particle functionality for a particu-
lar application.” Mathematical modelling approaches have

This journal is © The Royal Society of Chemistry 2022
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been successful in unpacking certain aspects of the particle
delivery process;® however, many aspects remain to be
explored. Here we present a mathematical framework that
allows us to examine the interactions between particles and
cells. This framework represents a balance between data-
driven and phenomenological modelling approaches, allowing
us to incorporate biological knowledge without imposing strict
restrictions on putative model forms. Crucially, unlike many
other machine learning approaches,”*™** the output of the
framework is interpretable, and hence the results can be ana-
lysed and discussed in the context of established biological
knowledge.

We demonstrate that our equation learning framework,
which includes particle-cell association data, biologically-
informed neural networks, and sparse regression, is capable of
recovering models of particle-cell interactions from syntheti-
cally-generated data. We apply the equation learning frame-
work to a library of association experiment data for 30 par-
ticle-cell pairs. This library includes particles that range in
size from 6 nm to 1032 nm that are synthesised from different
materials, including polymers and poly(methacrylic acid), and
have either small molecule, peptide, or monoclonal antibody
surface functionalisations. Both adherent and suspension cell
lines are considered. The equation learning framework dis-
plays remarkable consistency in the learned models of par-
ticle-cell interactions. Out of the 2048 potential models that
could be identified by the framework, only four distinct
models are reported across the entire library of experimental
datasets. In fact, for 25/30 datasets, only two models are identi-
fied. The form of the learned models reinforce previous obser-
vations that saturation effects, where the rate of particle-cell
association decreases as particles associate, are critical.*
However, our results suggest that the decrease in association
occurs in a nonlinear manner, unlike previous investigations
that suggest that this decrease is linear.>° By analysing how the
individual components of the learned model contribute to par-
ticle association, our framework reveals that the rate of
decrease of the rate of particle-cell association occurs most
rapidly toward the carrying capacity of the cell. Further, the
framework provides quantitative estimates of key parameters
that dictate particle association, allowing for robust compari-
son between the performance of particles with different design
choices. For example, the addition of a PSMA targeting peptide
or monoclonal antibody to a hyperbranched particle provides
a five-fold increase in the affinity between the particle and a
PSMA positive PC-3 PIP cell, compared to a pristine particle.
This highlights the utility of the equation learning framework,
as it both identifies key model features and provides quantitat-
ive estimates of the relevant parameters, which allows for
meaningful assessment of particle design choices.

While the equation learning framework is able to identify
the relevant model form governing particle-cell association, it
is not necessarily able to identify the underlying biological
mechanisms. The framework does not distinguish between a
single biological mechanism that impacts particle-cell associ-
ation in a nonlinear fashion, or the product of several biologi-

This journal is © The Royal Society of Chemistry 2022
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cal mechanisms that each linearly impact particle-cell associ-
ation. However, this is a limitation associated with the data,
rather than the framework itself. If data is collected about, for
example, receptor levels or endosomal kinetics, the framework
could be readily modified to include model components that
depend on this new data. Once these new model components
are included, the equation learning process can be repeated to
determine how particle—cell association depends on the newly-
measured biological behaviour. It is instructive to investigate
the relationship between specific biological phenomena, such
as receptor expression and recycling, and particle—cell associ-
ation. However, as it is standard experimental practice to
perform particle-cell association assays, and to report the level
of particle—cell association, here we restrict ourselves to the
information that can be determined from this prototypical
experimental data. It is important, however, to note that the
reported parameters do not have a precise biological definition
as they reflect the complex and multistage process of particle
binding and internalisation in a necessarily abstract fashion.
However, this does not preclude these parameters from provid-
ing useful information about the performance of a particle-
cell pair.

The equation learning framework requires that a number of
assumptions are satisfied. These include that sedimentation
effects are unimportant, that the number of particles in the
culture media does not deplete during the experiment, and
that the experiment is performed with a cell population that is
close to full confluence. In general, these assumptions can be
satisfied by making appropriate experimental design choices.
Sedimentation effects can be rendered unimportant by either
using small and/or light particles, or by constantly mixing the
culture media.® Particle depletion can be avoided by commen-
cing the experiment with a sufficiently high particle dose, with
careful consideration of the particle density to avoid immedi-
ate saturation of the cells. Confuence of the cell population
will occur if sufficient time is left between seeding the cells
and introducing the particle suspension. However, these
choices may not be suitable for all experiments. To extend the
applicability of the framework, it would therefore be useful to
develop a modified equation learning framework capable of
incorporating time-varying cell population sizes and/or particle
dosimetry (i.e. the dosage available to the cells at any given
time) as a model component. It is straightforward to incorpor-
ate information about the number of cells in the population at
any given time, provided this information is measured experi-
mentally. Calculating particle dosimetry requires the numeri-
cal solution of a partial differential equation (PDE), such as
the ISD3 model.>® However, particle dosimetry and particle-
cell association are interrelated; if the rate of particle-cell
association increases, the dosage available to the cells
decreases. As such, it is unclear whether the dosimetry model
would need to be solved for each potential particle—cell associ-
ation model. Numerical solutions to PDEs can be computa-
tionally expensive to obtain, and it may not be feasible to
investigate a broad range of model components if each poten-
tial model requires the dosimetry model to be solved separ-

Nanoscale, 2022, 14, 16502-16515 | 16513


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d2nr04668g

Open Access Article. Published on 26 October 2022. Downloaded on 2/7/2026 7:20:51 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Paper

ately. One strength of equation learning is that it can identify
the learned model without the need for multiple, potentially
expensive, computational solutions. As such, it is instructive to
investigate whether equation learning can be combined with
models of particle dosimetry to efficiently identify the par-
ticle-cell interaction dynamics when sedimentation and/or
dosage depletion effects are relevant.

Data availability

Certain experimental data used in this analysis have been pre-
viously published*>>* and raw data are available at https://fig-
share.com/projects/In_vitro_cell-particle_association/59162.
The code used to implement the equation learning framework
is available at https:/github.com/DrStuartjohnston/particle-
cell-interactions-equation-learning.
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