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Gate-controlled electron quantum interference
logic

Josef Weinbub, *a Mauro Ballicchia b and Mihail Nedjalkov b

Inspired by using the wave nature of electrons for electron

quantum optics, we propose a new type of electron quantum

interference structure, where single-electron waves are coherently

injected into a gate-controlled, two-dimensional waveguide and

exit through one or more output channels. The gate-controlled

interference effects lead to specific current levels in the output

channels, which can be used to realize logic gate operations, e.g.,

NAND or NOR gates. The operating principle is shown by coherent,

dynamic Wigner quantum electron transport simulations. A discus-

sion of classical simulations (Boltzmann) allows to outline the

underlying process of interference. Contrary to other electron

control approaches used for advanced information processing, no

magnetic or photonic mechanisms are involved.

By treating electrons as waves, electron quantum optics pro-
vides the basis for conducting quantum optics-like investi-
gations in a fermionic picture.1–3 Compared to quantum
optics, solid-state electron approaches have the advantage in
terms of size, scalability, and the ability of the charge degree
of freedom to be easily measurable, with the drawback of a
much shorter coherence time. Key enabling technologies are:
electron sources (e.g., tunable quantum dot designs in Si4 and
MoS2

5 and two-electron sources6), coherent circuits,7 and elec-
tron detection.8 All these technologies are key to electronic
quantum applications in sensing,9 metrology,10 tomography,11

and information processing (i.e., flying charge qubit
systems1,12). As is shown in this work, electron quantum optics
also provides particular exciting opportunities for a novel type
of quantum interference structure. Applications of interference
effects have a long history, ranging from superconductor,13–16

single-atom,17 and molecular junction18–20 approaches to early
investigations into logic devices.21 In contrast, here we propose
to use a different operational principle: electron interference.
The latter is characterized with a sensitivity to geometry,

potential values, material parameters, and other physical attri-
butes. In our study, we focus on a particular two-dimensional
(2D) waveguide design, inspired by astonishing advances in 2D
materials research in recent years.22,23 As expected, our simu-
lations confirm that the manifesting electron density inter-
ference patterns are entirely governed by quantum effects
involved in the electron evolution. Effects of tunneling, non-
locality, and boundary reflection are identified. Comparative
simulations of the classical evolution show a very different
picture (see Appendix A) which underlines that the main
phenomena responsible for the logic operation is interference.

Fig. 1 shows a schematic representation of the suggested
interference logic structure. For the 2D waveguide we consider
a 22 × 40 nm2 molybdenum disulfide (MoS2) single-layer; a 2D
semiconductor of the family of transition metal dichalcogen-
ides (TMDCs). Single-layer MoS2 is a direct-bandgap (1.8 eV)
semiconductor, which makes it well-suited for low-power
applications.24 First principles band structure calculations
showed that for n-type single-layer MoS2 the K, K′ valleys,
which are well-separated in energy from the satellite valleys,
are most relevant for low-field transport. A parabolic band

Fig. 1 Schematic representation of the interference logic structure. An
exemplary potential energy distribution of the waveguide derived from
biased gates and the structure is shown on top. The blue cap layer is
partially made transparent to show the inside.
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with electron mass m = 0.48m0 (with m0 being the mass of the
free electron) gives a perfect description of the conduction
band valley around the K point and was thus used as effective
mass in our modeling. The choice of MoS2 is by way of
example and rooted in the fact that this particular material
found widespread research attention in recent years22,25 and
particularly concerning single-electron sources.5 However,
other interesting materials (offering attractive ballistic pro-
perties) for the here considered transport layer are available,
such as (bilayer) graphene (see, for instance,26 and references
therein).

The waveguide is insulated by a cap and a substrate layer on
the top and bottom, respectively, and offers reflective bound-
aries along x = 0 nm and x = 22 nm (Fig. 2 and 3). The gates
are embedded in the cap layer: the metal gates are solid
spheres with a radius of 2 nm positioned 3 nm (relative to the
sphere center) above the waveguide, resulting in 1 nm cap
oxide material (calcium fluoride27) between the surface of the
gates and the MoS2. The charge and shape of the gates and the
distance between them, the transport domain geometry, the
output channel walls (potential energy of 0.1 eV and dimen-
sions 2 × 10 nm2 centered at x = 7 nm and 15 nm, respectively,
and ranging from y = 30–40 nm), and the boundaries, deter-
mine the corresponding potential energy distribution in the
channel (see an exemplary potential energy distribution over-
laid in Fig. 1).

Electrons with a mean momentum of 0.94 nm−1 enter on
one side of the structure and cross it within approximately 200
fs. The injection frequency of today’s single-electron sources
can reach 10 GHz(ref. 4) (which is in the order of other state-
of-the-art approaches28), which translates to a 100 ps injection
period, being orders of magnitudes slower than the electron
crossing time. Therefore, the injected electrons can be well
considered as non-interacting. Moreover, the current and
general performance of the interference structure is thus pri-

marily determined by the necessary upstream single-electron
source.

The potential energy distribution V = −qϕ (ϕ being the elec-
tric potential and q the electron charge, so that a negative or
positive gate bias represents a repulsive barrier or an attractive
well for the electrons, respectively) together with the physical
characteristics of the injected electrons, determine the electron
evolution in the 2D waveguide. Stochastic evolution simu-
lations (see recent monographs29,30 and reviews3,31)are used
for various gate configurations to calculate the electron and
current densities and the total current levels in the output
channels.

Regarding the theoretical framework for the simulation
backend (for a recent review of computational methods for
quantum electron transport and structure simulations see ref.
3): the quantum mechanics of the Schrödinger equation is
reformulated by the Wigner (or the equivalent density matrix)
formalism in phase space. The latter involves quantum stat-
istics and introduces a function which is the quantum
counterpart of the Boltzmann distribution function.30 This is
the formalism of choice in our research. It offers a rigorous
quantum description of coherence processes, allows to
account for an interaction with the lattice (e.g., thermal effects
due to phonon scattering), and ensures a seamless transition
to a classical description in regions with classical behavior.
More concretely, we apply the signed-particle model to the
Wigner transport equation.32 This model extends the conven-
tional, classical particle model applied in the Boltzmann
theory by assigning quantum information to the particles.
Quantum particles evolve in a classical way, however, they
carry a plus or minus sign, are generated by the Wigner poten-
tial VW, and annihilate each other if they occupy the same
point in phase space. Ultimately, we solve the Wigner transport
equation by a signed-particle stochastic approach provided by
our ensemble Monte Carlo solver ViennaWD.†33 As was men-
tioned before, we focus on the coherent case to clearly high-

Fig. 2 Distribution of quantum electron density [a.u.] for two sym-
metric gate configurations: ϕG1 = ϕG2 = 0 V (a) and ϕG1 = ϕG2 = 0.21 V
(b). The output channel walls are shown in white. Green circles indicate
location of gates.

Fig. 3 Distribution of quantum electron density [a.u.] for two asym-
metric gate configurations: ϕG1 = 0V and ϕG2 = 0.21 V (a) and ϕG1 = 0.21
V and ϕG2 = −0.21 V (b). The yellow circle indicates the location of the
negatively charged gate.
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light the manifesting quantum effects which anyway control
the electron evolution in this considered ballistic structure.
However, we do compare to classic transport (Boltzmann) to
identify the differences (see Appendix A).

The classical limit of the Wigner equation is obtained in
the case of slowly varying potentials, giving rise to the ballistic
Boltzmann equation.32 Accordingly, the signed-particle model
reduces to the Boltzmann model and the very intuitive picture
of classically evolving particles. This reduction provides a very
convenient way to outline and analyze quantum effects in the
electron evolution. An injected electron is assumed free and
thus modelled as a minimum uncertainty wave packet, having
a corresponding Wigner state34

fW r; pð Þ ¼N exp � r � r0j j2= 2σ2
� �� �

� exp � p� p0j j22σ2=ℏ2� �
;

ð1Þ

where N is a normalization constant. State (1) is characterized
by a Gaussian distribution35 in any of the involved dimensions
x and y.

The choice of the standard spatial deviation σ is a compro-
mise between the spread of fW in the position and momentum
subspaces, respectively. The chosen σ = 16 nm ensures a small
spreading of the involved frequencies, while still being in
accordance with the waveguide dimensions: the value corres-
ponds to a momentum deviation smaller than 0.1 nm−1

around p0 = 0.94 nm−1. This is around half of the maximal
momentum along y-direction and corresponds to a kinetic
energy of 71 meV of the injected electron and to an uncertainty
of about 5 meV. The structure’s dimensions and the involved
energies imply a fundamental quantum process of transport.

The simulation setup conceptually resembles a double-slit
experiment, where single electrons are shot consecutively
towards a screen, until a stationary (steady-state) interference
pattern is obtained.36,37 The probabilistic interpretation is of
equivalent independent (uncorrelated) experiments aiming at
accumulating sufficient statistics. However, in contrast to
double-slit experiments, where a single barrier offers two slits,
here, similar interference effects manifest by utilizing two
potential energy wells in a waveguide.36

Fig. 2a considers no applied bias to the gates, Gate 1 (G1)
and Gate 2 (G2). Electrons are injected in y-direction at the
bottom (see green wave-packet in Fig. 1). The classical trans-
port interpretation (see Appendix A) for this configuration is
very clear and applies to all configurations discussed in the fol-
lowing: electrons move freely and are only reflected by the
boundaries. They feel the two wall potentials only when enter-
ing into a direct contact with them and are reflected or con-
tinue the movement with a reduced speed depending on their
kinetic energy. Thus, classical electrons firmly surround the
walls. On the contrary, the quantum density shown in Fig. 2a
is very different: a reduced density (blue regions) is shown not
only surrounding the walls but also below the walls between y
= 10 nm and y = 30 nm. The two wall potentials evoke a strong
non-local action which shows the quantum character of the
electron evolution. The region y < 10 nm is particularly inter-

esting: for reference, the classical density is dominated by the
injected distribution (see Appendix A). The quantum density
instead shows a fine oscillating structure, marked by low
density scars, which suggests interference effects in the
quantum dynamics. The electron density is thus equally split
into the three output channels, following the symmetry of the
walls.

Fig. 2b shows the electron density for a symmetric gate bias
configuration, i.e., ϕG1 = ϕG2 = 0.21 V. The resulting peak of the
superimposed electric potential of the two gates, as deter-
mined by the gate and structure geometry, is 0.17 V on the
MoS2 surface, i.e., both gates act as attractive wells. As a result,
a focusing effect materializes: the majority of the electron
density is guided towards output channel 2 (the central
channel).

Here, we observe further elemental quantum phenomena:
tunneling and penetration into the channel walls. Indeed, the
potential barriers of the walls are higher than the central
kinetic energy of the injected electrons (Gaussian distri-
bution). According to classical (Boltzmann) evolution rules,
only a few particles from the tail of the Gaussian can overcome
the barrier. Besides, the classical action of the potential is
local, the particles will move uniformly in the wall region, thus
forming an even, low-density distribution. In contrast, the dis-
tribution in the walls is not even, while the density is compar-
able to the counterpart in the adjacent area. Thus the density
in channels 1 and 3 has a contribution due to tunneling.

Fig. 3a shows the electron density for an asymmetric gate
bias configuration, i.e., ϕG1 = 0 V and ϕG2 = 0.21 V, corres-
ponding to a resulting peak superimposed electric potential
on the MoS2 surface of 0.14 V, i.e., ϕG2 acts as an attractive well
in front of output channel 3 (right channel): the majority of
the electron density is thus guided towards channel 3, less so
towards channel 2, and considerably less to channel 1 (left
channel). Fig. 3b shows the electron density for another repre-
sentative asymmetric gate configuration where the gates are
biased in an opposing manner, i.e., ϕG1 = 0.21 V and ϕG2 =
−0.21 V. This configuration corresponds to a resulting peak
superimposed electric potential on the MoS2 surface of 0.11 V
in front of channel 1, and a repulsive barrier of −0.11 V in
front of channel 3. In this case the electron density guided
towards channel 3 is almost completely blocked and the
majority of the electron moves towards channel 1; a consider-
ably smaller part of the electron density enters channel 2.

In the next section, we show how the gate-controlled inter-
ference in the depicted structure could be used for realizing
logic gates. All geometry and electric potential details deter-
mine the interference behavior, which in the spirit of the
above considerations cannot be reproduced after a simple
scaling of dimensions and potentials. However, as long as the
elemental quantum phenomena determine the transport
process, we expect that their interplay will allow for defining
logical gates, but of course with different controlling potentials
and current levels.

Fig. 4 shows the calculated quantum currents for a repre-
sentative selection of ϕG1 biases relative to fixed ϕG2 biases in
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the three output channels. The reported currents are directly
linked to the injection period of the considered single-electron
source. The period has been empirically chosen so as to allow
for an optimal visualization of the electron densities rather
than to, e.g., minimize the current for reduced power con-
sumption (a typical engineering-focus), which is beyond the
scope of this work. The current at the output of each channel
has been calculated by integrating the current density along
the corresponding output cross-section. In turn, the current
density is calculated from the first-order moment of the elec-
tron distribution function. Fig. 4a considers the case of ϕG2 = 0
V; G2 is thus not active (see a similar scenario in Fig. 3b albeit
for G1). For negative ϕG1 biases, ϕG1 repulses the majority of
the current to channel 3, with a similar inverted behavior for
positive biases with respect to channel 1. In case of ϕG1 = 0 V,
the electron is equally distributed between all three output
channels as expected from symmetry considerations, which
corresponds to the scenario depicted in Fig. 2a. The negative
and positive ϕG1 bias ranges seem to offer a mirrored behavior,
however, both ranges correspond to entirely different physical
scenarios of repulsion and attraction, leading to different
interactions between the electrons and the potential energy
landscape and thus to different current levels. Therefore, a
fully-mirrored behavior is not to be expected. Fig. 4b considers
the case of ϕG2 = 0.105 V. The negative bias range offers
similar general behavior as for ϕG2 = 0 V (see Fig. 4a), however,
for the symmetric case ϕG1 = ϕG2 = 0.105 V a focusing effect
with respect to channel 2 manifests (similar to Fig. 2b). A
further increased ϕG1 bias results in a deeper well potential at
G1 over G2, thus the majority of the current manifests in
channel 1. Fig. 4c considers the case of ϕG2 = 0.21 V; G2 acts as
an even stronger attractive well. Yet another intriguing
example of quantum non-locality is seen here for negative
biases: although ϕG2 has doubled (compare with Fig. 4b), the
current in channel 1 and 2 stays roughly the same but in
channel 3 (located behind G2) is further reduced, demonstrat-
ing the wave nature of the evolution.

Table 1 provides an extended overview of the gate bias to
channel current relations and together with Table 2 shows
various exemplary interpretations as logic gates: particularly
important are universal NAND and NOR gates as both are func-

Fig. 4 Output channel quantum currents IC1,2,3 for a set of gate biases ϕG1,2.

Table 1 Output channel quantum currents IC1,2,3 (μA) for an extended
set of gate biases ϕG1,2 (V) relative to Fig. 4. The GATE column shows
individual rows of the truth tables of realizable NAND and NOR gates
according to the rules shown in Table 2; framed current values highlight
the utilized channel to realize the logic

ϕG1 ϕG2 IC1 IC2 IC3 GATE

−0.21 −0.21 9 9 NOR: 11 → 0

−0.21 −0.105 10 14 28
−0.21 0 13 36 NOR: 10 → 0

−0.21 0.105 16 13 37
−0.21 0.21 15 14 32
−0.105 −0.21 28 14 10
−0.105 −0.105 19 31 NAND: 00 → 1

−0.105 0 17 11 47
−0.105 0.105 18 13 NAND: 01 → 1

−0.105 0.21 16 16 24
0 −0.21 36 13 NOR: 01 → 0

0 −0.105 47 11 17
0 0 26 26 NOR: 00 → 1

0 0.105 17 13 47
0 0.21 14 20 34
0.105 −0.21 37 13 16
0.105 −0.105 39 13 NAND: 10 → 1

0.105 0 47 13 17
0.105 0.105 15 46 NAND: 11 → 0

0.105 0.21 10 20 40
0.21 −0.21 32 14 15
0.21 −0.105 24 16 16
0.21 0 34 20 14
0.21 0.105 40 20 10
0.21 0.21 15 41 15

Table 2 Exemplary logic gate definitions based on ϕG and IC values of
Table 1: IN associates specific ϕG1,2 (V) biases with input states 0 and 1; C
is the output channel number; OUT associates specific IC1,2,3 thresholds
(μA) with output states 0 and 1; and GATE shows the realizable logic
gate

IN

C

OUT

GATE0 1 0 1

0 −0.21 2 ≤20 >20 NOR
−0.105 0.105 3 ≤16 >16 NAND
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tionally complete and as such can be used to implement all
possible Boolean functions.38 In conventional logic, a NAND
gate is defined by the truth table 00 → 1, 01 → 1, 10 → 1, 11 →
0 and the NOR gate by 00 → 1, 01 → 0, 10 → 0, 11 → 0,
mapping two input states to one output state for the four
binary-based configurations. In a similar fashion, additional
logic gates can be identified, e.g., AND and NOT gates.

The introduced gate-controlled interference structure pro-
vides a new perspective towards advanced non-magnetic, low-
power, and high performance classically operating logic. The
electronic nature provides the opportunity for co-integration
with conventional electronics. Furthermore, various adap-
tations are perceivable, for instance, additional gates, chan-
nels, or bias configurations would allow to introduce even
more current states. Alternatively, the output channels can be
arranged in a non-symmetric manner or can be merged
outside of the structure to allow for further superpositioned
states. Robustness is tuneable by increasing the current
ranges. The shown design is in principle adaptable to other
transport materials (e.g., graphene), offering additional
options for practical realizations. In addition to classical
binary logic, the manifestation of several current levels at the
individual output channels provides a path towards multi-
valued logic, which, although having inherent higher robust-
ness challenges,38 promises higher integration densities.39

The fact that different gate bias configurations allow for
different current levels allows for reconfiguration: the same
structure configuration can realize different logic gates. In
addition, we restricted the here presented initial studies to uti-
lizing a single output channel for realizing a particular logic
gate. However, the fact that additional, specific current levels
are available also in the remaining output channels provides a
path towards parallelization as various logic operations can be
potentially realized in parallel.

Conflicts of interest

There are no conflicts to declare.

Appendix: Classical Boltzmann
considerations

There is a remarkable contrast between the principles of classi-
cal and quantum evolution. In particular, considering particle
transport, classical evolution has a local character: point-like
particles are accelerated over Newtonian trajectories by the
local gradient of the potential: the electric field. The evolution
can be analyzed in terms of probabilities (which in the case of
independent processes sum up in an additive way). In particu-
lar the Gaussian distribution of an injected electron is inter-
preted as the probability to find the electron at a given position
and momentum at a given time. Conversely, in the quantum
case the Gaussian represents the single-electron state, which
obeys the Heisenberg position-momentum uncertainty prin-

ciple. The evolution is governed by the entire potential which
imposes a non-local action on the also non-local electron
state. The evolution is analyzed in terms of probability ampli-
tudes which sum up to give the interference effects. These fun-
damental notions of non-locality, interference, and tunneling
can interplay in a complicated way, already in the here dis-
cussed case of two gate potentials. This is in line with previous
findings: In a related previous study of multiple impurity
potential systems similar effects were shown: “diffraction and
interference effects, resonant flow regions, trapped and moving
vortex flows, complex multiple scattering on several impurities,
localisation effects and strong channel blocking”.40

The classical Boltzmann evolution gives rise to fundamen-
tally different electron density distributions (Fig. 5 and 6) as
compared to the quantum counterparts shown in Fig. 2 and 3.
Furthermore, the current is also very different and is approxi-
mately (15–51%) larger in the quantum case. For instance, a
strong difference is observed when both gates are set to 0.21 V,
where IC2 = 41 μA against a classical current of 20 μA. However,
the classical results have to be taken with a grain of salt as in

Fig. 5 Distribution of classical electron density [a.u.] corresponding to
the configurations shown in Fig. 2.

Fig. 6 Distribution of classical electron density [a.u.] corresponding to
the configurations shown in Fig. 3.
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fact the here considered ballistic structure will enforce
quantum transport effects.
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