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Designing the ultrasonic treatment of
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Ultrasonication is a widely used and standardized method to redisperse nanopowders in liquids and to

homogenize nanoparticle dispersions. One goal of sonication is to disrupt agglomerates without chan-

ging the intrinsic physicochemical properties of the primary particles. The outcome of sonication,

however, is most of the time uncertain, and quantitative models have been beyond reach. The magnitude

of this problem is considerable owing to fact that the efficiency of sonication is not only dependent on

the parameters of the actual device, but also on the physicochemical properties such as of the particle

dispersion itself. As a consequence, sonication suffers from poor reproducibility. To tackle this problem,

we propose to involve machine learning. By focusing on four nanoparticle types in aqueous dispersions,

we combine supervised machine learning and dynamic light scattering to analyze the aggregate size after

sonication, and demonstrate the potential to improve considerably the design and reproducibility of soni-

cation experiments.

Engineered nanoparticles (ENPs) have been used in commer-
cial products, such as foodstuff, cosmetics and personal care
for over two decades.1–3 Typical materials are zinc oxide,
titania, ceria, and silica.4,5 Consumers may find titania ENPs
in toothpaste,6 and zinc oxide in sunscreen.7 Such particles
are usually produced and sold in large quantities, and thus
stored in a dry powdered form (nanopowder). When stored as
powders, particles can form agglomerates, which are single
particles clumping together, owing to attractive interparticle
interactions.8 Given that the usefulness of ENPs is due to their
specific and tunable physicochemical properties that are
mediated by the vast surface-to-volume ratio, powders are to
be liquified and redispersed before supplying them to manu-
facturing processes. To redisperse powders, ultrasonication is
the most often-used method.9,10 Indeed, sonication, acting via
fluid cavitation, is preferred over ball milling or high shear
mixing due to its greater efficiency.11,12 Furthermore, ultra-
sonication is applied not only in industrial labs but in aca-
demic research labs as well, preparing ENPs in toxicological
and environmental studies.11,13,14 If overdone, ultrasonication,
however, may considerably alter the physicochemical pro-
perties of the particles.11,12,15,16 This effect has been observed

especially for mass-produced metal oxide nanopowders, such
as silica, titania or alumina, that are synthesized in the high
temperature vapor phase.12,15,16 For example, when it comes to
hazard assessment addressing environmental or biological
systems, any physicochemical change of the primary particles
induced by sonication is undesired.11 In such cases, the
reduction of the primary particle size may strongly influence
the pathway of cellular internalization,17 cytotoxicity,18 and
biodistribution,19 and thus, the overall fate in environmental
milieu.20 At the same time, compared to the primary particles,
agglomerates may render particle dosimetry characterization
more difficult,21–23 and may also exhibit different hazards.24

Dominantly, two approaches have been followed in the soni-
cation of ENPs: on the one hand, a generic standard operating
procedure (SOP) is carried out,25–28 which enforces uniformity
in the experimental settings but directly comes with the dis-
advantage of non-adjustable experimental parameters and the
eventuality of having unwanted changes in the particles, such
as size reduction, shift in zeta-potential, or even the appear-
ance of sonication-induced agglomerates.11,29 On the other
hand, custom-made protocols dedicated to given materials
and given experimental conditions may be developed.6,14,30–33

This is, in essence, the more attractive option, offering custo-
mization as well as the prospect of standardization. There is a
caveat though: the parameter space is vast, and classical
methods of optimization become severely limited by time and
cost.14,30–34

To get around this bottleneck eventually, here we
approached the problem via machine learning (ML). ML is
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data-driven and known for the ability to surpass human per-
formance in various situations by being able to capture non-
intuitive nonlinear and multivariate relationships. Using
supervised ML, we built an algorithmic model that is able to
capture characteristic features of the complex relationships
between (a) the outcome of redispersion and deagglomeration,
and (b) the combinations of sonication parameters—such as
particle concentration, dispersion volume, sonicator type, dur-
ation of sonication, and sonication power—and selected
physicochemical properties of the particles—such as size, zeta-
potential, isoelectric point, surface coating and material type.
We use a gradient boosted decision tree algorithm and exclu-
sively focus on four ENP types, where we expect similar behav-
ior to ultrasonication. We characterize the outcome via the
intensity-weighted Z-average hydrodynamic size (diameter)
and polydispersity index (PDI) of the particles via dynamic
light scattering (DLS). According to the fundamental principles

of DLS, these two are the most reproducible parameters one
can determine from DLS experiments.35

Supervised ML aims at establishing a quantitative relation-
ship between features (inputs) and labels (outputs). The
outputs of sonication were the Z-average hydrodynamic radius
and the PDI, and the inputs were the sonication parameters
and particle properties. Our data-driven ML approach was per-
formed on two consecutive studies (Fig. 1). In the first part of
the study, we addressed well-defined—but not strictly mono-
disperse—model ENPs, which were synthesized, processed,
and characterized in our own laboratory. For this, we syn-
thesized aqueous dispersions of non-crystalline silicon dioxide
nanoparticles (SiO2 ENPs), commonly known as colloidal
silica. The SiO2 ENPs were synthesized with nominal dia-
meters of roughly 40 nm, 70 nm, and 100 nm, respectively,
using a co-condensation reaction adapted from Stöber et al.36

Depending on the desired particle size, different relative

Fig. 1 Workflow of our studies. In the first part of the study, experimental data are generated by characterizing agglomerated dispersions of model
SiO2 ENPs, before and after ultrasonication, using different, systematically combined sonication parameters. These data are used for supervising a
ML algorithm, where the sonication parameters and particle sizes are fed into the algorithm as features (inputs), and the DLS results (Z-average and
PDI) as predicting labels (outputs). By mapping and approximating the functional relationships between labels and features, the goal of the ML
model is to predict the outcome of ultrasonication in terms of DLS analysis. In the second part of the study, meta-analysis is performed on data
mined from peer-reviewed publications addressing the ultrasonication of particle systems. We focused on oxides—namely ZnO, SiO2, CeO2 and
TiO2—given their evident presence in consumer products.38,39
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amounts of ethanol, ammonia and water (MilliQ) were mixed
and heated to 40 °C (ESI, Table SI1†). After stirring the mixture
for 1 h at constant temperature for equilibration, tetraethyl
orthosilicate was added, and the mixture was stirred for
another 8 h. After the mixture cooled down to room tempera-
ture, the SiO2 ENPs were purified by centrifugation (Thermo
Scientific, 5000g, 5, 10, 15 and 20 min, five cycles in total). To
mimic the extensive degree of agglomeration in powders, the
ENPs were agglomerated via the change of ionic strength,37 by
adding magnesium chloride hexahydrate (50 g L−1) to the
aqueous dispersion. Agglomerated samples were purified
again by dialysis and were resuspended in water before under-
going different sonication processes.

The overall number of parameter combinations was
obtained via a generalized fractional factorial experimental
design aimed at extracting an optimal amount of information
from the smallest possible number of experiments, while still
being able to understand the relationship between the
different parameters and parameter values with the experi-
ment outcome.40 In this design of experiments we considered
that the primary particle size, particle concentration, dis-
persion volume, duration and power of sonication were found
to have an effect on the degree of deagglomeration of particle
agglomerates.11,12,41–44 We designed the sonication experi-
ments using the pyDOE2-library,45 and used a reduction factor
of seven, which reduced the number of experiments from 108
(full factorial design) to 14, with every experiment carried out
in triplicate. Each triplicated design contained one of either
two or three levels of combinations of particle concentration,
water volume, sonicator type (probe vs. bath), duration of soni-
cation, and effective energy and energy density of sonication
(Table 1).

The ultrasonication devices were bath and horn-probe soni-
cators (Elmasonic P 60 H, ELMA and Branson SFX550 Sonifier

equipped with a standard 13 mm diameter disruptor horn,
Branson Ultrasonics Corp.). The sonication power and the
corresponding energy release were calibrated by calorimetric
measurements described elsewhere,28 and the details of cali-
bration are presented in the ESI (Tables SI3 and 4†). After soni-
cation, the particles were characterized by DLS (Malvern
Panalytical, Zetasizer Nano-ZS) at room temperature (25 °C).
For DLS analysis, the given sample volumes (500, 100, and
50 µL) were diluted with 1 mL water (MilliQ) depending on the
particle concentration (1, 5, and, 10 g L−1). Dilution was
necessary to minimize any potential bias owing to the negative
impact of multiple light scattering and collective diffusion
affecting Brownian dynamics.46 Each diluted triplicate was
then measured three times, and the auto-correlation functions
were analyzed by the methods of cumulants35,47 to determine
the so-called Z-average and PDI.35,47 Typical examples of the
DLS field auto-correlation functions, and representative TEM
micrographs of the agglomerates are shown in the ESI
(Fig. SI1, 2 and 4†). The Z-average and PDI are both functions
of the intensity-weighted particle size distribution, which is
affected by the parameters of sonication. Loosely speaking, the
smaller the Z-average, the higher the impact of sonication on
the agglomerates. The overall goal of sonication is to redis-
perse (that is, disintegrate) agglomerates without altering the
primary particles’ properties.

For this straightforward goal, it is essential to closely
approximate the unknown but existing functional relationship
between the inputs (parameters of sonication) and the corres-
ponding outputs (Z-average and PDI). This task is called multi-
variate regression analysis, and it is used for predicting and
forecasting. The functional relationship is nevertheless
complex, and reliable and transferable quantitative regression
models are not available yet, to the best of our knowledge.
This is the point where we invoke supervised machine learn-
ing. The model we implemented is based on a gradient
boosted decision tree (GBDT) algorithm by using the XGBoost-
library.48 The benefit of using GBDT is that it offers good
efficiency and flexibility while being relatively fast and rela-
tively easy to implement as well as interpret.48–51 Therefore,
GBDTs are optimal for limited datasets due to their robustness
in comparison with e.g., a deep-learner.52 Additionally, they
enable a straightforward ranking of the feature importance.
This offers insights into decision-making of the model, and
ranks the importance of the underlying physical processes
during ultrasonication. The structure of decision trees is com-
posed of nodes and branches, where branches make ‘one-way’
connections between the nodes. Besides the root node—the
very first node—there are two elementary types of nodes: the
first type is non-leaf nodes, which are internal crossroad junc-
tions of the decision route in the tree, representing either an
attribute (e.g., “ultrasonication via bath sonicator”, “ultra-
sonication via horn sonicator”) or a question (e.g., is the par-
ticle size under 50 nm?”, “is the released energy density over
15 J mL−1?”). The second type is leaf nodes at the end of the
decision-making process, which offer the prediction of the
label. To improve the predictive accuracy of decision trees, a

Table 1 The experimental design space of ultrasonication. These soni-
cation parameter combinations were used for all the three particle sizes.
These parameters are features in the ML model. In the second study
(meta-analysis), four additional features (particle properties) were
included: isoelectric point, zeta-potential, material type, and surface
coating

Sample
vol. (mL)

Particle
conc.
(mg mL−1) Type

Energy
(J)

Duration
(min)

Energy
density
(J mL−1)

1 1 1 Probe 179 1 179
2 1 1 Probe 17 256 20 17 256
3 1 1 Bath 2025 45 2025
4 1 5 Probe 3576 20 3576
5 1 5 Probe 38 826 45 38 826
6 1 10 Probe 8046 45 8046
7 5 1 Probe 3576 20 715
8 5 1 Probe 38 826 45 7765
9 5 5 Probe 8046 45 1609
10 5 10 Bath 194 1 39
11 10 1 Probe 8046 45 805
12 10 5 Bath 194 1 19
13 10 5 Bath 45 1 5
14 10 10 Bath 100 20 388
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regression tree algorithm can be deployed, where trees are
trained in consecutive learning cycles. In these cycles, the final
prediction of a tree is tested on a measured data point. If the
tree fails to predict the target, another tree is built on this
error until a tree is trained where the prediction and the
measured value overlap. With this, the final tree model can
map, generalize and compare rules from an ensemble of
specific and individual observations. A set of observations
forms a dataset, which is described by two main attributes:
features (inputs: parameters of sonication and particle pro-
perties) and labels (outputs: Z-average and PDI).

Supervising an ML has three main phases: training, vali-
dation, and testing. During training, the ML model is given
known features and corresponding labels to find a relationship
between these two. In a certain number of training rounds, the
predictive accuracy of the model is improved by altering the
tree structure and the decision rules. To achieve this improve-
ment, the accuracy of the model’s predictive power has to be
tested after every training step, which is called validation.
Briefly, a part of the training data is withheld during training
and used to test the success of the trained model. If the predic-
tion for the validation data is incorrect, the model starts
another learning round with an adjusted tree. In the testing
phase, the ability to generalize and approximate these relation-
ships is tested by quantifying the agreement between ML-pre-
diction and the so-far unseen data. To train, validate, and test
the model, feature values must be formatted. First, categorical
feature values (for example, parameter corresponding to soni-
cator type: horn vs. bath) were transformed into numerical
values by One-Hot encoding, using the Scikit-learn library in
Python.53 Encoding creates a ‘feature vector’ for each category
of the parameter and fills it with either 1 or 0 to encode the
presence or absence of the feature.51,54,55 Second, feature
values were power-transformed to approximate a standard
normal distribution.51,56,57 To define training and test data, we
used random sampling and stratified splitting. Stratification
was based on the average values of the features (Z-average or
PDI), and as a result of stratification, the training and test sets
were balanced, in the sense that both were representative of
the population of the observations we had at hand.
Stratification forces the model to learn on the full range of
label values, and thus, it promotes higher prediction quality.
The training set and test set were non-intersecting, that is,
they had no common element. This was important to prevent
the phenomenon of the so-called data leakage, which is the
simultaneous occurrence of data with identical features–label
combo in the training as well as in the test set.51 Therefore,
the experimental triplicates of identical labels were never split,
were kept in a given set, and any triplicate went either into the
training or the test set. We used 70% of the data in the train-
ing sets and 30% in the test sets. To train our ML model, the
algorithm was presented to features and the corresponding
labels of the training set. During training, the model was repe-
titively tested on a small set, which is referred to as the vali-
dation set. In our case, 20% of the training set was allocated
into the validation set. The validation set was withheld from

the actual training rounds, but it was presented to test the pre-
diction quality after single training steps. This was necessary to
tune the hyperparameters of the model.58 To optimize the
values of the hyperparameters (ESI,† machine learning terms),
we used the tree of the Parzen estimator algorithm (maximum
200 trials) implemented in the Optuna library.59 At the end of
supervision, the quality of learning, that is, the corresponding
prediction accuracy was evaluated on the test set.51 The quality
of prediction was quantified by the R2 score, which is the coeffi-
cient of determination. R2 is in fact equal to the square of the
Pearson (linear) correlation coefficient, and quantifies the agree-
ment between the experimentally measured values and ML-pre-
dicted values. By definition R2 = explained variation/total vari-
ation, and it may take values between 0 (no agreement) and 1
(perfect agreement). The structure of our ML approach is sum-
marized in Fig. 2. The comparison between experimental values
and values predicted by our ML model addressing the colloidal
silica particles is shown in Fig. 3.

To test the ability to extrapolate by our ML model, we pre-
dicted labels whose features were not from the interval of the
training set. For this, we synthesized and characterized a new
batch of particles (approx. 80 nm SiO2 ENP) and constructed a
new experimental design (Table 2) with new parameter levels.
Apart from one instance, the agreement between experimental
and predicted triplicates is very good with a 6% relative error
on average, but the model struggles with predicting accurately
larger Z-average values. This, in part, is due to the fact that
agglomerates are very heterogeneous in size, and the degree of
heterogeneity scales with size. Therefore, the larger the mean
aggregate size, the broader the size distribution, and thus, the
expectable noise is larger.60 Second, the uncertainty of bath
sonication is larger than probe sonication, and the noise in
the corresponding data points is larger. This indicates some
challenges in the reproducibility of bath sonication, likely due
to variations in the experimental conditions, such as water and
room temperature, relative humidity, bath volume and the ver-
tical and horizontal position of the sonicated vessel.11,61

After successfully constructing the ML model and predict-
ing the outcome of ultrasonicating the silica particles, in the
second part of this study we apply our ML approach to the
meta-analysis of published and peer-reviewed work reported
on the sonication and DLS characterization of oxide particles,
such as ZnO, CeO2 and TiO2. Following the guidelines of Field
and Gillett,62 we compiled a set of 203 data points collected
from 12 peer-reviewed articles.12,30,31,43,63–70 Articles relevant
to the project were searched online, by using the combinations
of the keywords of “ultrasonication”, “nanoparticles”, and
“oxide”. Compared to the laboratory study, the number of fea-
tures (Table 1) could be increased by adding particle properties
like zeta-potential in water, surface hydrophobicity/hydrophili-
city, and isoelectric point. Owing to larger dataset, the ML
model performed better (Fig. 4), while the structure of super-
vising the machine learning algorithm was very similar to the
lab-based study.

Nevertheless, similar to the lab-based study, the accuracy at
large Z-average values and with bath sonicated samples is also
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decreased. As the final evaluation of the performance of our
ML model, we tested two commercially available ENPs syn-
thesized on a large-scale (aeroxide TiO2 P 25 and aerosil SiO2

200, both by Evonik Operations GmbH) following the experi-
mental design detailed in Table 2. The values predicted by the

ML model and the values measured by DLS are listed in
Table 3.

Next, we were interested in identifying the relative impor-
tance of the individual ultrasonication parameters and particle
properties we used as an input on the outcome of the predic-

Fig. 2 The main units of our supervised machine learning. (a) Definition of data subsets we used for training, validating and testing the ML model.
Data splitting is done randomly, but in a stratified manner. The goal of stratification is to obtain balanced subsets wherein the data population is rep-
resented equally. (b) Depiction of the algorithm of decision trees, where decisions are taken at nodes and propagating to the next nodes via
branches. The validation set is used for hyperparameter optimization, which is achieved by adjusting the number of nodes and branches of the trees.
Once the training has finished, the best model is ‘blind-tested’ with data unseen during training. (c) If the model passes this evaluation step, it may
be useful for interpreting the relationship between inputs (features) and outputs (labels) by ranking the importance of the features in the ML model
prediction.

Fig. 3 Parity plots of log10 Z-average and log10 PDI values of the SiO2 ENPs synthesized, processed, and characterized in our lab. Data in gray color
indicate ten independent training and testing rounds, while the data in turquoise/red color highlight the most successful training (88 data points)
and testing (38 data points). The two models for Z-average and PDI show a R2 of 0.76 and 0.75. These values correspond to a linear correlation
coefficient better than 0.87. The dashed black lines indicate perfect predictions (R2 = 1). A distribution of the R2 score for the test set of 100 newly
randomly seeded and trained models can be found in Fig. SI7.†
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tions. With this, we were also able to see what parameters are
the most decisive—in the eyes of our model—in the process of
particle ultrasonication, giving us insights into the underlying
physical process of ultrasonication. To obtain these insights,
we performed a so-called feature importance analysis (FIA).
Feature importance analysis supports strongly the interpret-
ation of ML-prediction.71 FIA, in essence, assigns a score to
each feature used in the ML model, based on their relative
importance in predicting the label values. The higher the
score, the greater the influence of the feature. Hence, if one
wants to optimize ultrasonication experiments in the future, it
will be time-saving to start tweaking the most influential para-

meter and then to follow the importance hierarchy. Our FIA is
based on the so-called Shapely values.72 Shapley values were
invented in the field of cooperative games, and loosely speak-
ing, they are intended to establish a basis of merit-based
payoff, by quantifying the marginal contributions of players of
a team in a given game and the associated reward.73 In a coop-
erative game, the success of each player depends not only on
what they do, but also on how the players cooperate together.
Accordingly, the most useful team-player gets the highest
share of the reward. Calculating Shapley values is compu-
tational very intensive, and thus, we compute with the method
introduced by Lundberg and Lee (SHapley Additive

Table 2 The performance of our ML model on the sonication experiment of 80 nm diameter SiO2 particles. The ML model was neither trained nor
validated nor tested on these particles beforehand

Parameters of sonication Result

Sample
vol. (mL)

Particle conc.
(mg mL−1) Type

Amplitude
(%)

Duration
(min)

Energy
density
(J mL−1)

Predicted
Z-ave (nm)

Measured
Z-ave (nm)

Predicted
PDI

Measured
PDI

1 2 2 Bath 50 5 258 337 ± 67 324 ± 61 0.38 ± 0.12 0.30 ± 0.23
2 7.5 2 Bath 50 30 298 239 ± 22 796 ± 26 0.21 ± 0.10 0.50 ± 0.13
3 7.5 2 Probe 20 5 322 124 ± 17 141 ± 2 0.08 ± 0.04 0.10 ± 0.01
4 7.5 7.5 Bath 50 5 69 325 ± 40 331 ± 33 0.44 ± 0.25 0.31 ± 0.18
5 2 7.5 Probe 20 30 3878 150 ± 39 112 ± 5 0.12 ± 0.11 0.05 ± 0.01

Fig. 4 Parity plots of log10 Z-average and log10 PDI values of oxide ENPs synthesized, processed and characterized elsewhere (meta-analysis). Data
in gray color indicate the progress of ten independent training and testing rounds, and data in turquoise/red color show the best models. We had a
total of 383 data points for training and 289 data points for testing, and compared to the lab-based ML analysis, we achieved better performance (R2

= 0.82 and 0.84 for the Z-average and PDI, which correspond to a linear correlation coefficient higher than 0.9). The dashed black lines indicate
perfect predictions (R2 = 1). A distribution of the R2 score for the test set of 100 newly randomly seeded and trained models can be found in
Fig. SI7.†

Table 3 The performance of our ML model on the sonication of commercialized large-scale produced ENPs. The ML model was nor trained nor
validated nor tested on these parameter combinations beforehand

Aeroxide (TiO2) Aerosil (SiO2)

Predicted size
(nm)

Measured size
(nm)

Predicted
PDI

Measured
PDI

Predicted size
(nm)

Measured size
(nm)

Predicted
PDI

Measured
PDI

1 289 ± 14 302 ± 15 0.40 ± 0.09 0.42 ± 0.08 501 ± 41 476 ± 51 0.71 ± 0.34 0.64 ± 0.24
2 261 ± 20 922 ± 63 0.23 ± 0.17 0.61 ± 0.17 171 ± 53 309 ± 39 0.24 ± 0.08 0.57 ± 0.15
3 371 ± 29 352 ± 13 0.34 ± 0.10 0.38 ± 0.07 181 ± 17 173 ± 8 0.09 ± 0.08 0.13 ± 0.02
4 275 ± 36 285 ± 51 0.38 ± 0.09 0.40 ± 0.09 339 ± 87 306 ± 8 0.66 ± 0.22 0.57 ± 0.19
5 143 ± 12 144 ± 26 0.22 ± 0.09 0.19 ± 0.07 114 ± 17 123 ± 2 0.29 ± 0.10 0.34 ± 0.02
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exPlanations, SHAP).74 According to the SHAP values, in our
ML model trained on the silica ENPs synthesized and pro-
cessed in our laboratory, the sonicator type has the highest
influence on the deagglomeration success and the obtained
PDI (Fig. 5a and b). This most likely reflects the fact that the
available range of sonication energy is dependent on the type
of sonication. The comparison of SHAP values between the
models for PDI and Z-average shows only a marginal differ-
ence. In the meta-analysis, it is interesting to see that in the
ML model, the isoelectric point, the zeta-potential, and surface
coating only show a low influence for the ultrasonication
process, their cumulative share is less than 15% (Fig. 5c and
d). Apart from the energy-related quantities, the material type
and particle size are however important features of the model.
Their influence may be interpreted by using colloidal science:
the amplitude of van der Waals forces—binding the particle
agglomerates—is particle size and particle material
dependent,75,76 and thus the model picks up their important
role in the binding energy of the particle agglomerates and
their influence on cluster deagglomeration.

Last but not least, we acknowledge that our study has
limits, which point out potential subjects for future studies.
First, while DLS is one of the most frequently used method in
the characterization of particle dispersions, it is an ensemble
technique that is very sensitive to outliers, which may lead to
bias, and thus, requires carefully prepared and reproducible
samples. Therefore, while DLS has its own merits, other
in situ, and perhaps more robust characterization techniques

—such as particle tracking analysis, Taylor dispersion ana-
lysis, small-angle scattering and diffraction methods—may
serve the purpose equally well, if not better. Our choice of
experimental characterization technique was due to the wide-
spread use and accessibility of DLS—and therefore the largest
number of published data points. Second, our ML model was
developed on so-called horn and bath ultrasonicators, but
cup horn sonication—also a frequently used device type—is
not addressed in this study due to the lack of published data.
Third, sonication may benefit from the use of dispersing
agents, but we do not address their presence and role here.
Fourth, in this study, we concentrated on a given class of
ENPs with somewhat similar physicochemical properties, but
other highly relevant materials, such as iron oxides, alumi-
num oxides, quantum dots, carbon nanotubes, or even par-
ticle mixtures were not addressed. Additionally, the model
might show lower predictability for data points out of the
range the model was trained on, e.g. micro sized particles or
different particle morphologies like sheets or wires. Fifth,
while our analyses are sound, we are able to offer only a hier-
archy of importance and degree of association of the features
to interpret the prediction of our ML model. Therefore, a
detailed mechanistic understanding of the model and a
casual inference is missing. To describe in quantitative detail
the ML model in terms of cause and effect (by, for example,
closed-form analytic algebraic expressions) is beyond our
current capacity. Explainable and fully transparent ML is an
active field of debate,77–81 which, however, concerns not only

Fig. 5 Feature importance analysis by normalized Shapley values. The more important the feature in our ML model, the higher the share in the pie
chart. Parameters relating to the sonication process are presented in a cold (blue/green) color palette, and parameters relating to particle physico-
chemical properties are shown in hot (red/yellow) color palette. (a) Analysis of Z-average for model SiO2 NPs synthesized, processed and character-
ized in our lab. (b) Analysis of PDI for model SiO2 NPs. (c) Analysis of Z-average for oxide NPs synthesized, processed and characterized elsewhere.
(d) Analysis of PDI for oxide NPs.
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us, but any ML models where information content available
(data) is limited.

As a final note for outlook, we co-published a web-based
application with a graphical user interface (https://sonipredict.
herokuapp.com/) where we offer quantitative guidance for
designing sonication processes. While the application in its
current form is based on the ML approach presented here,
with creating a larger data bank, we hope to extend the model
to cover increasing number of parameters and experimental
scenarios of greater complexity, such as different dispersants
and material types and sizes. The ML model can be greatly
improved by incorporating new data, as any ML model learns
best on data of high quality and of high volume, and we also
call to the community to support us and send their own
results on ultrasonicated nanoparticle dispersions. To collect
more data, we also co-published a new database (https://tine-
glaubitz-sonidb-app-8z3bkw.streamlitapp.com/) for research-
ers to send in their data points. With a collective effort we aim
at improving ML analyses, and promoting reproducibility in
this impactful field.

Abbreviations

DLS Dynamic light scattering
ENP Engineered nanoparticle
GBDT Gradient boosted decision tree
ML Machine learning
PDI Polydispersity index
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