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Tuning the charge transport properties of two-dimensional transition metal dichalcogenides (TMDs) is
pivotal to their future device integration in post-silicon technologies. To date, co-doping of TMDs during
growth still proves to be challenging, and the synthesis of doped WSe,, an otherwise ambipolar material,
has been mainly limited to p-doping. Here, we demonstrate the synthesis of high-quality n-type mono-
layered WSe; flakes using a solid-state precursor for Se, zinc selenide. n-Type transport has been reported
with prime electron mobilities of up to 10 cm? V™ s We also demonstrate the tuneability of doping to

p-type transport with hole mobilities of 50 cm? V=1 571

after annealing in air. n-Doping has been attribu-
ted to the presence of Zn adatoms on the WSe, flakes as revealed by X-ray photoelectron spectroscopy
(XPS), spatially resolved time of flight secondary ion mass spectroscopy (SIMS) and angular dark-field
scanning transmission electron microscopy (AD-STEM) characterization of WSe, flakes. Monolayer WSe,
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flakes exhibit a sharp photoluminescence (PL) peak at room temperature and highly uniform emission
across the entire flake area, indicating a high degree of crystallinity of the material. This work provides
new insight into the synthesis of TMDs with charge carrier control, to pave the way towards post-silicon
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1 Introduction

The large family of TMDs has attracted increasing interest in
the last decade due to their unique optical, electrical and cata-
Iytic properties.””> Monolayer WSe, features a direct optical
bandgap close to the near infra-red region (1.65 eV),>* pos-
sesses one of the highest charge carrier mobilities among
TMDs® and exhibits robust valley- and spin-splitting.® In
addition to the thermodynamically stable hexagonal 2H crystal
phase, WSe, can be stabilised in the distorted trigonal 1T’
phase too, which behaves as a 2D topological insulator,” and it
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has also been reported to be an active catalyst for the electro-
catalytic hydrogen evolution reaction.® Promising applications
of 2H-WSe, have been reported in the areas of
photovoltaics,”'® spintronics,''*> and optoelectronics.”*™°
Additionally, WSe, along with other TMDs are emerging as
potentially transformative materials for ultra-short channel
field-effect transistors (FETs) as the charge carriers are con-
fined within the layer and their concentration is controlled by
the gate voltage."”'®

Chemical vapor deposition (CVD) is the most promising
technique for the growth of high-quality crystals over a wafer
scale on an industrial scale,">*° as already demonstrated for
III-V semiconductors. To date, monolayer WSe, has been syn-
thesized in the form of isolated flakes by CVD,*** and large-
scale continuous films using metal-organic CVvD (MOCVD).*
While CVD relies on the reaction between WO; and Se
powders in the presence of H,,>**> MOCVD syntheses typically
use highly volatile W(CO)s and H,Se.*® The use of conspicuous
amounts of H, has been proven to be essential to enable the
growth of WSe, from Se powder’” as it acts as a reducing
agent, increasing the reactivity of both the metal and the chal-
cogen precursors. This is because the W-Se bonding energy is
higher than the one of W-S, therefore selenium is less reactive
than sulphur in the growth of WX,.”®**° However, handling
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and storing H, can present safety concerns, as it is highly
flammable, while H,Se is extremely toxic even at low exposure
concentrations.

Additionally, to fully implement WSe, in a metal-oxide
semiconductor (MOS)FET architecture and complementary
metal oxide semiconductor (CMOS) logic, controlling the
charge carrier type and density is of paramount
importance.***' WSe, is often reported as ambipolar or p-type,
while n-type WSe, has been rarely reported.*' > Whilst
p-doping of monolayer WSe, has been achieved via CVD,***’
stable n-doped WSe, has been mainly demonstrated in bulk
crystals grown via chemical vapor transport which then have to
be exfoliated down to atomically thin layers.*®

Here, we demonstrate the synthesis of high quality mono-
layer WSe, with n-type transport using an inorganic compound
(ZnSe) as the selenium precursor, without the use of either H,
or gaseous H,Se. The obtained triangular monolayered flakes
extend over tens of micrometres in lateral size, and they
exhibit n-type transport. Our synthesis approach relies on the
use of ZnSe, which contains Se in a —2 oxidation state and
facilitates the reactivity with W precursors, enabling the syn-
thesis of WSe, without the aid of H, as the reducing agent.
The material exhibits electron mobilities up to 10 cm®> V' s
extracted from the transfer curves of fabricated FETs as a
result of their interaction with Zn adatoms. Upon annealing in
air, the material displays p-type transport with hole mobilities
up to 50 cm”> V' s* thus further confirming the high crystal
quality. The material possesses high intrinsic crystalline
quality, as demonstrated by the narrow linewidth of the room
temperature PL, while the low temperature emission is domi-
nated by localized emitters.

2 Results and discussion

The growth is performed in a single-zone tubular furnace sub-
limating a 50 wt% mixture of H,WO,-NaCl along with ZnSe
powder, loaded in two different alumina crucibles and placed
next to each other, heated to 825-850 °C at a low pressure
(0.1-1 mbar) using argon as the carrier gas, as depicted in
Fig. 1a. The target substrate for WSe, synthesis is SiO,/Si as
this is inexpensive and technologically relevant for future scal-
ability. It was usually placed downstream next to the precur-
sors and subjected to the same temperature. SiO,/Si substrates
proved to give the best results in terms of thickness control,
crystal size and homogeneity compared to sapphire and h-BN
in our system (Fig. SI1a and b¥).

In Fig. 1c, an optical micrograph of WSe, monolayers with
lateral sizes ranging from 10 up to ~50 pm grown at 825 °C is
reported. The average size of the grown triangles is ~20 pm, in
line with the reported sizes of the majority of CVD grown
monolayers.>*™*' Larger and thicker flakes were obtained by
increasing the temperature of the synthesis to 850 °C
(Fig. SIict). Moreover, the regular shape of the triangles
suggests the absence of secondary ZnSe-rich phase growth. At
growth temperatures lower than 800 °C, no reaction occurred
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and only amorphous round formations were present on the
substrate, which were not Raman active (Fig. SI1df). The
atomic force microscopy (AFM) profile of typical WSe, tri-
angles shows a step height between the substrate and the flake
of ~1 nm (Fig. 1(d)), which is the expected height of a mono-
layer on a rough substrate such as silica.””>* The roughness
(Fig. 1e) is in line with the roughness normally measured for
CVD grown TMDs**"*® and R (RMS) = 0.306 + 0.264 nm and R,
=0.265 * 0.145 nm. In order to optimise the evaporation temp-
erature of the precursors, we performed thermogravimetric
analysis (TGA) under vacuum, as reported in Fig. 1f. ZnSe and
H,WO,-NaCl abruptly sublimate at 850 °C and the W precur-
sor sublimation profile matches the TGA data already reported
in the literature.”” We also noticed that only around 30% of
ZnSe loaded in the crucible actually evaporates; however, this
is enough to enable the growth of WSe, over mm? areas.

The critical role played by the new Se precursor, introduced
in our synthesis approach, can be understood using different
Se-containing inorganic precursors. Substituting ZnSe with the
more conventional Se powder, heated at 300-350 °C (evapor-
ation temperature measured via vacuum TGA) in a separate
furnace module, we obtained small WSe, flakes (~5 pm) with
irregular shapes and various thicknesses (Fig. SI2at). Without
a reducing atmosphere, Se powder proved not to be reactive
enough to promote the growth of WSe,, confirming the pre-
vious results.”” We tried to increase the Se supply in the
system, loading Se powder along with ZnSe, but this deterio-
rated the crystal quality leading to polycrystalline films with
irregular grain shapes and thicknesses (Fig. SI2bt). Other in-
organic compounds were tested, such as Cu,Se and CdSe, but
none of them led to any WSe, growth using evaporation temp-
eratures ranging from 700 to 850 °C. We found that Cu,Se was
difficult to evaporate and the Se supply might have not been
sufficient to enable the growth of crystals. In contrast, CdSe is
more volatile than ZnSe, but the molecules were only trans-
ported and not dissociated as evidenced by bright red CdSe de-
posited in the downstream part of the quartz tube, resulting in
bubble-like, metal-rich depositions (Fig. SI2¢ct). In the case of
ZnSe-based growth, the downstream part of the tube was
covered with green ZnSe, while the further downstream part
was dark red due to the presence of Se. We then selected
Na,Se to assess whether a compound with greater ionic charac-
ter would be more efficient than ZnSe as a chalcogen precur-
sor. However, the low volatility and reactivity of Na,Se were not
sufficient to promote the WSe, growth and only very few flakes
were synthesized after several attempts (Fig. SI2dt). These
results are schematically summarized in Fig. 1g.

The chemical composition of the as-grown material was
characterised using XPS (Fig. 2(a—c)). The 4f core level doublet
of W bound to Se can be found at 32.7 eV and 35.8 eV, as
expected for WSe,.”"*® A small component from W-O binding
appears as an additional doublet at 36.2 eV and 38.5 eV,
respectively, and the contribution from the W 5p;,, core level
is present at 38.1 eV. For the 3d core levels of Se, the peak can
be deconvoluted into two levels characteristic of Se bound to
W: these are the Se 3ds/, (54.9 eV) and Se 3d;/, (55.8 €V) core

This journal is © The Royal Society of Chemistry 2022
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(@) Schematic of the WSe, CVD growth process. (b) Ball and stick schematic of Zn-surface doped 2H-WSe,. (c) Optical micrograph of CVD

grown monolayer Zn-surface doped WSe, alongside the thickness measured by AFM. Inset: AFM map of a monolayer flake. (d) AFM step height
profile of the flake. (e) Surface roughness of the WSe; flake measured by AFM across the profile highlighted in blue colour in panel (c). (f) TGA ana-
lysis of CVD precursors performed at 0.1 mbar, which corresponds to the reactor pressure. The apparent mass gain in H,WO, + NaCl most likely
derives from a reaction with the crucible. (g) Diagram summarizing the different Se precursors used in this study with the relative evaporation temp-

eratures and outcomes.

levels. Additionally, we can detect the Zn presence at the
impurity level looking at the 2p core level doublet at 1022.5 eV
and 1045.5 eV, which are positions that correspond to the Zn>*
oxidation state.*® In Fig. SI3a,f we report the complete XPS
survey spectrum highlighting all the core levels and Se Auger
lines.

This journal is © The Royal Society of Chemistry 2022

We further utilized Raman spectroscopy as a fast and non-
destructive technique to gain additional information about the
WSe, crystal quality and thickness. A representative Raman
spectrum recorded using 532 nm excitation wavelength is pre-
sented in Fig. 2d. The dominant peak at 251.8 cm™ " is the
result of the convolution of the first order E’ in-plane and A’;

Nanoscale, 2022, 14, 15651-15662 | 15653
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Fig. 2 XPS spectra reporting the individual core level spectra of W 4f (a), Se 3d (b) and Zn 2p (c). (d) Typical Raman spectrum of the as-grown WSe,
monolayer and after PMMA-transfer on target SiO,. The principal E' + A’; and 2LA peaks are indicated alongside their change after transfer. Inset:

map of the E’ + A’y peak position of the CVD grown WSe, monolayer.

out-of-plane vibrational modes, while the weaker second-order
2LA(M) mode is visible at 261.8 cm™", as expected for single-
layer WSe,.**">* The absence of the B',, mode at 310 cm™*
firms the monolayer nature of the flake.”®>" The E' + A’; peak
position does not significantly vary across the monolayer
crystal, as shown in the map reported as the inset of Fig. 2d,
suggesting that no visible defects or secondary phases are
present. Recording the Raman spectrum of a WSe, monolayer
after a PMMA-mediated wet transfer onto a heavily doped
Si0O,/Si substrate used for FET fabrication, we can observe a
red shift of 1 cm™" in the positions of both vibrational modes.
The change of the Raman mode frequencies indicates the
release of compressive strain®® created during the growth due
to the mismatch of the thermal expansion coefficients of WSe,
and the underlying SiO, substrate, which causes different
amounts of shrinkages during the cooling down phase of the
CVD process.

In order to accurately detect the possible presence of Zn
adatoms on the WSe, flakes, we performed spatially resolved
time of flight secondary ion mass spectroscopy (ToF-SIMS).
This is a surface sensitive, fast analysis technique that enables
the collection of high resolution mass spectra over large areas

con-

15654 | Nanoscale, 2022, 14, 15651-15662

and within the sample, resulting in compositional maps and
depth profiles. Compositional maps over areas larger than 100
x 100 pum> were collected with a Bi* gun on an as-grown
sample, whereas to record the depth profiles we alternated the
Bi' analysing gun with a Cs" gun, to remove the material after
each measurement. We collected the elemental maps in both
positive and negative ion channels and measured the distri-
bution of W, Se and Zn (including abundant isotopes) over
several flakes. In Fig. 3(a and b), we report the distribution of
negative Se and Zn ions across an area of 100 x 100 um®.
These maps are generated by adding the mass spectra of the
abundant isotopes shown in Fig. 3¢, measured in the negative
channel. The results arising from the positive channel are
reported in Fig. SI4;7 however, due to the extremely low posi-
tive ionisation of Se and Zn, we can see that the flake shapes
are visible only in the W map. Remarkably, the Zn signal
spatial distribution matches the Se one, demonstrating that
the majority of Zn is present on the flakes rather than the SiO,
substrate. Additionally, the depth profile (Fig. 3d) clearly
shows that the Zn atoms are distributed homogeneously
throughout all the layers and do not form a secondary phase

in the material, since the ®*Zn peak intensity reflects the *°Se

This journal is © The Royal Society of Chemistry 2022
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profile while etching through the flake. This suggests the pre-
ferential presence of Zn on the WSe, material.

To see more closely where the Zn atoms might be presented
on WSe,, we have imaged the materials using angular dark-
field (ADF) scanning transmission electron microscopy (STEM)
as shown in Fig. 4. We can see the highly crystalline hexagonal
structure of 2H-WSe, (Fig. 4a) and white circles (Fig. 4a and b)
highlighting a brighter contrast which suggests the presence
of Zn adatoms on W atoms. This implies that Zn may act as a
surface dopant, inducing n-type transport.">>*

We have studied the PL of the as-grown monolayer WSe, at
room and low temperature. The PL spectrum recorded at room
temperature (Fig. 5a) shows the emission typical of high-
quality monolayer crystals: the main PL peak at 1.65 eV corres-
ponds to the radiative recombination of a neutral exciton,
while a weaker lower-energy shoulder at 1.63 eV originates
from charged exciton (trion) recombination. The former peak
has a full width at half maximum (FWHM) of 53 meV, which is
in agreement with the state-of-the-art values reported for CVD-
grown WSe, (Fig. 5¢) by Chen et al.>® A

and Li et al.”" and is com-

This journal is © The Royal Society of Chemistry 2022

parable to an exfoliated monolayer deposited onto SiO,.* In
order to investigate the homogeneity of our CVD grown
material, we have acquired spatial mapping of PL.”° A typical
PL image of one of the triangular crystals is shown in Fig. 5b.
The PL intensity demonstrates excellent uniformity across the
entire area of the crystal and does not show irregular patterns
as reported in other studies.”*”” In other crystals, we observed
quenching of PL along the lines connecting the centre of the
triangle and its corners (Fig. SI3bt), originating from strain-
induced bandgap variation.>® Fig. 5d compares the PL and
reflectance contrast (RC) spectra recorded at 7 = 10 K. While
the RC spectrum shows a strong reflectance peak corres-
ponding to the neutral exciton absorption, the PL spectrum is
dominated by a lower energy emission band originating from
defect-bound exciton recombination. The intensity of the loca-
lised emitter band is substantially reduced at 7 = 100 K and
becomes negligibly low at T > 160 K (Fig. SI3ct). The observed
discrepancy between the narrow emission linewidth at room
temperature and the apparent lower optical quality of the
sample observed in low temperature measurements is likely a

Nanoscale, 2022, 14, 15651-15662 | 15655
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Fig. 4 Atomic scale ADF-STEM characterization of multilayered WSe,. (a) Micrograph of a monolayer portion of the WSe, flake where brighter
spots suggest the presence of adatoms and (b) larger view of the distribution of adatoms on the WSe; plane.
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result of the strong interaction with the underlying SiO, sub-
strate. The intrinsic optical quality of the sample could be
accessed by separating it from the substrate and encapsulating
it in h-BN, as has been previously demonstrated for CVD-
grown MoS, *° and WSe,.*

To ascertain the electrical transport properties of the CVD
grown WSe,, we fabricated FETs with Ti/Au contacts. The
devices were characterized in a vacuum (1 x 10~ mbar) prior
to and after multiple annealing steps, aimed at reducing
unwanted contamination of the system incurred during the
fabrication process. Fig. 6a shows the transfer characteristics
of a representative device before and after different annealing
conditions. Such a comparative plot shows a change of con-
ductive charge types from electrons (before annealing and
after vacuum annealing) to holes after air annealing. At the
same time, the source-drain current increases upon anneal-
ing, attaining an ON/OFF ratio of ~10°, and the charge carrier
mobility increases, reaching values as large as 10 cm® V™' s7*
(vacuum annealing) and 50 cm® V™' 57" (annealing in air), see

View Article Online
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Fig. 6b. These values favourably compared to those reported in
the literature of CVD grown WSe, which can show both n- and
p-type behaviour®~®* (Table S1 in the ESIf). The change of the
carrier type is consistent with previous studies on annealing of
WSe, in the presence of oxygen, reporting an increase in hole
doping due to the substitution of Se with 0.°°*® To confirm
the free carrier type and concentration, we have characterised
the back gate dependence of the Hall coefficient using a
4-terminal Hall bar configuration in a number of as-grown
WSe, samples, using a constant current bias of 16 pA and per-
pendicular magnetic field —27 < B < 2T, as shown in the inset
of Fig. 6c. These measurements confirm an average intrinsic
n-type doping charge density ny.; > 5 x 10> m™> at the back
gate threshold voltage, whereas no valence band conduction is
observed. This suggests that Zn adatoms act as surface
n-dopants of WSe,. N-type doping is consistent with the work
function of Zn being much larger than WSe,.'”> Furthermore,
the free carrier density increases linearly with the back-gate
voltage following the expected functional dependence of the
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Fig. 6 Optoelectronic characterization of a WSe, FET: (a) transfer curves of the WSe, FET (inset) under a source—drain bias of Viq = 1 V (before,
after an initial vacuum annealing step and after annealing in ambient air). (b) Effect of annealing on the mobility of both devices. (c)
Transconductance (black, Vsq = 2 V) and gate-dependent Hall free carrier density (red data) measured for a representative Zn-surface doped Hall bar
device (inset). (d) Spectral response of the device under a source and gate bias of V4 = 3V and V,,4 = —50 V, respectively.
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Drude conductivity. Finally, we characterized the spectral
response of the photoresponsivity of the WSe, transistor under
a source-drain bias of Viq = 1 V and with a gate bias of W, =
—50 V (Fig. 6d). We observed a maximum of photoresponsivity
at 610 nm, corresponding to an energy gap of E ~ 2 eV, which
is in agreement with the theoretical values predicted from the
Mott-Wannier exciton model for monolayer WSe, on a SiO,
substrate.”®

3 Discussion

A possible explanation for the unique behaviour of ZnSe can be
found by calculating its free energy in the gas phase. The stan-
dard enthalpy of formation A¢H° of ZnSe, and the standard
entropy AS° are reported to be 239 k] mol™ and 71.94 ] K*
mol ™", respectively.”! We can calculate the free energy (AG = AgH®
— TAS°) at 825 °C, corresponding to the ZnSe evaporation temp-
erature, as 160 k] mol™". The free energy of Se,(g), Which is the
predominant Se species in the gas phase, is much lower and
corresponds to —83 kJ mol™.”" A higher reactant free energy
lowers the total free energy variation of the process (AGproq —
AGieaet) and consequently produces larger driving force for the
crystal growth reaction. This difference in free energy suggests
that ZnSe is a more reactive precursor than molecular selenium.

We propose the following chemical reactions to occur in
our system:

1
2ZnSe(s) — Zn(g) + ESeZ(g> + ZnSe(g) 3H, WO, () + 4NaCl)

— WOCI4(g> + SHZO(g) + 2N32W04(S)
WOCly(5) + ZnSe() + Sey) — WSey(s) + byproducts.

The first reaction is the partial dissociation of ZnSe at high
temperature in the gas phase’” into metallic zinc and mole-
cular selenium. The presence of green ZnSe on the down-
stream inner wall of the tube alongside dark red Se suggests
that ZnSe does not completely dissociate and can either act as
a reactant or be directly transported. The second equation
shows the formation of volatile oxychlorides as a result of the
reaction between a salt and tungsten oxide, as reported in
prior studies.”®”” Finally, the W-oxychloride species react with
ZnSe and molecular Se to form WSe, crystals.

Now we discuss our findings on the transport properties of
WSe, monolayers in the context of the current literature. WSe,
monolayers synthesized with powder precursors have been,
unlike other group-6 TMDs, characterized as ambipolar®*** or
even completely p-type.”®’” Without modifying the crystal
structure or functionalizing the surface, the charge carrier
nature can be shifted to n-type by applying a large positive
Vas ' or by decreasing the work function of the metal con-
tacts.”® Additionally, we hypothesize that Se vacancies, which
are predicted to be present in CVD samples,”® and introducing
additional defect states between the Fermi level and the con-
duction band do not contribute as carriers in WSe,.%° This is
because most of the vacancies are likely filled by oxygen,
whose presence is clearly visible in the XPS measurements (see

15658 | Nanoscale, 2022, 14,15651-15662

View Article Online

Nanoscale

Fig. 2a), since all the flakes were stored in air for several weeks
before FET fabrication and then transferred using oxidizing
solvents, such as water and acetone.®" In order to exclude any
contribution to the carrier doping from the contacts, we used
two metal pairs, Zn/Au and Ti/Au, with two different work
functions and observed no difference in the charge transport
type and performances. In our work, we measured intrinsic
n-type conductivity on several devices fabricated with WSe,
flakes from multiple growth batches; hence we rule out a con-
tribution from the overall crystal quality of the flakes that con-
stantly showed good optical quality across the crystal surface.®>
The observed n-doping is a consequence of Zn doping, as first
principles methods have predicated for Zn-surface doped
WSe,.>* N-doping is also consistent with the work function of
Zn being larger than that of WSe, ®* and it is in line with
experimental results where the presence of Zn atoms increases
the electron conductivity in MoS, CVD grown films.®*% It is
worth mentioning that in contrast, Zn-has been reported to
induce p-doping in MoS,.%® In general, theoretical results on
Zn-doped TMDs do not clearly elucidate the nature of Zn
dopants as p-type,®” semimetallic,"”"*® or n-type,®® thus further
information it is yet to be elucidated in this material system.

4 Conclusions

To conclude, we have reported n-type WSe, monolayers grown
using a novel inorganic precursor of selenium via CVD. We
have demonstrated that the use of ZnSe as the Se source leads
to high-quality monolayer WSe, triangular flakes with the
lateral size of tens of microns, as confirmed by XPS, ToF-SIMS,
and ADF-STEM. The material exhibits n-type transport with
electron mobilities up to 10 cm® V™' s7', making the material
viable for electronic devices. The PL spectra reveal a bright and
narrow emission, which is well comparable to the reported
CVD-grown WSe, monolayers. This work can contribute
towards paving the way for the implementation of air stable
doping in TMDs and ultimately to achieving high-performance
electronic and optoelectronic devices.

5 Experimental section
5.1 CVD growth of monolayered and few-layered WSe,

A typical synthesis of WSe, was conducted in a 32 mm inner
diameter quartz tube placed in a single zone furnace. Two
alumina boats containing the precursors were loaded in the
furnace centre right before the Si/SiO, substrate. Before the
growth, the substrate was rinsed with acetone, isopropanol
and deionized water. The upstream crucible was filled with
0.3 g of ZnSe (99.99%, Sigma-Aldrich) powder, whereas the
downstream one with 0.075 g of H,WO, (99.99%, Sigma-
Aldrich) mixed with 0.075 g of NaCl (99.99%, Sigma-Aldrich).
Afterwards, the tube was vacuumed for 30 minutes and then
200 sccm of Ar was streamed while the furnace temperature

was maintained at 200 ©°C for another 30 minutes.
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Subsequently, the flow rate was adjusted to 100 sccm and the
temperature was increased to 825-850 °C at 25 °C min~" and
maintained for 15 minutes. The temperature was controlled by
a PID controller linked to a thermocouple inside the furnace.
Eventually the furnace was rapidly opened to stop the growth
process and quickly cool down the system. After each growth
run the quartz tube was thoroughly washed with acetone and
DI water to remove contaminants. Normally, significant W
deposition occurs in the tube which requires extensive
washing.

Thermogravimetric analysis of the precursors. TGA measure-
ments were conducted with a Netzsch STA 449F1 at 0.1 mbar.
Precursors were placed in Pt-Rh crucibles covered by Al,O;
and heated up at 25 °C min~" until the desired temperature
and then held at that temperature for 30 minutes.

5.2 Characterization of WSe,

Raman, photoluminescence and reflectance contrast spec-
troscopy. Raman and photoluminescence spectra were col-
lected using a Renishaw inVia spectrometer equipped with a
532 nm laser at a power of 5 mW. The spatial maps were col-
lected under a 100x objective using a grating of 1800 lines per
mm, which provides a resolution of ~1.5 cm™". Low-tempera-
ture photoluminescence and reflectance contrast measure-
ments were performed using a continuous-flow liquid helium
cryostat and a custom-build micro-photoluminescence setup
equipped with a 0.5 m spectrometer (SP-2-500i, Princeton
Instruments) with a nitrogen cooled CCD camera
(PyLoN:100BR, Princeton Instruments).

X-Ray photoelectron spectroscopy. XPS was performed using
a Thermo Scientific K-Alpha’ that incorporates a monochro-
mated Al X-ray source (hv = 1486.6 eV). The spectra were col-
lected using pass energies of 200 eV for the survey and 20 eV
for the core levels under a 200 pm spot size.

Time of flight secondary ion mass spectroscopy. ToF-SIMS
spectra were collected using a ToF-SIMS5 (IONTOF GmbH)
equipped with a bismuth liquid metal ion gun. The Bi gun
energy was set at 25 keV and used to generate the secondary
ion current. We used the low current bunch mode for the
elemental maps on areas 150 x 150 pm? (512 x 512 pixels). The
depth profiles were acquired alternating the Bi gun in the high
current bunch mode and a 250 eV Cs' gun to remove material
pausing for one second in each cycle. The analysis area was 20
x 20 um? (128 x 128 pixels) and the sputtering area was 200 x
200 pm>.

Ac-STEM. Aberration-corrected scanning transmission elec-
tron microscopy (ac-STEM) using a JEOL ARM300CF micro-
scope operated at 80 kV was used to investigate the structure
of the specimen at the atomic scale. Angular dark-field (ADF)
STEM images from the specimen were obtained using a probe
convergence angle of ~25 mrad and an annular detector with
an inner and outer radius of ~68 and ~206 mrad, respectively.

5.3 Device fabrication and characterization

PMMA-assisted transfer. Initially, substrates of CVD grown
WSe, are spincoated with a small droplet of PMMA at 3000

This journal is © The Royal Society of Chemistry 2022
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rpm for 30 seconds twice to achieve a 350 nm thick layer. The
substrates were then heated on a hot plate at 70 °C for an hour
to promote PMMA adhesion and then let them float in a KOH
solution (0.1 M in deionized water) until detachment of the
polymer layers. The PMMA/WSe, films were then scooped with
the target substrate and the residual water was dried out with
a compressed air gun. Finally, PMMA was dissolved in an
acetone bath, and the transferred samples were dried on a hot
plate for a couple of hours. The target substrates were heavily
doped Si wafers serving as a global back gate and capped with
285 nm of thermally grown SiO,.

Transistor fabrication. Field-effect transistors were fabri-
cated using standard electron-beam lithography and thermal
deposition of Ti/Au (5/60 nm) or Zn/Au (20/40 nm) contacts fol-
lowed by lift-off in acetone. In situ annealing was conducted by
heating the transistors at a temperature of 200 °C whilst main-
taining a background pressure of 107> mbar. The combined
in situ and ex situ annealing consisted of a 24-hour annealing
at 200 °C under atmospheric conditions followed by a 72-hour
long vacuum annealing with a background pressure of 107>
mbar.

Optoelectronic measurements. All measurements were per-
formed in a custom-built vacuum chamber (10> mbar) using
a xenon lamp, monochromator, and collimating optics (Oriel
TLS-300x), to provide a spectrally tenable incident light source.
Neutral density filters and a motorized chopper wheel were
used to attenuate and modulate the incident signal, respect-
ively. Power calibrations were performed with a ThorLabs
PM320E power meter equipped with a S130VC sensor.

Author contributions

M. O. and C. M. conceived and designed the
experiments. M. O. and G. Z. Z. prepared samples. M. O.,
P. P. and H. B. performed Raman, PL and AFM measurements
and analysis. M. O. performed XPS and ToF-SIMS measure-
ments and data analysis. K. A. and I. L. performed electrical
measurements and data analysis. A. M. and M. S. S. performed
electron microscopy. E. M. A. performed low temperature PL
measurements and data analysis. A. I. T., P. D. N,, J. L.,
S. R. and C. M. supervised and guided the study. The manu-
script was written through contributions of all authors. All
authors have given approval to the final version of the
manuscript.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

C. M. would like to acknowledge the award of funding from
the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme

Nanoscale, 2022, 14, 15651-15662 | 15659


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d2nr03233c

Open Access Article. Published on 12 September 2022. Downloaded on 1/27/2026 7:40:54 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Paper

(grant agreement No. 819069) and the award of the Royal
Society University Research Fellowship (UF160539) and the
Research Fellows Enhancement Award by the UK Royal Society
(RGF/EA/180090). A. M. acknowledges funding from the
European Union’s Horizon 2020 research and innovation
program under grant No. [823717]—ESTEEM3. The authors
thank the Diamond Light Source for providing access to the
electron Physical Science Imaging Centre (Instrument E02,
Proposal No. MG20431 and MG22317) that contributed to the
results presented here. H. B. would like to acknowledge the
support of the China Scholarship Council (CSC) under grant
No. 202106950021.

The authors thank Dr Nagaraju Goli for the precious help
during manuscript revision. M. O. would like to thank
Dr Sarah Fearn for the help with the ToF-SIMS characterization
and data interpretation.

References

1 M. Chhowalla, H. S. Shin, G. Eda, L.-J. Li, K. P. Loh and
H. Zhang, Nat. Chem., 2013, 5, 263.

2 Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman and
M. S. Strano, Nat. Nanotechnol., 2012, 7, 699-712.

3 S. Mouri, Y. Miyauchi, M. Toh, W. Zhao, G. Eda and
K. Matsuda, Phys. Rev. B: Condens. Matter Mater. Phys.,
2014, 90, 1-5.

4 W. J. Zhao, Z. Ghorannevis, L. Q. Chu, M. Toh, C. Kloc,
P. H. Tan and G. Eda, ACS Nano, 2013, 7, 791-797.

5 A. Allain and A. Kis, ACS Nano, 2014, 8, 7180-7185.

6 Z. Wang, J. Shan and K. F. Mak, Nat. Nanotechnol., 2016,
12, 144.

7 M. M. Ugeda, A. Pulkin, S. Tang, H. Ryu, Q. Wu, Y. Zhang,
D. Wong, Z. Pedramrazi, A. Martin-Recio, Y. Chen, F. Wang,
Z. X. Shen, S. K. Mo, O. V. Yazyev and M. F. Crommie, Nat.
Commun., 2018, 9, 1-7.

8 Y. Ma, L. Kou, X. Li, Y. Dai, S. C. Smith and T. Heine, Phys.
Rev. B: Condens. Matter Mater. Phys.,, 2015, 92,
85427.

9 N. Flory, A. Jain, P. Bharadwaj, M. Parzefall, T. Taniguchi,
K. Watanabe and L. Novotny, Appl. Phys. Lett., 2015, 107, 2—-
6.

10 S. Ko, J. Na, Y. S. Moon, U. Zschieschang, R. Acharya,
H. Klauk, G. T. Kim, M. Burghard and K. Kern, ACS Appl.
Mater. Interfaces, 2017, 9, 42912-42918.

11 H. Yuan, X. Wang, B. Lian, H. Zhang, X. Fang, B. Shen,
G. Xu, Y. Xu, S. C. Zhang, H. Y. Hwang and Y. Cui, Nat.
Nanotechnol., 2014, 9, 851-857.

12 C. Jin, J. Kim, M. Igbal Bakti Utama, E. C. Regan,
H. Kleemann, H. Cai, Y. Shen, M. J. Shinner, A. Sengupta,
K. Watanabe, T. Taniguchi, S. Tongay, A. Zettl and F. Wang,
Science, 2018, 360, 893-896.

13 F. Withers, O. del Pozo-Zamudio, S. Schwarz, S. Dufferwiel,
P. M. Walker, T. Godde, A. P. Rooney, A. Gholinia,
C. R. Woods, P. Blake, S. J. Haigh, K. Watanabe,
T. Taniguchi, I. L. Aleiner, A. K. Geim, V. I. Fal'Ko,

15660 | Nanoscale, 2022, 14, 15651-15662

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31
32

View Article Online

Nanoscale

A. 1. Tartakovskii and K. S. Novoselov, Nano Lett., 2015, 15,

8223-8228.

D. Unuchek, A. Ciarrocchi, A. Avsar, K. Watanabe,

T. Taniguchi and A. Kis, Nature, 2018, 560, 340-344.

H. Fang, S. Chuang, T. C. Chang, K. Takei, T. Takahashi

and A. Javey, Nano Lett., 2012, 12, 3788-3792.

N. R. Pradhan, D. Rhodes, S. Memaran, J. M. Poumirol,

D. Smirnov, S. Talapatra, S. Feng, N. Perea-Lopez,

A. L. Elias, M. Terrones, P. M. Ajayan and L. Balicas, Sci.

Rep., 2015, 5, 8979.

M. Chhowalla, D. Jena and H. Zhang, Nat. Rev., 2016, 1,

16052.

F. Schwierz, J. Pezoldt and R. Granzner, Nanoscale, 2015, 7,

8261-8283.

Z. Cai, B. Liu, X. Zou and H.-M. M. Cheng, Chem. Rev.,

2018, 118, 6091-6133.

M. Samadi, N. Sarikhani, M. Zirak, H. H.-L. Zhang, H.

H.-L. Zhang and A. Z. Moshfegh, Nanoscale Horiz., 2018, 3,

90-204.

S. S. Li, S. F. Wang, D.-M. M. Tang, W. J. Zhao, H. L. Xu,

L. Q. Chy, Y. Bando, D. Golberg and G. Eda, Appl. Mater.

Today, 2015, 1, 60-66.

J.-K. Huang, J. Pu, C.-L. Hsu, M.-H. Chiu, Z.-Y. Juang,

Y.-H. Chang, W.-H. Chang, Y. Iwasa, T. Takenobu and

L.-J. Li, ACS Nano, 2014, 8, 923-930.

S. M. Eichfeld, L. Hossain, Y.-C. Lin, A. F. Piasecki,

B. Kupp, A. G. Birdwell, R. A. Burke, N. Lu, X. Peng, J. Li,

A. Azcatl, S. McDonnell, R. M. Wallace, M. J. Kim,

T. S. Mayer, J. M. Redwing and J. A. Robinson, ACS Nano,

2015, 9, 2080-2087.

B. Liu, M. Fathi, L. Chen, A. Abbas, Y. Ma and C. Zhou, ACS

Nano, 2015, 9, 6119-6127.

F. Qingliang, Z. Meijie, Z. Yaohua, L. Hongyan, L. Meng,

Z. Jianbang, X. Hua, J. Yimin, Q. Feng, M. Zhu, Y. Zhao,

H. Liu, M. Li, J. Zheng, H. Xu and Y. Jiang, Nanotechnology,

2019, 30, 34001.

Y.-C. Lin, B. Jariwala, B. M. Bersch, K. Xu, Y. Nie, B. Wang,

S. M. Eichfeld, X. Zhang, T. H. Choudhury, Y. Pan,

. Addou, C. M. Smyth, J. Li, K. Zhang, M. A. Haque,
Folsch, R. M. Feenstra, R. M. Wallace, K. Cho,

. K. Fullerton-Shirey, J. M. Redwing, ]J. A. Robinson,

Folsch, R. M. Feenstra, R. M. Wallace, K. Cho,

. K. Fullerton-Shirey, J. M. Redwing and J. A. Robinson,

ACS Nano, 2018, 12, 965-975.

H. R. Rasouli, N. Mehmood, O. Cakiroglu, T. S. Kasirga,

O. Cakiroglu and T. Serkan Kasirga, Nanoscale, 2019, 11,

7317-7323.

A. Sevy, R. F. Huffaker and M. D. Morse, J. Phys. Chem. A,

2017, 121, 9446-9457.

L. C. Alderman and J. J. Bergin, Arch. Environ. Health, 1986,

41, 354-358.

L. Loh, Z. Zhang, M. Bosman and G. Eda, Nano Res., 2020,

1-14.

K. Zhang and J. A. Robinson, MRS Adv., 2019, 4, 2743-2757.

S. Feng, Z. Lin, X. Gan, R. Lv and M. Terrones, Nanoscale

Horiz., 2017, 2, 72-80.

DL LD

This journal is © The Royal Society of Chemistry 2022


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d2nr03233c

Open Access Article. Published on 12 September 2022. Downloaded on 1/27/2026 7:40:54 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Nanoscale

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

H. Gao, H. Gao, J. Suh, J. Suh, M. C. Cao, A. Y. Joe,
F. Mujid, K. H. Lee, K. H. Lee, S. Xie, S. Xie, P. Poddar,
J. U. Lee, J. U. Lee, K. Kang, K. Kang, P. Kim, D. A. Muller
and J. Park, Nano Lett., 2020, 20, 4095-4101.

K. Zhang, D. D. Deng, B. Zheng, Y. Wang, F. K. Perkins,
N. C. Briggs, V. H. Crespi and J. A. Robinson, Adv. Mater.
Interfaces, 2020, 7, 2000856.

K. Zhang, B. M. Bersch, J. Joshi, R. Addou, C. R. Cormier,
C. Zhang, K. Xu, N. C. Briggs, K. Wang, S. Subramanian,
K. Cho, S. Fullerton-Shirey, R. M. Wallace, P. M. Vora and
J- A. Robinson, Adv. Funct. Mater., 2018, 28, 1706950.

S. K. Pandey, H. Alsalman, J. G. Azadani, N. Izquierdo,
T. Low and S. A. Campbell, Nanoscale, 2018, 10, 21374-
21385.

S. J. Yun, D. L. Duong, D. M. Ha, K. Singh, T. L. Phan,
W. Choi, Y. Kim and Y. H. Lee, Adv. Sci., 2020, 7, 1903076.
R. Mukherjee, H. J. Chuang, M. R. Koehler, N. Combs,
A. Patchen, Z. X. Zhou and D. Mandrus, Phys. Rev. Appl.,
2017, 7, 1-7.

K.-I. Lin, S.Y. Shiau, S.-B. Liu, ].-S. Yan, J.-D. Yan,
D. Cheng, H.-C. Chang, C.-L. Tu, Y.-C. Cheng and
C.-H. Chen, J. Phys. Chem. C, 2020, 124, 7979-7987.

H. Kim, G. H. Ahn, ]J. Cho, M. Amani, J. P. Mastandrea,
C. K. Groschner, D. H. Lien, Y. Zhao, ]J. W. Ager,
M. C. Scott, D. C. Chrzan and A. Javey, Sci. Adv., 2019, 5,
eaau4728.

A. S. Bandyopadhyay, N. Adhikari and A. B. Kaul, Chem.
Mater., 2019, 31, 9861-9874.

F. Zhang, Z. Lu, Y. Choi, H. Liu, H. Zheng, L. Xie, K. Park,
L. Jiao and C. Tao, ACS Appl. Nano Mater., 2018, 1, 2041-
2048.

S. Seo, H. Choi, S. Y. Kim, ]J. Lee, K. Kim, S. Yoon, B. H. Lee
and S. Lee, Adv. Mater. Interfaces, 2018, 5, 1800524.

Y. Sheng, H. Tan, X. Wang and J. H. Warner, Chem. Mater.,
2017, 29, 4904-4911.

H. Gu, B. Song, M. Fang, Y. Hong, X. Chen, H. Jiang,
W. Ren and S. Liu, Nanoscale, 2019, 11, 22762-22771.

Y. Gao, Y. L. Hong, L. C. Yin, Z. Wu, Z. Yang, M. L. Chen,
Z. Liu, T. Ma, D. M. Sun, Z. Ni, X. L. Ma, H. M. Cheng and
W. Ren, Adv. Mater., 2017, 29, 170099.

J. Zhou, J. Lin, X. Huang, Y. Zhou, Y. Chen, J. Xia, H. Wang,
Y. Xie, H. Yu, J. Lei, D. Wu, F. Liu, Q. Fu, Q. Zeng, C.-H.
H. Hsu, C. Yang, L. Lu, T. Yu, Z. Shen, H. Lin,
B. L. Yakobson, Q. Liu, K. Suenaga, G. Liu and Z. Liu,
Nature, 2018, 556, 355-359.

R. Addou and R. M. Wallace, ACS Appl. Mater. Interfaces,
2016, 8, 26400-26406.

S. W. Gaarenstroom and N. Winograd, J. Chem. Phys., 1977,
67, 3500-3506.

W. Zhao, Z. Ghorannevis, K. K. Amara, J. R. Pang, M. Toh,
X. Zhang, C. Kloc, P. H. Tan and G. Eda, Nanoscale, 2013, 5,
9677-9683.

H. Terrones, E. del Corro, S. Feng, ]J. M. Poumirol,
D. Rhodes, D. Smirnov, N. R. Pradhan, Z. Lin,
M. A. T. Nguyen, A. L. Elias, T. E. Mallouk, L. Balicas,
M. A. Pimenta and M. Terrones, Sci. Rep., 2014, 4, 4215.

This journal is © The Royal Society of Chemistry 2022

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

View Article Online

Paper

E. del Corro, H. Terrones, A. Elias, C. Fantini, S. Feng,
M. A. Nguyen, T. E. Mallouk, M. Terrones and
M. A. Pimenta, ACS Nano, 2014, 8, 9629-9635.

A. M. Dadgar, D. Scullion, K. Kang, D. Esposito, E. H. Yang,
I. P. Herman, M. A. Pimenta, E. J. G. Santos and
A. N. Pasupathy, Chem. Mater., 2018, 30, 5148-5155.

X. Zhao, P. Chen and T. Wang, Superlattices Microstruct.,
2016, 100, 252-257.

J. Chen, B. Liu, Y. Liu, W. Tang, C. T. Nai, L. Li, J. Zheng,
L. Gao, Y. Zheng, H. S. Shin, H. Y. Jeong and K. P. Loh, Adv.
Mater., 2015, 27, 6722-6727.

T. Severs Millard, A. Genco, E. M. Alexeev, S. Randerson,
S. Ahn, A. R. Jang, H. Suk Shin and A. I. Tartakovskii, npj
2D Mater. Appl., 2020, 4, 1-9.

W. T. Kang, I. M. Lee, S. J. Yun, Y. Il Song, K. Kim,
D.-H. Kim, Y. S. Shin, K. Lee, J. Heo, Y.-M. Kim, Y. H. Lee
and W. J. Yu, Nanoscale, 2018, 10, 11397-11402.

X. Xu, T. Schultz, Z. Qin, N. Severin, B. Haas, S. Shen,
J. N. Kirchhof, A. Opitz, C. T. Koch, K. Bolotin, J. P. Rabe,
G. Eda and N. Koch, Adv. Mater., 2018, 30, 1803748.

S. Shree, A. George, T. Lehnert, C. Neumann, M. Benelajla,
C. Robert, X. Marie, K. Watanabe, T. Taniguchi, U. Kaiser,
B. Urbaszek and A. Turchanin, 2D Mater., 2020, 7, 015011.
A. Delhomme, G. Butseraen, B. Zheng, L. Marty,
V. Bouchiat, M. R. Molas, A. Pan, K. Watanabe,
T. Taniguchi, A. Ouerghi, J. Renard and C. Faugeras, Appl.
Phys. Lett., 2019, 114, 232104.

H. G. Ji, P. Solis-Fernandez, D. Yoshimura, M. Maruyama,
T. Endo, Y. Miyata, S. Okada and H. Ago, Adv. Mater., 2019,
31, 1903613.

D. H. Kwak, M. H. Jeong, H. S. Ra, A. Y. Lee and J. S. Lee,
Adv. Opt. Mater., 2019, 7, 1900051.

P. R. Pudasaini, A. Oyedele, C. Zhang, M. G. Stanford,
N. Cross, A. T. Wong, A. N. Hoffman, K. Xiao, G. Duscher,
D. G. Mandrus, T. Z. Ward and P. D. Rack, Nano Res., 2018,
11, 722-730.

J. K. Huang, J. Pu, C. L. Hsu, M. H. Chiu, Z. Y. Juang,
Y. H. Chang, W. H. Chang, Y. Iwasa, T. Takenobu and
L. J. Li, ACS Nano, 2014, 8, 923-930.

C. Zhou, Y. Zhao, S. Raju, Y. Wang, Z. Lin, M. Chan and
Y. Chai, Adv. Funct. Mater., 2016, 26, 4223-4230.

M. Yamamoto, S. Dutta, S. Aikawa, S. Nakaharai,
K. Wakabayashi, M. S. Fuhrer, K. Ueno and K. Tsukagoshi,
Nano Lett., 2015, 15, 2067-2073.

M. Yamamoto, S. Nakaharai, K. Ueno and K. Tsukagoshi,
Nano Lett., 2016, 16, 2720-2727.

B. Liu, Y. Ma, A. Zhang, L. Chen, A. N. Abbas, Y. Liu,
C. Shen, H. Wan and C. Zhou, ACS Nano, 2016, 10, 5153—
5160.

J- Seo, K. Cho, W. Lee, J. Shin, J. K. Kim, J. Kim, J. Pak and
T. Lee, Nanoscale Res. Lett., 2019, 14, 1-10.

A. V. Stier, N. P. Wilson, G. Clark, X. Xu and S. A. Crooker,
Nano Lett., 2016, 16, 7054-7060.

H. Kaesche in Corrosion of Metals: Physicochemical
Principles and Current Problems, ed. H. Kaesche, Springer
Berlin Heidelberg, Berlin, Heidelberg, 2003, pp. 11-55.

Nanoscale, 2022, 14,15651-15662 | 15661


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d2nr03233c

Open Access Article. Published on 12 September 2022. Downloaded on 1/27/2026 7:40:54 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Paper

72

73

74

75

76

77

78

79

80

81

W. J. Wosten and M. G. Geers, J. Phys. Chem., 1962, 66,
1252-1253.

H. Jin, Z. Hu, T. Li, L. Huang, J. Wan, G. Xue and ]. Zhou,
Adv. Funct. Mater., 2019, 29, 1900649.

J. Jiang, N. Li, J. Zou, X. Zhou, G. Eda, Q. Zhang, H. Zhang,
L.J. J. Li, T. Zhai and A. T. S. S. Wee, Synergistic additive-
mediated CVD growth and chemical modification of 2D
materials, Royal Society of Chemistry, 2019, vol. 48.

F. Reale, P. Palczynski, I. Amit, G. F. Jones, ]J. D. Mehew,
A. Bacon, N. Ni, P. C. Sherrell, S. Agnoli, M. F. Craciun,
S. Russo and C. Mattevi, Sci. Rep., 2017, 7, 14911.

P. M. Campbell, A. Tarasov, C. A. Joiner, M. Y. Tsali,
G. Pavlidis, S. Graham, W. J. Ready and E. M. Vogel,
Nanoscale, 2016, 8, 2268-2276.

P. Zhao, D. Kiriya, A. Azcatl, C. Zhang, M. Tosun, Y.-S. Liu,
M. Hettick, J. S. Kang, S. McDonnell, S. KC, J. Guo, K. Cho,
R. M. Wallace and A. Javey, ACS Nano, 2014, 8, 10808-
10814.

W. Liu, J. Kang, D. Sarkar, Y. Khatami, D. Jena and
K. Banerjee, Nano Lett., 2013, 13, 1983-1990.

L. Li, R. Long and O. V. Prezhdo, Nano Lett., 2018, 18,
4008-4014.

S. Zhang, C. G. Wang, M. Y. Li, D. Huang, L. J. Li, W. Ji and
S. Wu, Phys. Rev. Lett., 2017, 119, 046101.

A. N. Hoffman, M. G. Stanford, C. Zhang, I. N. Ivanov,
A. D. Oyedele, M. G. Sales, S. J. McDonnell, M. R. Koehler,
D. G. Mandrus, L. Liang, B. G. Sumpter, K. Xiao and
P. D. Rack, ACS Appl. Mater. Interfaces, 2018, 10, 36540-
36548.

15662 | Nanoscale, 2022, 14, 15651-15662

82

83

84

85

86

87

88

89

90

91

View Article Online

Nanoscale

P. C. Shen, C. Su, Y. Lin, A. S. Chou, C. C. Cheng,
J. H. Park, M. H. Chiu, A. Y. Lu, H. L. Tang, M. M. Tavakoli,
G. Pitner, X. Ji, Z. Cai, N. Mao, J. Wang, V. Tung, J. Li,
J. Bokor, A. Zettl, C. I. Wu, T. Palacios, L. ]J. Li and ]J. Kong,
Nature, 2021, 593, 211-217.

H. G. Kim and H. ]J. Choi, Phys. Rev. B, 2021, 103,
085404.

L. S. Jeon, S. J. Kim, W. Song, S. Myung, J. Lim, S. S. Lee,
H. K. Jung, J. Hwang and K. S. An, J. Alloys Compd., 2020,
835, 155383.

S. J. Kim, M. A. Kang, L. S. Jeon, S. Ji, W. Song, S. Myung,
S. S. Lee, J. Lim and K. S. An, J. Mater. Chem. C, 2017, 5,
12354-12359.

E. Z. Xu, H. M. Liu, K. Park, Z. Li, Y. Losovyj, M. Starr,
M. Werbianskyj, H. A. Fertig and S. X. Zhang, Nanoscale,
2017, 9, 3576-3584.

Y. C. Cheng, Z. Y. Zhu, W. B. Mi, Z. B. Guo and
U. Schwingenschlogl, Phys. Rev. B: Condens. Matter Mater.
Phys., 2013, 87, 100401.

H. Li, L. Fu, C. He, ]J. Huo, H. Yang, T. Xie, G. Zhao and
G. Dong, Front. Chem., 2021, 8, 1274.

M. Pan, J. T. Mullen and K. W. Kim, J. Phys. D: Appl. Phys.,
2021, 54, 025002.

X. Zhang, T. H. Choudhury, M. Chubarov, Y. Xiang,
B. Jariwala, F. Zhang, N. Alem, G. C. Wang, ]J. A. Robinson
and J. M. Redwing, Nano Lett, 2018, 18, 1049-
1056.

Y. Lee, H. Jeong, Y.-S. Park, S. Han, J. Noh and ]J. S. Lee,
Appl. Surf. Sci., 2018, 432, 170-175.

This journal is © The Royal Society of Chemistry 2022


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d2nr03233c

	Button 1: 


