Open Access Article. Published on 03 March 2022. Downloaded on 11/12/2025 8:17:39 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

[{ec

Nanoscale

7 ROYAL SOCIETY
PP OF CHEMISTRY

View Article Online

View Journal | View Issue

’ '.) Check for updates ‘

Cite this: Nanoscale, 2022, 14, 4987

Received 31st January 2022,
Accepted 2nd March 2022

DOI: 10.1039/d2nr00589a

Mixed AgBiS, nanocrystals for photovoltaics and
photodetectors+

Yongjie Wang?® and Gerasimos Konstantatos (2 ¥

a

Ignasi Burgués-Ceballos,

Heavy-metal-free colloidal nanocrystals are gaining due attention as low-cost, semiconducting materials
for solution-processed optoelectronic applications. One common limitation of such materials is their
limited carrier transport and trap-assisted recombination, which impede the performance of thick photo-
active layers. Here we mix small-size and large-size AgBiS, nanocrystals to judiciously favour the band
alignment in photovoltaic and photodetector devices. The absorbing layer of these devices is fabricated
in a gradient fashion in order to maximise charge transfer and transport. We implement this strategy to
fabricate mixed AgBIS, thin film solar cells with a power conversion of 7.3%, which significantly surpasses
the performance of previously reported devices based on single-batch AgBiS, nanocrystals. Additionally,
this approach allows us to fabricate devices using thicker photoactive layers that show lower dark currents
and external quantum efficiencies exceeding 40% over a broad bandwidth — covering the visible and near
infrared range beyond 1 pm, thus unleashing the potential of colloidal AgBiS, nanocrystals in photo-

rsc.li/nanoscale detector applications.

Introduction

Colloidal quantum dots (CQDs) are an appealing class of semi-
conductor nanocrystal materials for solution-processable opto-
electronic applications. Their outstanding material properties
include a high absorption coefficient, a broad absorption spec-
trum, low-cost manufacturing and size-tunable optoelectronic
characteristics." To date, the highest material performances
have been achieved with nanocrystals that contain toxic
materials such as lead or cadmium (PbS,> CdTe® and perovs-
kites*). The search for environmentally friendly, high perform-
ing materials should not only target restriction of hazardous
substances (RoHS) compliance, but also avoid using scarce
elements® and high-temperature processes such as sintering
or selenization.® In this context, in our group we have investi-
gated deeply AgBiS, as a promising alternative material that
fulfils all of the above mentioned requirements.”

In a previous work we reported on the hot-injection syn-
thesis of colloidal AgBiS, nanocrystals and their promising
performance in solution-processed thin film solar cells.” The
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high power conversion efficiencies (record 6.3%), obtained
using very thin photoactive layers (~35 nm), could not be
improved in thicker devices. The low carrier transport and
Shockley-Read-Hall (SRH) trap-assisted recombination were
the main factors limiting charge extraction.”>'* In a sub-
sequent work, we aimed at improving the carrier transport and
charge collection efficiency by minimizing the surface to
volume ratio of the nanocrystals. In particular, we showed a
modified synthetic method to obtain AgBiS, nanocrystals with
larger average size.'” Therein, the addition of the sulfur precur-
sor was done in two sequential steps under mild temperature
conditions. In the first step, the injection of a small amount of
the sulfur precursor provided the seeds that triggered the
nucleation of the nanocrystals. The remaining sulfur precursor
was added dropwise during the second step to favour a more
progressive nanocrystal growth. Compared with the standard
synthesis, the AgBiS, nanocrystals obtained with the so-called
double-step hot-injection synthesis not only were larger in size
but also showed an improved hole mobility and subsequent
better hole-electron mobility balance, a reduced recombina-
tion and a lower midgap trap state density. As a result, the fab-
ricated solar cell devices showed a >20% improvement in
photocurrent and a moderate decrease of 11 mV in voltage
losses. However, the power conversion efficiency jumped only
to 6.4% because of the 18 meV red-shift in the optical
bandgap found for the larger nanocrystals, which caused a
slight decrease in the open circuit voltage (Voc). Moreover,
such high performances were still inaccessible with thick
photoactive layers. In the present work we combine rationally
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AgBiS, nanocrystals of two different size distributions to build
thin and thick photoactive layers that show a considerably
higher performance in photovoltaic and photodetector
devices.

Mixed AgBiS, nanocrystals to build
photoactive layers with a gradient
fashion

Following the hot-injection synthetic routes described in our
previous works (see also ESIT), we prepared two batches of col-
loidal AgBiS, nanocrystals with average particle sizes of 4.7 +
1.0 nm and 7.1 + 1.6 nm for the single-injection” and the
double-injection"® methods, respectively (Fig. S1t). The identi-
cal chemical composition and crystallographic structure of the
two batches'® corresponded to that of the matildite AgBiS,
(cubic rock salt) structure, as seen in the X-ray diffraction
pattern (Fig. S1T). Opportunely, the high-resolution trans-
mission electron microscopy (HR-TEM) image of a large-size
AgBiS, nanocrystal revealed the predominant (001) and the
secondary (111) lattice planes on the NCs (Fig. 1a), assigned to
the 2.90 A and 3.10 A measured interplanar distances, respect-
ively. This observation is in very good agreement with our pre-
vious Density functional theory-based calculations® that con-
cluded the Wulff shaped AgBiS, nanoparticles to be domi-
nated by two particularly stable facets: the (001) nonpolar
surface containing Ag, Bi and S atoms, and the (111) polar ter-
minations containing only Ag or S atoms (Fig. 1b). This is the
first time that we have validated experimentally the formation
of this particular shape in AgBiS, (large size) nanocrystals. On
the contrary, we have systematically observed solely the (001)
facet on small size NCs (Fig. S17). To shed light on this struc-
tural dissimilarity between the small and large NCs, we con-
ducted X-ray photoelectron spectroscopy (XPS) analyses
(Fig. S21). While the Bi 4f, Ag 3d and S 2s core-level XPS
spectra showed negligible differences, we observed a decrease
in the intensity of the I 3d and significant changes in the O 1s
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spectra upon increasing the NC size. The O 1s spectra can be
deconvoluted into three contributions: the peaks appearing at
~529.7 eV can be attributed to Bi-O bonds, whereas those
appearing at ~531.3 eV and ~533.7 €V can be ascribed to Ag-
OH and to Ag-CH3;OH, respectively (both from the ligand
exchange with methanol).'® For the large NCs, the clear peak
intensity increase corresponding to the hydroxyl ligand
bonded to Ag is presumably related with the presence of the
(111) polar facet. Moreover, the relative atomic amounts found
with XPS reveal a significant decrease in the amount of the
capping ligand I (0.77 to 0.36), a moderate increase in Ag (1.47
to 1.63), and a significant increase in S (2.14 to 2.70) content
with respect to Bi (from small to large NCs). These data
support the formation of the (111) polar facet in the large NCs,
which might be predominantly S-rich, according to the higher
increase in S content and the decreased I amount. As a result,
proportionally fewer Bi atoms are exposed to the surface of the
large NCs and remain in the bulk, thus reinforcing (Ag)
surface passivation. In contrast, the small NCs, with a signifi-
cantly larger surface-to-volume ratio, may not have enough size
to develop the (111) polar facet. Noteworthy, in our previous
work we demonstrated a reduced recombination and a lower
midgap trap state density upon increasing the nanocrystal
diameter."

Besides the advantageous lower surface-to-volume ratio of
the larger NCs, the other key difference between the two syn-
thetic batches that motivated the present work is their moder-
ate but appealing differences in the energy band alignment.
Ultraviolet photoelectron spectroscopy (UPS) investigations
concluded that the different sized NCs present a pinned
valence band (—5.19 eV), and minor changes in the work func-
tion (Fig. S3t). On the contrary, the different energy bandgaps
of the small (1.15 eV) and large (1.08 eV) NCs'? are responsible
for the conduction band offset (Fig. 1c). We then recognized a
parallelism with the work of Yang and co-workers, where the
PbS quantum dot band alignment was intentionally shifted by
mixing n- and p-type ligands. Therein, the promoted donor
and acceptor domains favoured a more efficient interdot
carrier transfer, thus resulting in a decreased recombination.'®

(a) HR-TEM image of a ~10 nm AgBiS, nanocrystal revealing the (001) and (111) lattice planes resembling the (b) optimal Wulff shape as pre-

dicted by Vifies et al.'° The matildite cubic structure features (001) facets, with only two cuts along the (111) direction. (c) Energy level diagram of the
proposed device architecture. The light-absorbing layer is built in a gradient fashion, in which the first layer contains only large NCs, followed by 1 to
n layers of mixed-size NCs and one last layer of only small NCs. (d) Schematic drawing of the cross-section of a photoactive device based on a

mixture of small and large AgBiS, nanocrystals.
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In our work, the energy level engineering was done simply by
using different sized AgBiS, nanocrystals without modifying
the iodide-based capping ligand. In particular, we took advan-
tage from the layer-by-layer process to deposit photoactive
layers with a gradient fashion in inverted architecture devices
(Fig. 1d): a bottom layer of only large AgBiS, NCs was coated
on top of the electron transport layer (ETL) and followed by 1
to n layers of mixed-size NCs and an additional, top layer of
only small NCs underneath the hole transport layer (HTL). In
addition, such structures can provide a morphological benefit:
the small NCs of the top layer fill the voids between the large
NCs of the underneath mixed layers, which results in a
smoother top layer topography and a potentially improved
interface with the HTL. Such morphological improvement is
visible in the nm scale (Fig. S47}); all the coated layers show a
shiny aspect at a macroscopic scale. Overall, this architectural
strategy has allowed us to build solar cells with a remarkable
improvement in the power conversion efficiency as well as
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devices using thicker active layers that yielded promising
photodetector performances.

Enhanced solar cell performance

In the past few years there has been a remarkable progress in
the synthesis and application of colloidal AgBiS, nanocrystals
as the photoactive material in solar cell devices.”"'>7 72324
The low carrier diffusion length and the non-negligible recom-
bination pathways have been identified as the main limiting
factors for photocurrent generation, especially when using
thick active layers.”'* Therefore, the record solar cell efficien-
cies reported so far typically limit the optimal AgBiS, layer
thickness at around 35 nm.

Here, we started by fixing the same active layer thickness in
mixed AgBiS, solar cells as well as in the two control devices —
employing only small and only large NCs (Fig. 2). In agreement

100 150 200 250
film thickness (nm)

50

| data of the open-circuit voltage (Voc), short-circuit current density (Jsc),
n small, large and mixed NCs. (b) JV characteristics of the best performing
ncy (EQE) spectrum of the best performing devices. (d) Influence of the

photoactive layer thickness on the generated photocurrent. The shaded area defines the range of thicknesses where both the Jsc under AM 1.5 G
illumination (1 sun) and the Jsc integrated from the external quantum efficiency spectra show a good match with the predicted values from the
transfer-matrix model (solid line). Beyond that point, the recombination at high photon flux becomes stronger, and consequently the Jsc at 1 sun

deviates drastically from the predicted values.
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Table 1 Summary of the best device performance parameters using the two AgBiS, batches. Statistical data from >15 devices are shown in brackets

(average + standard deviation)

AgBiS, NCs Eg (eV) Voe (V) Jse (MA ecm™2) FF PCE (%)

Small 1.15 0.50 (0.50 = 0.01) 22.10 (21.54 + 1.39) 0.59 (0.56 + 0.02) 6.54 (6.09 = 0.25)
Mixed — 0.48 (0.47 = 0.01) 23.97 (22.99 + 0.66) 0.64 (0.63 = 0.01) 7.33 (6.88 = 0.25)
Large 1.08 0.46 (0.46 = 0.01) 23.30 (23.06 + 0.37) 0.58 (0.58 = 0.01) 6.25 (5.78 = 0.29)

with their dissimilar optical bandgaps, we observed a progressive
drop in the Ve when changing the small NCs with mixed and
large NCs (Table 1). In contrast, the average short-circuit current
density (Jsc) of the mixed NCs was as high as that obtained with
the large NCs. The EQE spectra of the devices using mixed and
only large NCs appeared to be almost identical, showing the
expected red shift compared with the device using small NCs
(Fig. 2c), as reported in our previous works.'* These data confirm
that the Jsc is strongly governed by the presence of the large NCs.
Moreover, the use of mixed AgBiS, NCs resulted in a ~10%
improvement in the fill factor (FF) with respect from the control
devices, which is a signature of a more efficient charge transport.
We ascribe this FF improvement primarily to the favourable
cascade-type energy band structure* of our proposed gradient
fashion photoactive layer (Fig. 1c). Another set of control devices
using the mixed NCs with the inverted gradient yielded statisti-
cally lower performances, especially due to lower fill factors
(Fig. S5T). Additionally, the mixture of the small and large NCs
helps to achieve a more balanced charge carrier mobility
(Fig. S67). These data further support the benefits of the proposed
gradient. As a result, the PCE jumped from 6.5% and 6.3% for
the control devices to a new record of 7.3% using mixed AgBiS,
nanocrystals, thus validating our strategy.

Then, we built thicker devices with the mixed NCs to evalu-
ate the impact of the active layer thickness in photocurrent
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generation. Although the highest efficiency under 1 sun was
still obtained with thin active layers (Fig. S71), compared with
our previous reports we did observe herein a significant
improvement in the obtained photocurrent with thick active
layers under low illumination conditions: for the first time, the
Jsc calculated from the integrated EQE spectra revealed a
reasonably good match with our simulations made with a
transfer-matrix model (Fig. 2d). The ~260 nm thick device deli-
vered an integrated Jsc of 24.6 mA cm™>. These results motiva-
ted us to investigate the potential of mixed AgBiS, nanocrystals
in photodetector devices.

Thick AgBiS, layers for photodetectors

In contrast to photovoltaics, the use of AgBiS, nanocrystals in
photodetector applications has been little studied.>**” In this
work, we fabricated devices with various absorbing layer thick-
nesses to explore the potential of this material as a broad
bandwidth photodetector. We found that the record solar cell
devices, based on a ~35 nm thin active layer, delivered unsui-
table, high dark currents. Upon increasing the thickness up to
~260 nm, the dark current dropped between 2 and 3 orders of
magnitude (Fig. 3). We ascribe this drop in the dark current to
the prevention of shunt paths thanks to the layer thickness
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Fig. 3 Photodetector performance of mixed AgBiS, devices. (a) Dark JV characteristics of devices using different AgBiS, layer thickness. (b) Dark
current as a function of the photoactive layer thickness. The thickest device yielded the lowest dark current and best photodetector performance
close to 0 V: (c) external quantum efficiency and responsivity spectra and (c) specific detectivity.
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increase.”®*® Remarkably, the external quantum efficiency of
that device remained above 60% within the 350-750 nm wave-
length range and above 40% up to 1030 nm. The responsivity,
which is proportional to the EQE at each wavelength,*® was
found to peak at a wavelength of 1.01 pm with a value of 0.375
AW, In turn, the specific detectivity (D*, in cm Hz"> W™ or
Jones) was determined using eqn (1).

p = YA 1)

where A is the effective photodetector area, A is the electrical
bandwidth (set to 1 Hz, which is the convention in the com-
munity), R is the responsivity and S, is the noise spectral
density of the current. The latter was calculated considering
the shot noise and the thermal noise.>* The thickest photo-
detector yielded a specific detectivity above 3 x 10'" Jones over
a broad wavelength range from 350 to 1070 nm. Despite being
far from the performance achieved with standard and 2D-
based photodetector technologies,®® these unprecedented
results set a milestone for further exploration of AgBiS, nano-
crystals in photodetector applications.

Conclusions

We report herein an eco-friendly active ink based on mixed
AgBiS, colloidal nanocrystals that improves charge carrier
extraction in photoactive layers. A tailored layer-by-layer
process is implemented to build active layers with a gradient
fashion, in which the mixture of small and large NCs inten-
tionally facilitates the energy band alignment. Thanks to the
enhanced charge transport, we construct solution-processed,
thin film solar cells with higher fill factors and establish a new
record power conversion efficiency of 7.3% for this semi-
conductor material. In addition, thicker devices that absorb
more light demonstrate lower dark currents and specific detec-
tivities above 3 x 10" Jones over the 350-1070 nm wavelength
range, thus opening up new opportunities for AgBiS, nanocrys-
tals in the field of photodetectors.
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