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Persistence of symmetry-protected Dirac points at
the surface of the topological crystalline insulator
SnTe upon impurity doping

Olga Arroyo-Gascón,a,b Yuriko Baba, b Jorge I. Cerdá,†a Oscar de Abril, c

Ruth Martínez,b Francisco Domínguez-Adame b and Leonor Chico *a,b

We investigate the effect of a non-magnetic donor impurity located at the surface of the SnTe topological

crystalline insulator. In particular, the changes on the surface states due to a Sb impurity atom are ana-

lyzed by means of ab initio simulations of pristine and impurity-doped SnTe. Both semi-infinite and slab

geometries are considered within the first-principles approach. Furthermore, minimal and Green’s func-

tion continuum models are proposed with the same goal. We find that the Dirac cones are shifted down

in energy upon doping; this shift strongly depends on the position of the impurity with respect to the

surface. In addition, we observe that the width of the impurity band presents an even–odd behavior by

varying the position of the impurity. This behavior is related to the position of the nodes of the wave func-

tion with respect to the surface, and hence it is a manifestation of confinement effects. We compare slab

and semi-infinite geometries within the ab initio approach, demonstrating that the surface states remain

gapless and their spin textures are unaltered in the doped semi-infinite system. In the slab geometry, a

gap opens due to hybridization of the states localized at opposite surfaces. Finally, by means of a conti-

nuum model, we extrapolate our results to arbitrary positions of the impurity, clearly showing a non-

monotonic behavior of the Dirac cone.

1. Introduction

The discovery of topological insulators (TIs) in the past decade
has fueled great interest in Dirac matter. These materials are
insulating in the bulk, but host protected electronic states in
their boundaries; namely, surface or edge modes in the three-
dimensional or two-dimensional case, respectively.1,2 Such
gapless boundary states are protected by time-reversal-sym-
metry; they have a Dirac spectrum and show spin-momentum
locking, a promising property for their application in spintro-
nic devices and quantum information processing.3 TIs are suc-
cessfully characterized by the Z2 topological invariant, which
is related to the number of gapless Kramers pairs in their
boundaries. In fact, they show an odd number of Dirac cones
at their surfaces. The discovery of topological insulators has
led to the recognition that symmetry-protected topological

phases of matter are more abundant and ubiquitous than
expected.4,5

One of the families within the broad class of symmetry-pro-
tected matter are topological crystalline insulators (TCIs).
Unlike Z2 insulators, TCIs are protected by crystal symmetries
and present an even number of Dirac cones in their surfaces, so
that their Z2 index is zero. These symmetries include rotations,
reflections, or even glide planes. The first TCIs discovered were
IV–VI semiconductors, such as SnTe and Pb1−xSnxTe ternary
alloys, which are protected by mirror symmetries.6–9 When a
mirror symmetry is responsible for the topological protection,
the relevant topological invariant is the mirror Chern number
nM. There are two types of surface states in TCIs, depending on
the location of the Dirac points, with different properties. Type-I
surface states have their Dirac points at time-reversal invariant
momenta, whereas in type-II TCIs the Dirac cones are displaced
from such time-reversal invariant k-points.10

SnTe has a rocksalt crystalline structure with small band-
gaps at the L points of the Brillouin zone (BZ), where the con-
duction and valence bands are inverted.6,11 The mirror plane
that protects these topological states is (110) [see Fig. 1(c)], so
that an even number of robust Dirac cones appear at the (001),
(110) and (111) crystal surfaces, which are symmetric with
respect to the (110) mirror reflection. For the (111) termin-
ation, surface states are of type-I, whereas (001) and (110)†Deceased.
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surface states are identified as type-II. For the [001] surface ter-
mination, which is of type II, two equivalent L points of the BZ
are projected in the ΓL1L2 plane to the same X̄ point, as
depicted in Fig. 1(b). Hence, two parent Dirac cones coexist at
X̄, and their interaction gives rise to two pairs of massless
Dirac fermions deviated from X̄, while the high-symmetry
point is found to be gapped10 [see Fig. 1(d)]. SnTe undergoes a
crystalline phase transition at low temperatures (below 100 K)
to a rhombohedral lattice. Such distortion has a small effect in
the bulk bands, but destroys the surface Dirac cones, as any
other perturbation that breaks the mirror (110) symmetry
would do.12 Interestingly, within this rhombohedral phase,
SnTe has been recently shown to be a higher-order TI, showing
hinge states along specific directions.13

On the other hand, PbTe, which also has a rocksalt struc-
ture, is not a TCI and its surface states are gapped.
Notwithstanding, a topological phase transition can be
induced either by pressure or alloying. In particular, as antici-
pated above, Pb1−xSnxTe is a topologically non-trivial material
(nM = −2) for x ≳ 1/3.7,9 Actually, a band inversion as a function
of the alloy composition was reported long time ago.14

Thin films of these TCIs also show nontrivial topological
behavior. However, hybridization between the surface states
opens a gap that decreases for increasing layer thickness.15,16

In fact, a non-monotonic damped oscillation has been found,
that it is ultimately related to the alternation between nonsym-
morphic and symmorphic symmetry with the number of

atomic layers.15,17 Specifically, if a [001]-oriented SnTe slab has
an even number of layers, it possesses nonsymmorphic sym-
metry. This reduces the hybridization between surface states,
whereas for an odd number of layers the symmetry is sym-
morphic, and more sizeable band gaps appear.

Additionally, symmetry-protected surface states in TCIs can
be tuned by introducing impurities. The effects of doping on
the electronic structure of bulk SnTe have been addressed in
ref. 18 and 19. As for the (001) surface, In doping,20 hydrogen
adsorption21 and diluted impurities22 have been considered.
Doped SnTe, specially by In impurities, is an ongoing subject
of discussion regarding topological superconductivity.23

Impurities in TCI thin films may open a gap or modify the
surface states, allowing for the control of topological phase
transitions in these materials and constituting an additional
tool to modulate their properties.24,25 Indeed, tuning the elec-
tronic properties by doping or by applied external fields opens
a way for the application of these materials in nanoscale
devices.16 Such modification by doping may be also relevant
for thermoelectric applications, another arena in which topolo-
gical materials have been proven to be of interest.18,19

In this work, the effect of non-magnetic impurities in the
topological crystalline insulator SnTe is studied. Specifically, we
consider Sn substitution by a Sb atom, which acts as a donor
impurity. In fact, Sb-doped SnTe has been found to be a super-
conductor.26 Here, we focus on the changes in the TCI dis-
persion relations induced by the presence of the Sb impurity. As
mentioned above, doping may alter or modify the surface states
by hybridization or just by opening a gap, therefore changing
the electronic properties of the system. This is the main issue
we address herein. We explore both semi-infinite and slab geo-
metries, with a twofold goal. Firstly, ultrathin layers of TCIs are
currently grown and incorporated in quasi-2D materials and
devices as building blocks or integrating parts, so the thin slab
geometry has an interest in itself. Secondly, in most first-prin-
ciples calculations, a finite slab geometry is employed to model
surfaces, so it is equally important to evaluate the differences
between finite-size and semi-infinite calculations aimed at mod-
eling the same system. To this end, DFT-based ab initio simu-
lations are used to characterize SnTe and the effect of the non-
magnetic donor impurity near the crystal surface. We analyze
the hybridization between surface and impurity states as well as
the effect of the impurity position on the electronic structure
and crystal symmetries. Furthermore, both perturbation theory
and continuum models are proposed. The former is used to
predict the behavior of the Dirac cone upon doping, while the
latter describes the impurity states.

Our main results are summarized as follows: (i) the Dirac
cones appearing at the TCI surfaces are shifted down upon the
n-doping due to Sb substitutional impurities. (ii) The shift of
the Dirac cones is strongly dependent on the position of the
impurity with respect to the surface. (iii) The width of the
impurity band presents an even–odd behavior with the layer
position of the dopant, both in the semi-infinite and the slab
geometries; we relate it to the location of the nodes of the wave
function with respect to the surface. (iv) In the slab system, a

Fig. 1 (a) SnTe 8-atomic-layer slab unit cell. Sb impurities are high-
lighted in blue: in the Sb1 case, the whole atoms are colored; in the Sb2,
Sb3 and Sb4 cases, the impurity atoms are circled. Higher slabs can be
constructed adding new atomic layers in the dotted region. A 16 Å-wide
vacuum space was considered in the z-direction in order to avoid inter-
action among the slabs during the first-principles calculations. (b) Face-
centered cubic Brillouin zone and projected (001) plane. (c) Top view of
the c(4 × 4) (light blue) and 1 × 1 (dark blue) unit cells. The mirror sym-
metry plane is represented by a dotted line. (d) SnTe (001) surface band
structure of the semi-infinite system.
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gap opens in the Dirac points due to coupling of the states at
opposite surfaces, even though they are almost 50 Å apart. We
verify that the surface states remain gapless in the semi-infi-
nite geometry, with unaltered spin textures. (v) Finally, we
derive continuum models in order to extrapolate the behavior
of this doped system for larger sizes, unreachable with more
accurate, ab initio simulations.

Our work provides a complete picture of the interplay
between impurity and surface states in TCIs, highlighting the
differences between finite-sized slabs and single surfaces, and
additionally including simpler continuum models which yield
a better interpretation of the numerical first-principles results.

2. First-principles approach
2.1. Geometry and methods

Our calculations were performed using the pseudopotential
DFT SIESTA code27,28 within the generalized gradient approxi-
mation under the PBE parametrization (GGA-PBE) for the
exchange and correlation functional.29 Spin–orbit coupling
was considered within the fully-relativistic pseudopotential
formalism30 for all calculations unless otherwise stated.
Accordingly, a relativistic pseudopotential was employed, fol-
lowing the Troullier–Martins method.31

A double-ζ singly-polarized basis set was chosen for all the
atoms involved, with a radial extension of the strictly localized
orbitals determined from a confinement energy (energy shift) of
100 meV. The resolution of the real space grids was set to
around 0.06 Å3 (equivalent to a mesh cutoff of 600 Ry). For the
integration over the BZ we employed k-supercells of size around
(17 × 17) relative to the SnTe-(1 × 1) bulk unit cell, with a temp-
erature in the Fermi–Dirac occupation function of 100 meV.

A lattice parameter of 6.39 Å was used following ref. 6 and 18,
which yields a satisfactory agreement to experimental results and
a successful magnitude of the band gap.14 This allows us to
model rocksalt room-temperature SnTe, avoiding the aforemen-
tioned rhombohedral phase transition.9 In order to tackle the
robustness of the surface states against film thickness, several
slab calculations were performed using different number of layers
(not shown here). We found an optimal compromise between
accuracy and our computational capability for a nonsymmorphic
16 atomic-layer SnTe slab. Therefore, all the slab calculations pre-
sented in this work have been performed with this thickness.

Substitutional donor impurities have been considered by repla-
cing a Sn atom by Sb within a c(4 × 4) supercell—that is, in a
defective layer one out of eight Sn atoms is substituted by a Sb
atom. We have considered up to four different locations of the Sb:
at the top surface layer (referred to as Sb1 hereafter), the second
layer (Sb2), the third layer (Sb3) and the fourth layer (Sb4).
Furthermore, in order to avoid net dipoles in the slab, a second
Sb substitutional impurity was always placed at an equivalent
position, but with respect to the bottom layer [see Fig. 1(a)]. In
this way, both impurities are located at the same distance from
the corresponding nearest surface. Thus, the simulated impurity
doping in the slabs corresponds to a small value of x = 0.016.

Atomic relaxation was performed for each structure. For the
Sb1 slab, the two top and bottom layers were relaxed while for
the Sb2, Sb3 and Sb4 slabs, the 3, 4 and 5 layers counted from
the top and bottom surfaces were included in the relaxations
until forces on the atoms were below 0.02 eV Å−1. The top and
bottom layers of the final equilibrium structure are the most
affected by the relaxation. To be specific, some atoms of the
Sb1 and Sb3 slabs are displaced up to 0.17 Å compared to
0.14 Å for the Sb2 and Sb4 slabs.

Although minimal, the hybridization of opposite surface
states still has an effect on the band structure. Hence, the elec-
tronic and spin structure of the Sb-doped SnTe(001) surface
will be mainly presented as calculated under a semi-infinite
geometry via projected density of states and magnetization
maps, PDOS(k,E) and Mα(k,E) respectively, with α = x,y,z indi-
cating the direction.32,33 To this end, we have employed
surface Green’s function matching techniques in order to
couple the Hamiltonian matrix elements of the top half of the
slab with those of a bulk SnTe calculation. Self-consistency
was preserved in the matching process, as reflected by the fact
that maximum deviations were always smaller than 10 meV
between the on-site energies of the Sn and Te central layers of
the slab and those in the SnTe bulk. PDOS(k,E) and Mα(k,E)
maps were computed with a resolution of 0.003 Å−1 in recipro-
cal space and 5 meV in energy. Accordingly, the self-energy
that determines the spectral width of any surface states (ima-
ginary part of the energy entering the Green’s function) was
set to 5 meV. For zoom-ins of the Dirac points we computed
additional maps with an increased resolution (0.0016 Å−1 and
3 meV) around the Γ̄-point and over a small energy window. In
the semi-infinite calculations, a single impurity is used. For
topologically-protected surface states, we expect them to
remain unaltered, since the placement of a single impurity
does not change the (110) mirror symmetry, as outlined in
Fig. 1(c). On the contrary, the 16 atomic layer slabs do break
this symmetry when taking into account two impurities, as
explained before. Since two-dimensional (few-layer) topological
crystalline insulators are also the subject of great attention, we
consider this comparison to be relevant.

2.2. Ab initio results

Top panel of Fig. 2 displays the effect of the substitutional Sb on
the surface electronic structure for the four locations of the
impurity as it is moved from the surface layer towards the bulk,
namely Sb1 to Sb4. The band structures have been computed
along the Γ̄–X̄ direction for 16-layer slabs (that is, under an ultra-
thin film geometry). Note that, due to band folding, the X̄ point
in the (1 × 1) BZ back folds into the Γ̄ point of the supercell’s BZ.
For the sake of comparison, we also include in the left column
the k-folded SnTe pristine surface computed under the same c(4
× 4) supercell as that used for the defective structures. There are
several features immediately apparent in the plots. First of all, in
all defective surfaces the Sb develops a split impurity band that
disperses across the gap. Interestingly, the band is narrower
when the impurity is located at an odd-numbered layer (particu-
larly the Sb1 case but also Sb3), due to a higher localization of
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the states at the surface. On the contrary, when the impurity is
located at an even-numbered layer (Sb2 and Sb4 cases), the band
becomes more dispersive and runs closer to the edge of the bulk
conduction band. Second, the presence of the impurity induces a
clear n-type doping as the Fermi level EF shifts towards the
minimum of the conduction band in all defective structures,
while it is pinned just above the valence band (VB) maximum for
the pristine surface. This doping effect will be further addressed
in section 3 using a minimal continuum model. Despite the
large thickness of the slabs employed, all Dirac points present a
gap due to the long decay length of the topological surface states,
so that there is still a sizeable interaction between the top and
bottom surfaces. The size of this gap is minimal for the odd
cases (Sb1 and Sb3), being around 5 meV, while it attains sub-
stantially larger values for the even cases. Note that it is around
50 meV for Sb2 and 30 meV for Sb4. For the pristine slab, for
which the gap is due to finite-size effects, it is 55 meV. Moreover,
the breaking of the (110) mirror symmetry in the two-impurity
geometry used in the slabs affects the symmetry-protected
surface states and contributes to the gap opening, as depicted in
panels (b)–(e). Although such even–odd behavior in the Dirac
cone gap value with the impurity position is reminiscent of the
nonsymmorphic–symmorphic effect with respect to the number
of layers previously reported,15,17 we note that in our case its
origin should be different, because all slabs are composed of the
same number of layers.

The bottom panel of Fig. 2 displays the equivalent elec-
tronic structures to the top panel but in the form of PDOS(k,E)

maps, since they have been computed under a semi-infinite
geometry (see previous section). The Sb-doped surfaces,
overall, show a similar behavior to that found for the 16-layer
slabs, namely, the appearance of Sb impurity bands across the
gap showing an even–odd effect in their dispersion, a clear
n-type doping and the presence of Dirac cones slightly away
from Γ̄. However, these Dirac cones remarkably persist in all
defective cases of the semi-infinite structure. The splitting of
the impurity bands induced by the spin–orbit coupling
remains small until it approaches the Γ̄ point, where the two
branches start to deviate from each other by more than
100 meV.

Focusing now on the electronic structure around the Γ̄ point,
the most relevant feature is the survival of a gapless Dirac point
in all structures, which is consistent with the fact that the (110)
mirror plane still holds in the doped structures and, hence, the
Dirac points remain symmetry-protected. However, there are
qualitative differences with respect to the pristine surface which
are best seen in Fig. 3, where zoom-ins with an enhanced
resolution are presented. First of all, and in accordance with the
n-type doping mentioned above, the Dirac points consistently
shift by around 150–200 meV towards lower energies. Precisely
at the Γ̄ point the interpretation of the electronic structure
becomes more complex due to the profusion of extra bands
arising from both the Sb impurity and the band folding.

All relevant bands within the gap are better resolved in
Fig. 3(a), where we present enlarged views of the PDOS(k,E)
maps. The projections have been taken over the surface SnTe
layer, superimposing the Sb contributions in blue.

For the clean surface case, the branches forming the Dirac
cone can be clearly identified, as well as the Sb-split impurity
bands, denoted as a and b. There is a further band inside the
gap, labeled by f, corresponding to the back-folded topological
surface state along X̄–M̄ [see Fig. 1(d)]. Since the supercell size
is much smaller than the effective Bohr radius, impurities
cannot be regarded as truly isolated and the impurity bands
become dispersive. In addition, further broadening of the
bands arises from the hybridization of impurity states with
Bloch states of the conduction band of SnTe. In fact, the impur-
ity states are mainly composed of Sb and Sn contributions, as
depicted in the Appendix A for both slab and bulk band struc-
tures. Band inversion between Sn and Te orbitals also persists
in the doped material, as discussed and shown in Appendix A.

In the lower panels (b) and (c) of Fig. 3, magnetization
maps along the x- and y-axis, Mx(k,E) and My(k,E), respectively,
are shown. We omit the out-of-plane component Mz(k,E) since
it is always negligible except for Sb1. As it could be expected,
the in-plane spin orientations of the surface band remain
unaltered with respect to the pristine case. Indeed, this is best
seen in the PDOS(kx,ky) maps shown in the lower panels, com-
puted at energies 20 meV below [panel (d)] and above [panel
(e)] the location of the Dirac point.

The spin texture for all structures is shown in Fig. 4 in the
form of Mx/y(k,E) maps. Note that pristine SnTe only shows in-
plane spin polarization due to time-reversal and mirror sym-
metries.34 The effect of folding on the spin texture of pristine

Fig. 2 Electronic structure of pristine SnTe (left column) and Sb-doped
SnTe, with the donor impurity located in the first, second, third and
fourth atomic layer. Top panel shows the band structure of the 16-layer
slabs, as well as the bulk band projections of pristine SnTe represented
by the gray shaded area. Bottom panel displays the projected density of
states PDOS(k,E) on the first atomic layers for the semi-infinite system.
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SnTe is explicitly detailed in the Appendix A, showing
additional Mx/y(kx,ky) maps near the Dirac point for all struc-
tures. A close inspection of the spin textures reveals that the
spin orientation of the topological surface states always
remains unchanged with respect to the pristine surface. More
surprising is the behavior of the Sb bands: close to X̄ they
behave as standard Rashba-split states, with a reduced separ-
ation in energy between a and b of only 10–20 meV while they
present opposite magnetizations. In fact, this is the only
region where out-of-plane magnetization, Mz(k,E), is not negli-
gible. However, as they disperse towards Γ̄, band a keeps its
spin orientation but b undergoes an abrupt spin inversion and
ends up with the same orientation as a. Note that the spin
texture of the impurity states is not as robust as that of the
Dirac cone, since it varies along the high-symmetry path and is
dependent on the choice of atom projections.

Given such ultrathin layers, the energy shift of the Dirac
point can be related to quantum size effects. In order to clarify

this point, we study the spatial distribution of the wave func-
tion for the impurity band, depicted in Fig. 5. A series of
nodes appear right after the impurity and approximately each
two atomic layers in the z-direction. When the impurity is
located at an odd atomic layer, there is an even number of
layers above it, so the wave function amplitude is almost zero
at the surface layer. In contrast, when the impurity is placed in
an even layer, there is an odd number of layers above it and

Fig. 3 Zoomed (a) PDOS(k,E) as well as (b) Mx and (c) My maps of the
semi-infinite structure. In panel (a), the Sb impurity contribution is high-
lighted in blue. PDOS(kx,ky,E) maps at an energy 20 meV (d) below and
(e) above the Dirac point. The spin textures are depicted with arrows
that outline the spin direction. See main text for an explanation of labels
a, b and f in the upper panel.

Fig. 4 Magnetization maps (a) Mx(k,E) and (b) My(k,E) for the semi-
infinite pristine and Sb-doped structure, projected on the first atomic
layers. White and black shades account for positive and negative values
of the magnetization Mα(k,E), respectively.

Fig. 5 Wave functions for one of the impurity bands at Γ̄. Yellow and
blue colors represent positive and negative values, respectively. The
colored rectangles next to each panel, which are two atomic layers
wide, outline the alternation of regions with positive and negative values
of the wave function in the z-direction. The layer where the impurity is
located is highlighted in dark blue.
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the wave function is nonzero at the surface, therefore favoring
hybridization with the surface states and a larger band gap.
Since the derivative of the wave function is related to the
kinetic energy operator, it is also expected for these impurity
bands to move upwards, as shown in both slab and semi-infi-
nite calculations in Fig. 2. Thus, we come to the conclusion
that this energy shift can be also seen as a size or quantum
confinement effect.

3. Continuum model

In order to have an insight into the effect of the impurity upon
the Dirac cones and the behavior of the impurity band when
the position of the donor Sb atom is varied, we resort to a
simple continuum model of a TI. The SnTe family has two
non-equivalent valleys, L1 and L2, in the Brillouin zone.
However, a single valley approach successfully explains the
existence of robust surface states on crystal surfaces such as
(001), (110) or (111).6 Hence, in this work we focus on states
close to one of the L points of the Brillouin zone and neglect
other valleys since surface states are stable against gap
opening by valley mixing. It consists of an isotropic two-band
spin-full continuum Hamiltonian in a particle-hole symmetric
scenario. In fact, this model has been already employed for
TIs.35,36 The Hamiltonian in momentum space is given by (we
set ħ = 1 hereafter)

H0 ¼ ε14 þ vα � kþ m� Bk2
� �

β; ð1Þ
where ε is a constant energy term, 14 is the 4 × 4 identity
matrix, v is the Fermi velocity, m is the mass parameter related
to the gap and the constant B takes into account the quadratic
terms in momentum. In the former expression, α is the vector
of Dirac matrices and the momentum-vector defined as α =
(αx,αy,αz). We choose the Dirac matrices expressed in terms of
the Pauli matrices in the following basis: αi ≡ σx⊗σi, β ≡ σz⊗σ0.
This simple model has the minimum elements needed to
show topologically protected surface states if mB > 0 and the
translational symmetry is broken by making a finite-size
system.37

Modifications of this model, including anisotropy and on-
site momentum dependent terms, have been successfully pro-
posed to study the Bi2Se3 family of materials.36,38 In fact, the
model has also been applied to describe the (001) surface
states of SnTe including just the leading terms linear in
momentum.6,10,15,17,34,39 Since our first goal within the conti-
nuum approach is to analyze the effect of an impurity in close
proximity of an isolated surface, quadratic terms are indis-
pensable to have a nontrivial topology in a vacuum–SnTe inter-
face.35 We expect to find the same shifting behavior as pre-
dicted by Araújo et al.17 and our DFT calculations. Thus, we
perform first-order perturbation theory (PT) on the surface
states obtained within this formalism with the aim of elucidat-
ing the effect of the impurity on the gapless surface states.
Secondly, in order to describe the energy dependence of the
impurity states with respect to the impurity position, we solve

a simplified version of the Hamiltonian presented in eqn (1),
summing up all terms in the perturbation series using a
Green’s function method. These two approaches allow us to
investigate complementary aspects of the problem.

3.1. Perturbation theory approach

With the aim of comparing PT results with DFT calculations,
we consider the case of a semi-infinite system which extends
from z > 0, being infinite in the other perpendicular directions.
The surface states are derived in Appendix B imposing
Dirichlet boundary conditions at the plane z = 0. In this way
we obtain two Kramers partners that only differ in the spinor
part Φ0

+

ψ+ ¼ Asðe�λ1z � e�λ2zÞexp½iðkxxþ kyyÞ�Φ0
+: ð2Þ

In the former expression, the inverses of the decay lengths
are given by λ1 and λ2, which are functions of the in-plane
momenta and As is a normalization factor (see Appendix B).
The dispersion of the states is linear in the in-plane momenta,
yielding the Dirac cones of the surface states inside the bulk
gap E± = ε ± vk∥sign(B), where kk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kx2 þ ky2

p
.

For the purpose of obtaining the corrections on the energy,
we perform first-order PT, modeling the impurity with a
Coulomb-like interaction

ΔH ¼ � 2R*
ya

*
Bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðz � z0Þ2 þ x2 þ y2
q ; ð3Þ

where z0 is the depth where the impurity is located, and R*
y

and a*B are the effective Rydberg energy and Bohr radius in
SnTe.40,41 The former constants provide the correct units to
the expression and scale the interaction due to the medium, as
detailed in Appendix B.

The first-order correction in PT is given by

ΔE 1ð Þ
+ ¼ ψ+

� ��ΔH0 ψ+

�� �
; ð4Þ

where ψ± are the surface states as defined in eqn (2) for the
impurity-free case. Due to the trivial structure of the correction
in the spin space, both states, ψ+ and ψ−, show the same cor-
rection. Therefore, the cones are just shifted by the same
amount and no gap opens.

Fig. 6 shows the displacement of the Dirac point as a function
of the impurity depth z0. Similarly to Fig. 2, a shift of the Dirac
point as the impurity is placed farther from the surface is
observed, in opposition to hole doping.20 While DFT calculations
are difficult to address due to their computational cost when the
impurity is far from the surface, this minimal model allows us to
predict a return to the pristine case for large z0. Despite the afore-
mentioned limitations, the model describes qualitatively well the
phenomenon and it can be used as a simple approach to the
effect of the impurity on the surface bands.

3.2. Green’s function approach

In the previous subsection, the interaction of the electron with
the impurity was assumed weak so that the first-order pertur-
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bation theory was a reasonable approximation. We can go
beyond this limit, summing up all terms of the perturbation
series by means of the Green’s function approach. To this end,
we start with eqn (1) and neglect the quadratic in momentum
term (B = 0). The linear approximation (Dirac-like equation) is
unable to explain the existence of surface states in a TI unless
a normal semiconductor is attached, thus forming a hetero-
junction. In this way, there exists a band inversion along the
direction normal to the surface and interface states can appear
(see, e.g., ref. 35 and references therein).

The envelope functions of the electron states near the band
extrema are then determined from the following Dirac-like
Hamiltonian

H0 ¼ vα � kþm zð Þβ; ð5Þ
where we assume aligned and same-sized gaps for simplicity.
The origin of energy is set at the center of the gaps (ε = 0) and
the mass term is given as m(z) = msign(z). The Hamiltonian (5)
acts upon the envelope function χ(r), which is a four-com-
ponent vector composed of the two-component spinors χ+(r)
and χ−(r). It decays as exp(−|z|/d ) along the direction normal
to the surface, with d = v/m, and the interface dispersion
relation is a single Dirac cone E(kk) = ±v|kk|.

The presence of the impurity, located at r0 = (0,0,z0) without
loss of generality, breaks the translational symmetry in the
surface and the in-plane momentum is no longer conserved.
Expressing distance in units of d and energy in units of m, the
Dirac-like equation for the envelope function can be cast in
the form

½E14 þ iαz
@

@z
þ iαk � ∇k � βsign zð Þ � V r � r0ð Þ14�χ rð Þ ¼ 0: ð6Þ

The actual interaction potential V(r − r0) will be replaced by
a non-local separable pseudo-potential of the form

V r � r0ð Þχ rð Þ ! λω r � r0ð Þ
ð
d3r′ω r′� r0ð Þχ r′ð Þ; ð7Þ

where λ is a coupling constant and ω(r − r0) is a real function
referred to as shape function hereafter. It is worth mentioning

that this replacement is exact, in the sense that it is always poss-
ible to find a non-local separable pseudo-potential (or a sum of
them) able to reproduce any set of given electronic states and,
consequently, there is no theoretical limitation to the numerical
accuracy with which physical results can be obtained.42 In spite
of its seemingly more complicated form, eqn (7) is amenable to
analytical solution for any arbitrary shape function.43–48

The Green’s function for the unperturbed problem (λ = 0)
and the Green’s function for the total Hamiltonian in terms of
the transition operator are derived in Appendix B. Poles in the
complex plane of the transition matrix, E = Er − iΓ, where Er
and Γ are real magnitudes, yield the energies of the impurity
states. Resonances within the gap are given by the condition |
Er| < 1. According to the model presented, an impurity
embedded in a bulk semiconductor can support a truly bound
state. Lengthy but straightforward calculations lead to the fol-
lowing energy for the bound state

Eb ¼ sign λð Þ 1� 4π
λj jkc

� 	
; ð8Þ

in the limit ω(r − r0) → δ(r − r0) and kc is a cut-off momentum
that regularizes the δ function. Since only states within the gap
correspond to bound states in this model (|Eb| < 1), there
exists a minimum value of the product |λ|kc to induce bound
states. If |λ|kc < 2π the impurity cannot bind electrons (λ < 0)
or holes (λ > 0) in bulk semiconductors.

Fig. 7 shows the real and imaginary parts of the poles of the
transition matrix as a function of the position of the impurity
close to the heterojunction, when kc = 100 and λ = −0.15. The
real part Er approaches the value in the bulk material Eb when
increasing z0, as expected. These impurity states move to
higher energies as the distance from the surface increases, as

Fig. 6 Displacement of the Dirac point ΔE(1) as a function of the impur-
ity depth z0, obtained from PT calculations.

Fig. 7 Real and imaginary parts of the complex poles E = Er − iΓ of the
transition matrix as a function of the impurity position. The parameters
of the interaction potential are λ = −0.15 and kc = 100. Dashed line indi-
cates the energy of the impurity bound state in the bulk semiconductor
[see eqn (8)].
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in ref. 49. The alternating behavior found in DFT
calculations, with different energy shifts of the impurity
bands for even (odd) slabs, is not reflected in this model
since simpler, exponentially-decaying wave functions are used
here.

4. Conclusions

Doping a SnTe slab with a non-magnetic Sb impurity breaks
mirror symmetry, which affects the well-known topologically-
protected surface states of pristine SnTe. Additionally, impurity
doping has an effect on the band structure: it creates impurity
bands which hybridize with the aforementioned surface states.
We have studied this doped system by resorting to first-prin-
ciples calculations and continuum models. DFT calculations
have been performed to study a finite structure, i.e., a slab
with two surfaces, as well as a semi-infinite geometry with only
one surface. We have analyzed the role of crystal symmetries
for each case. Surface states are unaltered when a single substi-
tutional impurity is used in a semi-infinite system, yielding a
band structure with Dirac cones as well as spin-polarized
impurity states. In contrast, a slab geometry even with 16
atomic layers presents coupling of states at opposite surfaces,
which produces a small gap in the Dirac cones. Our calcu-
lations allow us to isolate the contribution of either the impur-
ity or the first atomic layers of the surface to the electronic
structure of the system, which is specially useful since we con-
sider different impurity positions. Impurity states show an
interesting alternating behavior depending on the location of
the impurity inside the material, which can be regarded as an
even–odd effect.

A continuum Hamiltonian is also used to describe the
effect of doping on the Dirac cone, which shifts downwards.
This result coincides qualitatively with our DFT calculations
and allows us to predict the behavior of the system when the
impurity is placed deeper in the slab. As for the hybridization
between the topologically-protected surface states and the
impurity states, a simplified version of the aforementioned
Hamiltonian is used, showing a diminishing resonance as the
impurity moves inwards.

The n-doped character of SnTe:Sb could make difficult
to separate the contribution to the electronic properties
of surfaces and bulk states. However, angle-resolved photo-
emission spectroscopy (ARPES) enables revealing the signa-
tures of surface states (i.e. Dirac cone) even if the Fermi
level lies well above the Dirac point, as was demonstrated by
Chen et al. in the Bi2Te3 samples.50 We are then confident
that our predictions could be observed in ARPES
experiments.

In conclusion, SnTe, the first discovered TCI, is an excellent
platform to explore the interplay of symmetry and topology in
this class of Dirac matter. A simple perturbation such as a sub-
stitutional impurity is shown to give rise to non-trivial spin tex-
tures. Besides its fundamental interest, tuning the Dirac cones

of topological insulators can be of interest for transport and
spintronic applications.

Conflicts of interest

There are no conflicts to declare.

Appendix A
Additional DFT results

A more detailed analysis of the orbital character and spin
texture of pristine and impurity-doped SnTe is illustrated by
the following figures. Fig. 8(a) displays the band structure
along with the projected contributions of all chemical species
(green for Sn, blue for Te and orange for Sb) for the slab struc-
ture. The band inversion at the Γ̄ point is observed for both
pristine and doped structures. The impurity states hybridize
with the upwards Sn-like branch of the Dirac cone. Panel (b)
confirms the band inversion in bulk pristine and Sb-doped
SnTe.

Fig. 9 depicts PDOS(kx,ky,E) and spin texture maps of SnTe
above the Dirac point. Two pairs of Dirac cones appear, which
are folded into a ×-shaped fourfold pattern at the Γ point for
the c(4 × 4) supercell. The Mz(k,E) component is omitted due
to the absence of out-of-plane spin texture.

Fig. 10 shows the persistence of the pristine SnTe spin
texture when impurities are included. The helicity is unaltered
independently of the impurity position, as mentioned in
Fig. 3. Additionally, it can be seen in Fig. 4 that the spin

Fig. 8 (a) Electronic structure of the 16-layer slabs for the undoped,
Sb1 and Sb2 structures, along with the projections on Sn (green), Te
(blue) and Sb (orange) p-orbitals. (b) Bulk band structure of the pristine
and doped supercell. The color scheme is the same as in panel (a).
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texture changes sign upon moving above or below the Dirac
point.

Appendix B
Surface states in the quadratic Dirac equation

The surface states used in the analytic calculations are
obtained considering a semi-infinite slab extended for z > 0
and with periodic boundary conditions in the x- and y-direc-
tions. DFT calculations use a periodical supercell of size Lx ×
Ly; in order to match the same conditions of the ab initio struc-
ture we consider periodic boundary conditions in x- and
y-directions while the z coordinate is unbounded in perform-
ing the integrals of eqn (4).

Due to the breaking of translational symmetry, we solve
the Hamiltonian (3) with kz → −i∂z, using the ansatz of the
form

ψ � e�λz exp½iðkxxþ kyyÞ�Φ; ð9Þ
in other words, we assumed plane waves in the in-plane direc-
tions, an exponential decay form in the z-direction and a con-
stant spinorial part Φ.

We found that two decay lengths satisfy the eigenvalue
equation

λ1;2 ¼ v
2 Bj j 1+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m Bj j

v2
þ
4B2k2k
v2

s0
@

1
A: ð10Þ

By combining solutions of the form (9) in order to fulfill
the hard-wall boundary conditions at z = 0, we obtain two

surface states with linearly dispersive energy given by E± = ε ±
vk∥sign(B) with wave functions

ψþ ¼ Asðe�λ1z � e�λ2zÞexp½iðkxxþ kyyÞ�Φ0
þ; ð11Þ

ψ� ¼ Asðe�λ1z � e�λ2zÞexp½iðkxxþ kyyÞ�Φ0
�; ð12Þ

where Φ0
+ are space-independent normalized spinors and the

normalization constant depends on the momenta and model
parameters

As ¼ 1ffiffiffiffiffiffiffiffiffi
LxLy

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2λ1λ2 λ1 þ λ2ð Þ
ðλ1 � λ2Þ2

s
: ð13Þ

The numerical values of the parameters have been obtained
by fitting to DFT data and are reported in Table 1.

In eqn (3), replacing the electron free mass by the effective
mass and the vacuum dielectric constant by that of the
medium, the following relation for the effective Rydberg and
Bohr radius can be easily obtained

R*
ya

*
B ¼ RyaB=εr; ð14Þ

where Ry and aB are the well-known atomic Rydberg energy
and Bohr radius and εr is the relative dielectric permittivity.
The value of the permittivity in SnTe has been tabulated in
multiple works, such as ref. 51 and 52 for a wide range of
temperatures. In our DFT simulations, as already mentioned
in the previous sections, we are in a room-temperature regime.
Hence, the tabulated value of ε ≈ 40 at room temperature is
the more convenient.51,53

Fig. 9 PDOS(kx,ky) and maps of the magnetization components Mx(kx,ky) and My(kx,ky) of pristine SnTe at 0.05 eV. Top panel shows the unfolded 1
× 1 unit cell, demonstrating the appearance of four helical edge states. Bottom panel shows the c(4 × 4) folded unit cell; the previous helical states
arrange around Γ in a fourfold pattern. White and black shades account for positive and negative values of Mi, respectively.
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Green’s function in the absence of impurity

When describing the envelope function χ(r), the momentum
perpendicular to the growth direction kk is conserved and
the envelope function can be factorized as χ(r) = χ̃(z)exp(irk·kk).
It is understood that the subscript k in a vector indicates
the nullification of its z-component, namely rk = (x,y,0) and
kk = (kx,ky,0).

The Green’s function for the unperturbed problem (λ = 0)
satisfies the following equation

E14 þ iαz
@

@z
þ iαk � ∇k � βsign zð Þ


 �
G0 r; r′; Eð Þ ¼ δ r � r′ð Þ14:

ð15Þ
The Green’s function G0(r,r′;E) = 〈r|Ĝ0(E)|r′〉 is the matrix

element of the unperturbed resolvent Ĝ0(E) in coordinate represen-
tation. Let Ĝ(E) be the resolvent of the Hamiltonian Ĥ0 þ V̂ , where
V̂ ¼ ωj iλ ωh j is the operator associated to the non-local separable
potential (7). Ĝ(E) and Ĝ0(E) are related by the well-known equation
Ĝ Eð Þ ¼ Ĝ0 Eð Þ þ Ĝ0 Eð ÞT̂ Eð ÞĜ0 Eð Þ (see ref. 54), where

T̂ Eð Þ ¼ 1� V̂ Ĝ0 Eð Þ� �1
V̂ ; ð16Þ

is the transition operator. A pole of T̂ Eð Þ at a real (complex)
energy E corresponds to a bound (resonance state). After some

Table 1 Fitting parameters of the continuum model to DFT data

SnTe

ε = −0.065 eV
m = 0.07 eV
v = 1.591 eV Å
B = 2.74 eV Å2

Fig. 10 PDOS(kx,ky) and maps of the magnetization components Mx(kx,ky) and My(kx,ky) at an energy 20 meV below (left panels) and above (right
panels) the Dirac point. White and black shades account for positive and negative values of Mi, respectively.
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algebra we get the following transcendental equation for the
poles of the transition operator T̂ Eð Þ

det 14 � λ

ð
d3r

ð
d3r′G0 r; r′;Eð Þ



ω r � r0ð Þω r′� r0ð Þ� ¼ 0; ð17Þ

where G0(r,r′;E) can be expanded as

G0 r; r′; Eð Þ ¼ 1
4π2

ð
d2kkG0 z; z′; kk;E

� �
exp ikk � rk � r′k

� �� 
: ð18Þ

with

G0 z; z′; kk;E
� � ¼ e�κ z�z′j j

2κ
iκαzsign z � z′ð Þ þ βsign zð Þ þ E14½ �

þ e�κ zj jþ z′j jð Þ

2κ E2 � k2k
� � iαzβ þ 1

κ
14

� 	

þ iκαzsign zð Þ þ βsign zð Þ þ E14½ �;
ð19Þ

and κ2 = 1 + kk
2 − E2.

The proper Green’s function of the unperturbed band-
inverted heterojunction can be obtained as follows. We intro-
duce (18) in eqn (15) to obtain

E14 � ĥ0 zð Þ
h i

G0 z; z′; kk;E
� � ¼ δ z � z′ð Þ14;

ĥ0 zð Þ ; �iαz
@

@z
þ αk � kk þ βsign zð Þ:

ð20Þ

The resolvent of ĥ0 is Ĝ0(E) = (E14 − ĥ0)
−1. We now define

the auxiliary resolvent ĝ0(E) = (E214 − ĥ0
2)−1 so that Ĝ0(E) = (E14

+ ĥ0)ĝ0(E). Therefore, once ĝ0(E) is known, we can easily obtain
Ĝ0(E). In coordinate representation

@2

@z2
� κ2

� 	
14 � 2iβαzδ zð Þ


 �
g0 z; z′; kk;E
� �

¼ δ z � z′ð Þ14:
ð21Þ

This equation can be easily solved regarding the term
−2iβαxδ(x) as an interaction potential and then using the
Dyson equation. In doing so we obtain

g0 z; z′; kk;E
� � ¼ � 1

2κ
e�κ z�z′j j14 þ e�κ zj jþ z′j jð Þ

2 E2 � k2k
� � iβαz þ 1

κ
14

� 	
: ð22Þ

Finally, recalling that Ĝ0(E) = (E + ĥ0)ĝ0(E), we get eqn (19).
Once the basic equations are presented, we now need to

take a particular shape function to perform the calculation. In
what follows we consider

ωðr � r0Þ ¼ f ðz � z0ÞδðrkÞ; ð23Þ

where f (z) is a top-hat function of width L and height 1/
L, centered at z0 and approaching the δ-function
limit (L ≪ 1). The transcendental eqn (17) for the poles
reduces to

det½14 �MðEÞ� ¼ 0; ð24aÞ

M Eð Þ ; λ

4π2

ð
d2kk

ð
dz

ð
dz′f z � z0ð Þf z′� z0ð ÞG0 z; z′; kk;E

� �
: ð24bÞ

We have numerically solved eqn (24a) considering a
finite bandwidth. This is equivalent to introducing an upper
cutoff for the in-plane momentum, kc. In this way, we
prevent divergences when taking the limit L → 0, i.e. f (z − z0)
→ δ(z − z0).
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