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A green-PAD array combined with chemometrics
for pH measurements†

Lisa R. Magnaghi, *ab Giancarla Alberti, *a Bianca M. Pazzi,a Camilla Zanonia

and Raffaela Biesuzab

This work presents the development of a green paper-based analytical device (Green-PAD) array for pH

detection. The array was obtained with natural dyes extracted from red cabbage (Brassica oleracea) and

butterfly pea flower (Clitoria ternatea); a filter paper was used as a substrate. The RGB indexes of the PADs’

colors were extracted from the pictures taken using a smartphone or using a specifically developed RGB

detector (Arduino-based) to obtain RGB indexes not affected by the light and the photocamera sensitivity.

Multi-technique chemometric models were developed for calculating the pH value, starting from the RGB

triplet of each sensing PAD. A preliminary and explorative chemometric analysis with PCA (partial

component analysis) and TWPCA (3-way PCA) was carried out. Partial least square regression, PLS, was then

applied to correlate the color of the PAD’s picture with the solutions’ pH. Different solutions at various pHs,

ranging from 1 to 13, were obtained by titrating orthophosphoric acid with standardized NaOH, and they

were used to create PLS models. Some real samples were examined as a test set, and the results were

validated with pH-meter measurements. The ability of the PLS to model the experimental data was

satisfactory since a good agreement between the experimental and fitted pH values was obtained. The

proposed PADs were prepared with natural dyes and filter papers, so they are completely biodegradable and

eco-friendly. Their fabrication does not require toxic or expensive reagents and sophisticated equipment.

Also, the developed RGB detector, built-up with low-cost components and recycled batteries, adds value

making the measurement cheap, easy and feasible also by non-expert people.

Introduction

The first pH definition goes back to 1909 by Sørensen1 as the
negative logarithm of the hydrogen ion concentration
expressed in molarity. After that, a more rigorous definition
of pH in terms of the activity of hydrogen ions in solution was
proposed2 (the activity is the effective concentration of the
hydrogen ion in solution, which can be considered equal to
the ion concentration moving toward high diluted solutions in
which less strong interactions between ions take place).3

The measurement of pH in various media in which chemical,
physical, and biological processes occur is a crucial task. The
standard pH measurement techniques are based on quite-
expensive instruments or devices for qualitative analyses.4

Traditionally, pH is measured electrochemically using glass
electrodes5 or, in the most recent 50 years, using solid-state
ISFET sensors.6 Although potentiometric pH measurements

using glass electrodes are accurate, have immediate read-out
and have a wide range of measurable pHs, they even have
drawbacks such as the use of delicate and expensive electrodes
and large sample volumes and they require frequent calibrations
and trained personnel.7 pH test strips (litmus papers) are another
possibility for qualitative and rapid pH determination, but they
suffer from poor resolution and visual subjective analysis, unsui-
table for quantitative measurements.8 Other attractive optical
methods have been proposed for pH measurements,9–12 and
among them, colorimetric pH sensors have recently been devel-
oped as a new trend inspired by traditional litmus papers.13

Numerous colorimetric pH sensors have been developed
recently, both generalized or specific for a pH range or
applications.14 They were based on the colorimetric analysis
of indicators, i.e., the color variations at different acidity values.
Although one advantage of using pH sensors over the pH
electrodes is operating at the pH scale’s extremes, only a few
colorimetric pH sensors have been reported for use in these
ranges.15,16 Moreover, for the detection, UV-vis spectroscopy or
fluorescence spectroscopy is generally employed, while elaborate
data treatment procedures, complex algorithms or smartphone
applications are always required for colorimetric analysis with
these sensors.13
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An emerging approach involves the employment of sensor
arrays based on cross-responsive sensor elements. Among
them, colorimetric sensor arrays were appropriate for pH
determination with a satisfying resolution.7,17,18

Typically, colorimetric pH sensors consist of a solid substrate
and a dye sensitive to pH variations. Some studies suggested
using paper as the substrate and pigments extracted from fruits
and vegetables as dyes for developing this kind of sensor.19–22

Paper-based analytical devices (PADs) were first proposed in
2007 by Martinez et al.23 and then widely applied for environ-
mental analyses, clinical trials and food controls thanks to their
simple fabrication and rapid response advantages.24,25

The network of cellulosic fibers gives the paper capillary
properties, eliminating the need for a pumping device used in a
conventional microfluidic apparatus. Moreover, paper’s char-
acteristics such as abundant availability, low cost, biodegrad-
ability, the ease of production and surface functionalization
make it an appealing candidate as a sensor’s substrate.26,27

Compared to synthetic dyes, pigments extracted from fruits
and vegetables are eco-friendly, sustainable and accessible.28

In particular, anthocyanin-based dyes can be helpful for the
development of pH sensors since their color changes depend
on the pH.29 For example, natural dyes’ extracts have been
applied as pH sensors in food quality tests.22,30

The present work fits this scenario. A PAD array entirely eco-
friendly for pH measurements was developed. The array was
obtained using aqueous extracts of pigments from red cabbage
(Brassica oleracea) and butterfly pea flower (Clitoria ternatea), and a
filter paper was used as a substrate. Among different anthocyanin-
based dyes, those extracted from red cabbage (RC) and butterfly pea
flower (BPF) were selected because they showed more color changes
by varying the pH. Moreover, similar to the synthetic indicators
made of combinations of dyes, mixtures of different percentages of
the two pure extracts were prepared, aiming to obtain a different
color evolution for each PAD of the array.

The RGB space model was applied to correlate the color
variations of PADs with the pH of aqueous solutions.

Colorimetric arrays produce data from several sensors, so
chemometric analysis is essential since the multidimensional
nature of the results. Here, multi-technique chemometric
models were developed for calculating the pH value, starting
from the RGB triplet of each sensing PAD. The validation of the
models was performed by analyzing actual samples.

Different from poorly accurate commercial pH test strips31 or
single dye-based colorimetric pH sensors,14 an array with several
sensors with overlapping sensitivity patterns was employed here
to increase the analytical performance. Moreover, the use of eco-
friendly and low-cost materials and reagents is an added advan-
tage compared to other more complex and expensive devices.14

Experimental
Materials and instruments

Cellulose filter paper Whatman grade 1, 11 mm (particle reten-
tion), 0.25 psi wet burst, 150 s per 100 mL speed (Herzberg) and

180 mm thickness, was obtained from Laboindustria S.p.A.
(Arzergrande, Italy). Red cabbage (Brassica oleracea) and butter-
fly pea flower tea (Clitoria ternatea) were purchased from a local
supermarket (Pavia, Italy).

Hydrochloric acid, orthophosphoric acid, and sodium hydro-
xide were obtained from Merk Life Science S.r.l. (Milan, Italy).

Solutions at different pH values (ranging from 1 to 13) were
prepared by titrating orthophosphoric acid with standardized
NaOH. The exact pH value was measured using a pH meter.

The tap water sample was obtained from the drinking water
supply of Pavia (Italy). The sample was collected after flushing
cold water for 20 min from the sink of the laboratory (Chemistry
Department, University of Pavia, Italy).

Ammonia cleaner (S.a.i.soc.alcoli Industriali Sas, Italy),
Tropical Aloe Vera drink (Eurofood S.p.A., Italy), Schweppes
tonic water (Schweppes International Limited, Italy), sprite
(Coca-Cola S.r.L., Italy), and white wine vinegar ‘‘Gaia’’ (Formec
Biffi S.p.A., Italy) were purchased from a local supermarket
(Pavia, Italy).

Instruments

pH measurements were performed using a pH meter (Mettler
Toledo mod. SevenMulti) equipped with a combined glass
electrode (InLab Pro, Mettler Toledo S.p.A.- Milan, Italy).

A pH-indicator paper, pH 1–14 Universal Indicator (Merk
Life Science S.r.l. – Milan, Italy), was also used for comparing
the data obtained with the PAD array.

Photographs of the PADs’ array were taken using an iPad Pro
10,5 (Apple inc., Italy). A portable, led-based lightbox (PULUZ,
Shenzhen Puluz Technology Ltd, China) was employed to ensure
the reproducibility of the photographs. The GIMP software32 was
used for sampling the RGB indexes of each picture.

A specifically developed, Arduino-based RGB detector (see
the ESI†) was also employed to collect each PAD’s RGB triplet.

The open-source R-based software CAT (Chemometric Agile
Tool)33 was used for chemometric data treatment.

Procedures

Extract preparation. Red cabbage extract (Brassica oleracea,
RC) and butterfly pea flower tea extract (Clitoria ternatea, BPF)
were prepared using the following procedure. An appropriate
quantity of raw vegetables (from 1 to 3 g of dry matter; for RC,
the % humidity, previously determined, is equal to 91.3%;
commercially available, dried butterfly pea flower tea was
weighed as received) was placed in a beaker with 250 mL of
distilled water. The suspension was kept in an ultrasonic bath for
60 minutes, not exceeding 60 1C. After cooling, the suspension
was filtered in a 250 mL flask; then 5 mL of concentrated
hydrochloric acid as a stabilizer was added and diluted to the
mark with distilled water. Each extract was stored in the dark in
the fridge until usage in experiments.

Green-PAD preparation. A sheet of filter paper was cut into
squares with a side of 2 cm using scissors or a letter opener,
trying to keep the area constant. Each square was placed on a
clean, flat surface, drop-coated with 0.2 mL of extracts, single or
in mixtures, and allowed to air dry. The following five extracts
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were employed: 100% RC, 100% BPF, mix 75% RC–25% BPF,
mix 50% RC–50% BPF, and mix 25% RC–75% BPF. In this way,
arrays of 5 PADs were prepared.

pH determination by the Green-PAD array. Each PAD of the
array was immersed in 5 mL of solutions at different pH values
ranging from 1 to 13 (or sample solutions) for a few seconds,
enough to wet the paper. Then the PAD was removed from the
solution and allowed to dry for 5 min on a clean, flat surface.
Photographs of the PADs (or direct readings of color indexes
using the RGB detector) were taken. PADs’ RGB triplets were
collected from the photographs using the GIMP software.32

The pH of each solution measured using a pH meter was
used as a reference value for the following chemometric data
treatment.

Chemometric data treatment.

When dealing with arrays, the differential sensing approach is
used with cross-reactive receptors and pattern recognition
algorithms to process a large amount of data acquired which
are not usually interpretable by visual inspection or classical
dose–response calibrations. Chemometric methods are so rou-
tinely used to reduce the data’s dimensionality and are shown
in a graphical form for interpretation.34

Here, chemometric tools were applied to analyze the RGB
data set, only centering the data because these indexes are
intrinsically scaled from 0 to 255. A multi-technique approach
was adopted, combining unsupervised techniques such as
principal component analysis (PCA) and three-way principal
component analysis (3WPCA) with the supervised partial least
square regression (PLS) since it has proven to be the ultimate
data elaboration treatment in terms of model robustness and
predictive performances.35,36

All the tools exploited are widely reviewed in the literature,
so their theoretical aspects will not be discussed.37,38 3WPCA,
based on the Tucker3 model,39 was selected since it takes into
account the tri-dimensional nature of the data set, which can
be considered as a parallelepiped of sizes I � J � K (conven-
tionally termed objects, variables and conditions). Thus, the
information related to each of the three modes: RGB indexes
(variables), the five types of Green-PADs (objects) and the
solution pHs (conditions), is fully separated, allowing a much
more straightforward interpretation of the information present
in the data set. Indeed, the final result is given by three loading
sets and a core array describing the relationship among them.
Each of the three loading sets can be interpreted and displayed
similarly to a loading plot of the standard PCA.40

PCA and 3WPCA were first run on the entire data set
(15 columns (3 RGB indexes per 5 PADs) and 39 lines
(13 solutions per 3 replicates). From the resulting score plot of
the PCA, the following three pH subintervals are highlighted: the
interval from pHs 1 to 4 (acid solutions), the second from pHs
5 to 8 (neutral solutions) and the third from pHs 9 to 13 (alkaline
solutions). Then, the PLS tool was applied separately for each
pH’s subinterval, developing a tailored model correlating the
RGB indexes of the PAD sensors with the pH values of the
solutions in the range under investigation.

The training set required to build up the PLS models
comprised 3 replicates of each solution; so the training input
matrix had 15 columns (3 RGB indexes per 5 PADs) and,
respectively, 12 lines (4 solutions per 3 replicates) for the interval
from pH 1 to 4 and for that from pH 5 to 8, while 15 lines
(5 solutions per 3 replicates) for the interval from pH 9 to 13.

The test set used to validate the PCA and PLS models
comprised three replicates of real samples commercially available
and characterized by different pH values: in particular, we selected
Schweppes tonic water, sprite, white wine vinegar and aloe vera
drink as acidic samples, tap water as neutral and ammonia
cleaner as alkaline. Moving back now to matrix dimensions, the
test input matrix had 15 columns (3 RGB indexes per 5 PADs) and,
respectively, 12 lines (4 solutions per 3 replicates) for samples with
pHs from 1 to 4, while 3 lines (1 solution per 3 replicates) for
samples with pHs from 5 to 8 and 3 lines (1 solution per 3
replicates) for samples with pH from 9 to 13.

Results and discussion
Preparation and analysis of green-PADs

The devices described here were prepared by employing a filter
paper as a substrate. The currently proposed mPADs were
fabricated by paper patterning using different procedures such
as wax printing or screen-printing, photolithography, inkjet
etching, plasma treatment, and laser printing.41–47 Most of
these techniques involve complex procedures and are expensive,
making them inaccessible in restricted resources laboratories.
Besides, patterning of mPADs by wax requires a strict flow control
of the hydrophobic barrier into the porous paper’s matrix,
determining inhomogeneity and irreproducibility.47 A simple
and alternative approach is the cutting of the paper in the
desired dimensions and shapes, avoiding the formation of the
containment barriers of the liquid.26 This last patterning
method was adopted here by creating square PADs by cutting a
sheet of filter paper. Indeed, our objective was to prepare devices
with low-cost and sustainable materials and techniques afford-
able for resource-limited settings. For obtaining PADs, totally
green, natural pigments extracted from fruit and vegetables were
employed. Among different anthocyanin-based dyes, those
extracted from red cabbage (RC) and butterfly pea flower (BPF)
were selected because they showed more color changes by
varying the pH. Similar to the synthetic indicators made of
combinations of dyes, three mixtures of different percentages of
the two pure extracts were prepared, so different color evolution
for each PAD of the array occurred.

Fig. 1 shows the UV-vis spectra of the extracts (single or in
mixtures) at neutral pH, i.e., without adding acids or alkaline
solutions, in the wavelength range of 400–800 nm. As can be
seen from the graph, in the spectrum of the 100% RC extract,
the characteristic broad peak at 550 nm is evident, and it is
due to the presence of acylated anthocyanins, mainly cyanidin
3-diglucoside-5-glucoside derivatives with various acylated
groups linked to the diglucoside.48,49 By increasing the percen-
tage of BPF, a bathochromic shift and split into two peaks at
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570 and 620 nm arises. These peaks are those characteristics
of ternatins and polyacylated anthocyanins (i.e., malonylated
delphinidin 3,30,50-triglucosides, with 30,50-side chains with
alternating D-glucose and p-coumaric acid units) responsible
for the blue color of the butterfly pea flower extract.50

The extracts of red cabbage and butterfly pea flower were
previously employed as pH indicators since the solution acidity
influences their color, and this is due to the reversible structural
transformation of the anthocyanins that lead to color
changes.48–50 A comparison with the color palette at various pHs
of the PADs of 100% RC and 100% BPF with those previously
reported48 for aqueous extracts of red cabbage and butterfly pea
flower50 was performed, confirming the correct preparation of the
solutions and the preservation of the anthocyanins.

A volume of 0.2 mL of the extract was selected to load the PADs
since it was verified to be enough to cover the whole surface of the
PAD without overflow from the borders. Also, immersion of the
paper in 5 mL of the extract was considered, but inhomogeneity of
the color of the PAD and low sorption kinetics occurred.

Moreover, it was necessary to define the loading ratio quan-
tity of the extract/volume of sample solution since it affects the
color intensity. Different experiments were performed, consider-
ing drop-coating 0.2 mL of the sample, or immersing the PAD in
5 mL of the sample solution for 10 seconds, i.e., the minimum
time required to impregnate the paper. The second strategy was
adopted as the better uniformity of the color.

Finally, the waiting time before taking the photographs (or
placing the PAD in the RGB detector) at room temperature was
selected. Five minutes is the time required because it is enough to
obtain homogeneous color and avoid the drying out of the paper.

Some trials with other filter papers were performed, aiming
to reduce the waiting time; however, since the similar porosity,
their use has not proved advantageous.

Regarding the stability, it would be underlined that the PADs
prepared are disposable sensors, and the natural dye extracts
were not stable. So the PADs have to be immediately used after
their preparation.

Color analysis and chemometrics

The Green-PADs of the array showed very distinct colors when
immersed in aqueous solutions at different pHs ranging from 1
to 13, as shown in Fig. 2.

As is well known, the PADs’ color can be described by
models with different bases, pros and cons51 that will not be
detailed here. The RGB model was selected to quantify the color
change with the solution’s pH. The open-source GIMP
software32 was used to acquire the RGB indexes of the PADs’
images.

The RGB value matrixes, adequately organized, were thus
subjected to multivariate analysis, applying only the centering
as the data pre-treatment since the RGB indexes are intrinsi-
cally scaled from 0 to 255.

A multi-technique approach was adopted; unsupervised
techniques were first applied to visualize and rationalize the
overall data set, i.e., 3WPCA and PCA.

The 3WPCA was applied to compare the different responses
of each kind of PADs to the solution pHs. The entire data
set was employed, so the five types of Green-PADs as objects,
the pH of 13 solutions as conditions, and the RGB indexes of
the entire array as variables.

Table 1 reports the explained variance percentage after
unfolding; comparing the lowest value obtained after unfolding,
which was in the case of conditions mode, and the % variance
explained by the Tucker3 model (68.09%), we could observe that
no significant loss in the information was detected when the
overall color evolution is taken into account. Furthermore, all the
percentages of the explained variance are pretty good considering
the intrinsically high variability of the data employed.

Fig. 3 shows the triplot, in which the loading values of the
three modes (objects, conditions and variables) are reported
altogether. The objects, i.e., the five types of Green-PADs
obtained with five different extracts, show loading values
arranged along the horizontal axis (axis 1) due to the different
brightness, which increases with the decrease in the percentage
of BPF and the corresponding increase in the % of RC. This
assumption is confirmed by the loadings of the variables, i.e.,
the R, G, and B indexes: they all have a positive value on the
x-axis, which indicates that they all increase, moving from the
left to the right of the plot, leading to brighter Green-PAD colors
when % RC is higher. Conversely, on the y-axis, R has a positive
loading value. In contrast, G and B have negative values,
suggesting that by the change of the solution pH, the R index
increases while the G and B indexes decrease, which

Fig. 1 UV-vis spectra of the RC and BPF extracts and their mixtures at
neutral pH.

Fig. 2 Green-PAD array. A5 = 100%RC; A4 = 75%RC-25%BPF; A3 =
50%RC-50%BPF; A2 = 25%RC-75%BPF; A1 = 100% BPF. Three replicates
for each pH.

Table 1 Cumulative % variance explained after unfolding

Mode Axis 1 Axis 1 & 2

Objects 47.84 89.10
Variables 56.71 81.96
Conditions 50.41 72.47
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correspond to the numerical effect of the significant clear color
variations for the PADs immersed in solutions at the extremes
of the pH range. The conditions are the pHs: it can be observed
that there is a clear distinction for pH values lower than 4 and
pH higher than 9, which is easily recognizable, and given both
for the differences in the color shade (separation along axis 2)
and the brightness (separation along axis 1); conversely, for pH
values from 5 to 8, the difference is smaller as expected since
the similar color of the PADs in this pH range.

PCA was also applied to the entire data set to visualize the
color transition and identify the main clusters.

The model was obtained considering only the first two
components, which explain 81.51% of the experimental variance;
Fig. 4a shows the resultant score plot.

Three main clusters, partially overlapped, can be qualitatively
distinguished in the score plot: a first cluster (red ellipsoid) for
samples at pH lower than 5 that are separated along the PC1 axis
and their score values on this component are inversely propor-
tional to the pH. A second cluster (little green ellipsoid) is
highlighted for samples at pH between 5 and 8 that are mainly
separated along the PC2 axis, and their score values decrease
with the increasing pH. The third cluster (blue ellipsoid) is for
samples at pH from 9 to 13; in this case, samples are separated
alongside both PC1 and PC2, with PC1 score values increasing
and PC2 score values decreasing with increasing pH.

The PCA model was validated by a projection of the test set,
as shown in Fig. 4b: all samples are correctly located in the
corresponding clusters of the score plot.

After validation, the PCA model was investigated to divide
the entire pH range into subintervals for the following PLS
analysis. The subintervals identified correspond to the PCA
clusters previously described.

After defining the three pH subintervals, the PLS tool was
applied. Three PLS models (named A for the acid pH range,
N for the neutral pH range and B for the basic pH range) were

developed, using the corresponding three training sets as detailed
in the previous paragraph, ‘‘Chemometric data treatment.’’

The models were then validated by predicting the test samples
and comparing the experimental values, measured using a pH
meter, with those obtained by the Green-PAD array–PLS models.

Table 2 reports the number of components used to build the
PLS models, the % explained variance in cross-validation (CV),
and the root mean square error in CV (RMSECV).

For models A and N, the minimum of the RMSECV is obtained
with 5 components, whereas for model B, it is obtained with
4 components. The explained variance % is high in all cases,
about 90%. The RMSECV values, around 0.3, are higher than
those achievable using a pH meter, but it was expected since the

Fig. 3 3WPCA applied to the Green-PAD array: triplot of loadings values.
A1 = 100%RC; A2 = 75%RC-25%BPF; A3 = 50%RC-50%BPF; A4 = 25%RC-
75%BPF; A5 = 100% BPF. Three replicates for each pH.

Fig. 4 The score plot of the PCA model on the first two principal
components, built on the training set (a) and validated by a projection of
the test set (b). The ellipsoids are exclusively added by hand as a simpli-
fication to highlight better the clusters at the different pH subintervals used
for building the PLS models.
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lower robustness and precision of the RGB acquired from the PAD
photographs compared to standard glass electrodes.

Fig. 5 shows the plots of experimental vs. fitted values for
each model; a pretty good agreement between the experimental
and fitted data for all the models can be observed.

The models were validated by applying them to the analysis
of actual samples of different pHs. In the case of unknown
samples, RGB indexes describing the colors of the PAD were
projected in the PCA model (see Fig. 4b) to identify the most
suitable PLS model to be exploited to calculate the pH value.

Table 3 shows the relative error % between the samples’ pH
values measured using a pH meter and those calculated by the
Green-PAD array–PLS models. For comparison, the estimated
pH values obtained by the commercial litmus paper were also
reported (the pH color chart and image of the litmus paper after
immersion in each sample are reported in the ESI,† Fig. S3).

As can be seen, despite the scarce precision of the measure-
ments with PADs, a good agreement between the pH values was
obtained.

As is well known, digital images can be different depending
on the type of camera, focus, and environment brightness.

Therefore, it was thought to couple the developed PADs to a
color detector that was not subject to this environmental
variability. A device called the RGB detector was thus developed
(thanks to a collaboration with Eng. Dario Pistoia). The device
comprises a 4-led color sensor, and it is based on an Arduino
hardware platform. It is simple and economical and can also be
used for pH measurements out-of-lab. The description of the
RGB detector is reported in the ESI†.

The same experiments previously described were carried out
by registering the RGB indexes using the detector to create the
PLS models for the array of PADs at the three pH subintervals
and, subsequently, their application for determining the pH of
real samples.

Table 4 reports the number of components used to build the
PLS models, the % explained variance in cross-validation (CV),
and the root mean square error in CV (RMSECV).

For models B and N, the minimum of the RMSECV is
obtained with 5 components, whereas for model A, it is
obtained with 3 components. The explained variance % is high
in all cases, higher than 92%. The RMSECV values are lower
than those obtained for the previous model based on the RGB
acquired by the PAD photographs, indicating higher precision
and better agreement with the values measured using a pH
meter. In particular, the RMSECV for model A is similar to that
achievable with glass electrodes at pHs lower than 2.

Fig. 6 shows the plots of experimental vs. fitted values for
each model. The results of the validation are summarized in
Table 5.

As expected, the data obtained with the detector (see
Table 5) are certainly more precise than those obtained from
the RGB data of digital images. The differences between the pH
values determined with the PADs and those measured with the
detector are of the same order of magnitude as those obtained
from the photographic data. This aspect was also predictable.
Indeed, all photographs were taken simultaneously for both
arrays of Green-PADs (for PLS models and for the samples);

Table 2 Number of components, % explained variance in cross-validation
(%Exp.Var.CV), and root mean square error in CV (RMSECV) for PLS models

Model n. comp. %Exp.Var. CV RMSECV

A 5 90.30 0.3287
N 5 90.81 0.3326
B 4 93.68 0.3674

Fig. 5 Experimental vs. fitted plot for (a) model A, (b) model N, and (c)
model B.

Table 3 pH of actual samples: comparison between the values measured
using a pH meter, estimated by the Litmus paper and those calculated by
the Green-PAD array–PLS models. (Data are reported as the mean value of
three replicates. The number in parenthesis is the standard deviation on
the last digit)

Sample pHGE pHLP pHPADs RE %

Schweppes 2.39 2–3 2.4(1) 1.7
Sprite 2.72 3 2.9(3) 4.2
White wine vinegar 3.05 3–4 2.8(2) 0.6
Tropical aloe vera 3.55 4 3.5(4) 1.1
Tap water 7.68 8 7.4(4) 1.2
Ammonia cleaner 10.73 10–11 10.7(1) 0.7

pHGE = value obtained by glass electrodes.pHLP = value obtained by the
Litmus paper.pHPADs= value obtained by Green-PADs.RE % = relative
error.

Table 4 Number of components, % explained variance in cross-validation
(%Exp.Var.CV), and root mean square error in CV (RMSECV) for PLS models

Model n. comp. %Exp.Var. CV RMSECV

A 3 99.82 0.0537
N 5 92.08 0.2892
B 5 98.65 0.1708

Fig. 6 Experimental vs. fitted plot for (a) model A, (b) model N, and (c)
model B. RGB indexes acquired by the RGB detector.
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therefore, photographs were not affected by brightness, focus,
or exposure variations.

Since the RGB detector guarantees objectivity to the mea-
surements under any operating conditions, it is undoubtedly
the best choice when it is necessary to perform determinations
at different times with different photographic devices.

Conclusions

A simple, easy-to-use, low-cost, and completely green paper-
based array for pH measurement was proposed. The array was
prepared using filter paper scraps and aqueous extracts of
vegetables, allowing rapid and economical preparation.

Natural dyes extracted from red cabbage (Brassica oleracea)
and butterfly pea flower (Clitoria ternatea) were selected
because of a wide range of color variations with pH changes.

The RGB space model was applied to correlate the PADs’
color variation with the pH of aqueous solutions.

Multi-technique chemometric models were developed for
calculating the pH value, starting from the RGB triplet of each
sensing PAD. The RGB indexes were acquired by the photo-
graphs of the PADs or using a homemade RGB detector.

Unsupervised techniques were first applied to visualize and
rationalize the overall data set, i.e., 3WPCA and PCA. This
approach allowed in identifying pH subintervals and thus devel-
oping tailored PLS models. Three PLS models (named A for the
acid pH range from 1 to 4, N for the neutral pH range from 5 to 8,
and B for the basic pH range from 9 to 13) were developed and
then validated by predicting the test samples. The experimental
values, measured using a pHmeter, were compared with those
obtained by the Green-PAD array–PLS models showing a good
agreement. As expected, better data reproducibility was obtained
by employing the RGB detector since it ensures objectivity to
measurements under any operating conditions.

Similarly, in the case of unknown samples, RGB indexes
describing PAD’s colors, anyhow they were acquired, can be
projected in the PCA model to identify the most suitable PLS
model to be used to calculate the pH values, thus increasing the
accuracy of the results.
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