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ies of spherical gold nanoparticles
with grafted DNA chains from simulation and
theory

Fernando Vargas-Lara, *a Francis W. Starra and Jack F. Douglas b

There has been a rapidly growing interest in the use of functionalized Au nanoparticles (NPs) as platforms in

multiple applications in medicine and manufacturing. The sensing and targeting characteristics of these NPs,

and the realization of precisely organized structures in manufacturing applications using suchNPs, depend on

the control of their surface functionalization. NP functionalization typically takes the form of polymer grafted

layers, and a detailed knowledge of the chemical and structural properties of these layers is required to

molecularly engineer the particle characteristics for specific applications. However, the prediction and

experimental determination of these properties to enable the rational engineering of these particles is

a persistent problem in the development of this class of materials. To address this situation, molecular

dynamic simulations were performed based on a previously established coarse-grained single-stranded

DNA (ssDNA) model to determine basic solution properties of model ssDNA-grafted NP-layers under

a wide range of conditions. In particular, we emphasize the calculation of the hydrodynamic radius for

ssDNA-grafted Au NPs as a function of structural parameters such as ssDNA length, NP core size, and

surface coverage. We also numerically estimate the radius of gyration and the intrinsic viscosity of these

NPs, which in combination with hydrodynamic radius estimates, provide valuable information about the

fluctuating structure of the grafted polymer layers. We may then understand the origin of the commonly

reported variation in effective NP “size” by different measurement methods, and then exploit this

information in connection to material design and characterization in connection with the ever-growing

number of applications utilizing polymer-grafted NPs.
The nature of the surface functionalization of nanoparticles
(NPs) is the critical determinant of their behavior. Control over
this surface layer, and its response to environmental condi-
tions, such as temperature and pH, enables a broad range of
desirable characteristics to be programmed into NPs. The
physical nature of the graed polymer layer is thus a matter of
paramount interest in the numerous applications of polymer-
graed NPs. Here, we computationally investigate spherical
NPs with a graed polymer layer with particular emphasis on Au
NPs graed with single stranded DNA (ssDNA) as a model
system of this kind. In biophysical applications of this type, and
similar polymer-graed NPs, the presence of the polymer layer
is crucial for the targeted delivery of the NPs to tumors and
tissues and tissue engineering applications,1–3 many developing
therapeutic applications for the diagnosis and treatment of
disease,4–9 the detection of pathogenic viruses in the environ-
ment and the treatment of viral diseases10 and the detection of
environmental heavy metals and pollutants in the water
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supply11–13 and nucleic acids14 based on calorimetric sensing.15

Notable applications of polymer graed NPs are also under
development in connection with gene delivery, bio-imaging,
photothermal and photodynamic therapies16–18 and RNA graf-
ted NPs have been found to be effective in modulating the gene
expression of plants19 so there are emerging applications of
nucleic acid graed NPs in agriculture.20 In addition to this
tremendous activity in the eld of medical science, there have
also been many materials science applications using these
particles21–27 in which there are complementary strand–strand
interactions that allow for formation of functional self-
assembled nanostructures and even macroscopic crystals.28,29

In short, polymer graed NPs are undergoing an explosion of
activity in many elds of science and technology.

While these manifold applications are scientically inter-
esting, and practically of great importance, the present paper is
focused on understanding the conformational structure of the
graed ssDNA chains, and the collective properties of these
graed layers and the NP as a whole, as evidenced by static
properties such the radius of gyration (Rg) of the polymer graed
NPs and hydrodynamic properties such as the hydrodynamic
radius (Rh) and intrinsic viscosity ([h]). Qualitatively, the solution
© 2022 The Author(s). Published by the Royal Society of Chemistry
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properties of polymer graed NPs have much in common with
star polymers in solution,30 which is natural since polymer graf-
ted NPs in the limit that the particle core particle has a size
comparable to the polymer statistical segment become equiva-
lent to star polymers. We note that the magnitude of Rh has
emerged as one of the best correlates with biophysically relevant
physicochemical properties of polymer graed Au NPs.31

Polymer graed NPs also bear some relation to “microgel”
particles formed by polymerizing microemulsion droplets,32–36

where the nearly spherical particles formed under moderate
cross-linking density are oen found to have a relatively dense
core and diffuse periphery whose dimensions has a size on the
same order of magnitude as the core region of these particles. A
striking signature of NPs and polymers of this type is that the
ratio of Rh/Rg can be much larger than the value of this ratio for

hard spheres, Rh=Rg ¼
ffiffiffiffiffiffiffiffi
5=3

p
z 1:29. Since the size of the solid

cores of polymer graed NPs are oen larger or comparable to
the thickness of the graed layer and the graing density of
layers graed from solution is normally moderate, polymer
graed NPs also tend to exhibit Rh/Rg values signicantly larger
than the hard sphere value. This trend of exceeding the hard
sphere value is also predicted for dendrimer polymers at high
generation number37,38 and wemay expect this general tendency
in hyperbranched polymeric materials. Values of Rh/Rg signi-
cantly greater than hard sphere value have also been observed
in the molten globular state of collapsed polymer chains in
solution39,40 and this phenomenon has also been observed in
complexes polyethyleneamine and DNA of interested in drug
delivery applications.41 The common thread in all these systems
is occurrence of compact, nearly spherical particles having
a dense core and diffuse outer periphery, a basic physical
characteristic of polymer-graed NPs.

Part of the motivation of the present study has come from the
fact that many previous studies of polymer chains graed on NPs
and other surfaces have simply assumed that the chains adopt an
extended conformation in which the graed polymer chains take
the form of polymer “brushes” in which the polymer chains are
oen imagined to adopt rod-like congurations oriented roughly
normal to the surface to which they are graed.42Our simulations
clearly show that the polymer chain conformations instead are
more similar to free chains in solution for the graing densities
normally encountered in applications. Our computational
method also enables us to extract other additional basic char-
acterization information about these NPs, such as their Rh, Rg,
and particle shape uctuations quantied by the variance of
these solution properties. We rst describe the molecular model
of the DNA graed NP, and then the computational approach
utilized to calculate the solution properties of these NPs and the
conformational properties of the graed polymer chains and the
graed layer as function of molecular parameters.
Fig. 1 A representative configuration of a simulated ssDNA-grafted
NP where the gold NP core is 5.0 nm in radius (orange sphere) and
there are 60 ssDNA chains (connected blue spheres) grafted onto the
NP core. Each ssDNA chain is formed by 18 T bases with lp ¼ 2.0 nm.
1 Model of single-stranded DNA
grafted nanoparticles

We next describe our computational approach to simulate and
characterize ssDNA-graed NPs. We rst utilize molecular
© 2022 The Author(s). Published by the Royal Society of Chemistry
dynamics simulations (MD) to generate ssDNA-decorated
AuNPs congurations and then we use path-integral calcula-
tions43 to determine Rh for the congurations obtained from
MD. This approach has been successfully applied to the study of
more complex DNA-based structures.44

Wemodel each ssDNA chain as a set of “beads” (blue spheres
on Fig. 1) connected by “springs”.45 One end of each chain is
tethered to a spherical symmetric particle (orange sphere on
Fig. 1(a)) representing a gold core NP in the experimental
system). The Weeks–Chandler–Andersen potential (UWCA) to
simulate the so core excluded volume interaction among all
the beads and between each bead and the NP core,

UWCA ¼ ULJðr� rsÞ �ULJðrcÞ � ðr� rcÞdULJðr� rcÞ
dr

����
r¼rc

: (1)

Here, ULJ is the Lennard-Jones potential having 3LJ and s as
energy and length parameters, respectively. Below, we dene
our energy units by the denition, 3LJ ¼ 1. The distance
between two beads or one bead and the NP core is given by r
and rs is the distance that the origin of the potential has been
shied, and rc is a cutoff distance. We chose rc ¼ rs + 21/6s or rc
¼ rs + 2.5s to consider non-attractive or attractive interactions,
respectively, among the particles to generate particles having

a radius R ¼ rs þ s

2
. For the blue beads we consider rs ¼ 0 and

we set s ¼ 0.65 nm (ref. 46) the diameter of the bead which is
equal to the ssDNA base-to-base distance. This value is
a representative one for the “effective” ssDNA chain diameter
inferred from the translocation of ssDNA chains on solid-state
nanopores.47 For the NP core, we vary from rs ¼ 0.675 nm to rs
¼ 4.675 nm corresponding to NPs having core radii from R ¼
1.0 nm to R ¼ 5.0 nm. The beads along the chain and the rst
bead of each chain are taken to be connected by a nitely
extensible nonlinear elastic (FENE) springs described by the
potential,
Nanoscale Adv., 2022, 4, 4144–4161 | 4145
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UFENEðrÞ ¼ �kR0
2

2
ln

"
1�

�
r� rs

R0

�2
#
: (2)

For this potential, we select k ¼ 30/s2 and R0 ¼ 1.5s. Addi-
tionally, we use a three-body angular potential (Ulin(q)) to
control the chain stiffness,

Ulin(q) ¼ klin(1 + cos q). (3)

To model ssDNA, take klin ¼ 1 to generate chains having
persistence lengths lp ¼ (2.0 � 0.1) nm, which is a representa-
tive value for ssDNA chains. This estimate is suitable under the
salt concentrations, ces $ 1 M NaCl,48 where charge interactions
are largely screened. Here, lp is dened as the characteristic
length, where the bond orientation correlation function
h~uðsÞ$~uðs0Þi reaches 1/e. Here,~uðsÞ is a unit vector tangent to the
chain that is located at the position s. The ssDNA chains having
chain lengths L ¼ (5, 10, 18, or 40) Thymine bases (T), as in the
experimental measurements. We vary the number of strands Nc

attached to the NP core in the range 1 # Nc # 1000. An exten-
sion of this model to describe duplex DNA is discussed in ref. 49
and 50.

Our simulations utilize a canonical ensemble (NVT) with
xed reduced temperature, T* ¼ 1.03/kB for all our simulations
(kB is the Boltzmann constant) and it is controlled by using the
Nosé–Hoover method.51,52 Our MD simulations were performed
for $107 time steps using the Large-scale Atomic/Molecular
Massively Parallel Simulator (LAMMPS)53 and we render the
le panel of Fig. 1 using the Visual Molecular Dynamics (VMD)
program.54 We compute properties for 103 different thermal
equilibrated congurations (see Fig. 1(a)–(c)) using the path-
integration program ZENO.43 These computations employ 105

random walk trajectories to achieve low uncertainty. We deter-
mine the average value and standard deviation ss for each
property and uncertainty quantication is provided by ZENO
and indicated by error bars in plots when the values are larger
than the point size. The quality of tting the simulation results
to functional forms will be provided by its correlation coeffi-
cient value, r.
Fig. 2 In panels (a), (b), and (c), the hydrodynamic radius Rh, radius of
gyration calculations Rg, and the ratio Rh/Rg, respectively, for 103

configurations similar to the one shown in Fig. 1. Panels (d), (e), and (f)
show the normalized histogram for the properties calculated in (a), (b),
and (c) from the ensemble of configurations. Dashed lines in panels (d),
(e), and (f) are a guide to the eye.
2 Numerical results for the
hydrodynamic radius of single-
stranded DNA grafted nanoparticles

In a previous paper,44 we utilized the present model to calcu-
lating Rh of DNA graed onto Au NPs having prescribed DNA
chain lengths and graing densities and variable size of the Au
core of the NPs. The graing density in this work was estimated
following a methodology of Mirkin and coworkers,55,56 in which
the DNA chains were graed onto the Au NPs in solution up to
a point of “saturation” conditions, at which no further DNA
chains could be graed. Our direct comparison of our simula-
tions to the observed values of Rh with the graing density and
the size of the bare NPs independently determined yielded good
agreement in this initial study, and we also modeled how these
4146 | Nanoscale Adv., 2022, 4, 4144–4161
NPs altered the dimensions of DNA origami sheets to which the
DNA graed NPs were attached.

The extension of this work to describe the overage coverage
of DNA on Au NPs independently requires a precise assay for
estimating the number of graed polymer chains on the NP
surface, and corresponding dynamic light scattering measure-
ments of DNA graed NPs having a prescribed graing density.
Such well-characterized NPs and measurements are currently
not available, and it is hoped that the present analysis stimu-
lates an effort to synthesize and characterize such NPs. The
methods described in the present study should also be helpful
in the characterization of numerous other graed NP systems
that are currently being used in material science and medical
applications.

We take advantage of our modeling to simulate polymer
graed NPs having graing densities that are much higher than
the “saturation graing density” achieved when the polymer
chains are graed onto the bare metal NP from solution.55,56 The
graed density must ultimately be limited by the formation of
a “brush-like” layer having a nearly uniform polymer segmental
density, in which case the polymer-graed NP becomes effec-
tively similar to a hard sphere. This limiting hard sphere
behavior can be achieved in the microemulsion derived NPs
mentioned above in the limit of high graing density33–36 or in
polymer graed NPs when the graed polymer chains are grown
directly from the surface of the NPs.57,58 However, the physical
nature of the graed polymer layer formed by graing the
polymer chains onto the NPs from solution has a rather
different structure in which both the graed ssDNA chains, and
the graed layer of the NP as a whole, exhibit appreciable
conformational uctuations (see snapshots of the simulated
polymer graed NPs in the inset of Fig. 2(a)). Thus, Rh of even
a spherical NP having a xed number of graed polymer chains
having a prescribed oligomer length will exhibit uctuations
that progressively diminish in magnitude as the polymer
graing density is progressively increased. Measurements of the
uctuations in Rh then offer some insight into the physical
nature of the polymer graed layer beyond a measure of the
© 2022 The Author(s). Published by the Royal Society of Chemistry
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average thickness of the graed layer. The uctuations in the
graed layer shape also have independent interest for under-
standing the interaction between NPs in the presence of a uc-
tuating layer of graed chains on NPs that can lead to self-
assembly of the NPs into large scale string and sheet NP clus-
ters in solution and in polymer nanocomposites.59,60We address
this uctuation phenomenon in the next section.

As a nal point relating to the range of application of our
modeling, we note that progress has recently been made in
creating DNA origami structures assemblies having diverse
structural forms and in the modeling of these structures.61–63

The computational methodology based on numerical path
integration (ZENO43) described in the present work should allow
the facile computation of all these structures and a novel means
to assess uctuations in their geometry. Our emphasis on
polymer graed NPs is simply a particular model system from
a much broader class of “nanoconstructs” that combine inor-
ganic NPs and graed chains involving nucleic acids such as
DNA and RNA or polymers attached to functional drug mole-
cules. The methods described in the present paper for charac-
terizing ssDNA-graed NPs have previously been successfully
applied to duplex DNA solution properties over large mass
range.64,65 We next focus on the solution properties of ssDNA-
graed Au NPs under physiologically relevant salt concentra-
tions$0.1 MNaCl and pH 8.3,48 where electrostatic interactions
can be reasonably neglected for the properties that we consider.
Fig. 3 The standard deviation of the hydrodynamic radius sRh
as

a function of the number of ssDNA chains attached to the NP core. (a)
In this panel, we fix the ssDNA chain length L ¼ 10 T and the ssDNA
chain persistence length lp ¼ 2.0 nm and the core radius equals, R ¼
(1.0 or 5) nm. The inset shows the difference dRh ¼ (Rh � R) for the
sameNPs. The dashed lines are guide the eyes. (b) The radius of the NP
core R ¼ 5.0 nm is fixed in this plot and the chain persistence length lp
¼ 2.0 nm and we vary the ssDNA chain length L ¼ (5, 10, 18, or 40) T
bases. Evidently, sRh

shows a peak value as the number of grafted
chains is varied whosemagnitude increases roughly linearly with L (see
inset). Dashed lines are a guide to the eye.
2.1 Size uctuations for single-stranded DNA graed
nanoparticle

One of the basic physical features of polymer graed NPs is that
there size and shape uctuates due the uctuations of the
individual exible polymer chains and their collective uctua-
tions in the graed polymer layer. These uctuations have been
observed to greatly inuence the interparticle interactions in
polymer graed NPs in solution66,67 and polymer in polymer
melts,59 and these uctuations are no doubt germane to
understanding their interactions with other molecules and to
interfaces in a biophysical context. The extent of these uctua-
tions can be expected to depend on the length of the graed
chains, their stiffness, the graing density on the NP, the
polymer substrate interaction strength, etc. In the limit of very
high graing density, the so-called brush limit, we can expect
these uctuations to be small, the effect of polymer–surface
interactions to be weak and the NP shape to be nearly spherical,
but these uctuations should be appreciable when the polymer
chains are graed onto the NP in solution, where interchain
excluded volume interactions should limit the accessible
graing density.

In this section, we perform illustrative calculations of some
basic solution properties that characterize NP, Rg and Rh for
ssDNA-graed NPs having a range of graing densities where
we calculate the distribution of these properties and the vari-
ances of their distribution to quantify the extent of uctuations
in these basic solution properties. We nd that extent of uc-
tuations rst grows monotonically until the point where a fully
percolating layer is formed and the variance of these properties
© 2022 The Author(s). Published by the Royal Society of Chemistry
then progressively decreases, albeit slowly, with increasing
graing density. The peak in this distribution apparently
denotes the onset of “saturation” in the coverage of the graed
chains.

Fig. 3(a) shows the standard deviation of the distribution of
hydrodynamic radius sRh

as a function of the number of ssDNA
chains N graed to the NP, providing a quantication of the
uctuations in the shape of graed NPs. Correspondingly, we
see that sRh

estimated from simulation exhibits a peak value,
presumably reecting the formation of a percolating graed
layer, and beyond this point sRh

decreases progressively with
increasing graing densities, ultimately approaching the brush
limit where sRh

¼ 0. The experimental values of sRh
beyond the

saturation condition are roughly constant, although this
quantity does exhibit signicant uctuations in the relatively
Nanoscale Adv., 2022, 4, 4144–4161 | 4147
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high graing density regime. We take the absence of a peak in
sRh

and the rough constant magnitude of sRh
for large N as

providing further evidence that the number of chains graed to
the Au NPs saturates for sRh

¼ 30 when R ¼ 5.0 nm.
The peaking of sRh

in Fig. 3(a) with the number of graed
DNA chains depends on the NP core radius (R), the length of the
ssDNA chains (L), as in shown in Fig. 3(b). The sRh

peak height is
higher for a larger NP core and for larger ssDNA chains.
Correspondingly, the number of graed DNA chains at which
sRh

peaks depends on the NP core radius R, an effect that
evidently derives from the higher interfacial area of the larger
NP. Similar trends are observed for the sRg

of these ssDNA-
graed NPs (results not shown). We then see that it is
possible to “tune” the NP shape and mobility uctuations by
varying the NP core size, polymer chain length and chain
graing density, which in turn inuences the mutual interac-
tion of these NPs and their interaction with other molecules and
surfaces. It is our impression from limited data that the graing
saturation condition occurs near the conditions in which sRh

peaks, corresponding to the formation of a “percolated” graed
layer in which the graed chains start to come into contact and
start to interact intermolecularly. However, this inference
requires checking by further measurements in which is the
polymer graing density is better quantied. As noted before,
this percolation transition has been directly imaged and
modeled in the case of polymer chains graed onto planar
interfaces,68 and the sluggish chain dynamics associated with
polymer topological interactions in adsorbing and desorbing
polymer layers has also been investigated.69,70

We note that recent studies71–73 of the interaction of single
stranded DNA polymer chains with Au NPs and planar Au
surfaces without graed DNA layers have indicated that this
interaction is “exquisitely controlled by many factors including
intermolecular forces, along with DNA composition and
sequence”71 and the interaction is also strongly dependent on
NP size, but it is not due to charge screening effects.73 The
control of these interactions is important in many applications
utilizing DNA graed or adsorbed to Au NPs or planar surfaces
and Koo et al.71 have reviewed this important topic with some
of these applications in view. In our coarse-grained model of
DNA graed NPs, we model both excluded volume and poly-
mer–substrate interactions by Lennard-Jones type interactions
having a variable well-depth parameter describing the relative
depth of the polymer–polymer and polymer–substrate attrac-
tion found in any particular system. This approach should
apply well in cases where the interactions involved have
a relative short-range interaction on the order of the segments
of the polymer chains. While we expect this type of modeling to
hold very well, we must admit that this type of modeling does
not allow for an a priori prediction of the strength of the
polymer surface interaction strength. This interaction param-
eter requires measurement for its determination under any
solution condition of particular interest for a specic appli-
cation. We note that the strong sensitivity of this interaction to
NP size is a bit of a complication73 and this important effect is
also prevalent in the context of the formation of bound protein
layers on Au and other NPs. Lacerda et al.74 discuss this effect
4148 | Nanoscale Adv., 2022, 4, 4144–4161
in some detail in the important case of the binding of repre-
sentative blood proteins to Au NPS having a range of sizes
where the size effect on the NP–protein interaction strength is
quite apparent.

We suggest that it should be possible to gain further insights
into this problem by studying the dimensions of graed DNA
layers by neutron reectivity, as considered previously for
synthetic polymers graed to polymer layers,75 and by comple-
mentary molecular dynamics simulations.76 Recently, it has
been shown that DNA graed layers of high uniformity on Au
surfaces can be synthesized,77 which could be used as the basis
of this type of measurement. Neutron reectivity studies on
synthetic graed layers have also shown that the polymer–
substrate interaction can be controlled, and the dimensions of
the graed layer can controlled by “back-lling” the regions of
the graing substrate by very low mas polymers with end-
groups that tune the polymer–surface interaction.78 This
approach should be helpful in engineering of the polymer–
surface interaction for numerous applications using DNA and
other surface-graed polymers bound to either through chem-
ical bonds or physical association to substrates. We note that
this approach can also be used to control the binding of poly-
mers with graed polymer layers onto interfaces.79

As a nal remark, we emphasize that very few modeling
studies of polymer-graed NPs even consider the existence of
a variable polymer–surface interaction strength in layers of
polymers graed to NPs and planar surfaces. Apparently, this
approach to modeling these polymeric structures reects
a presumption that graed polymer layers have a “brush-like”
structure in which there is little opportunity to for the chain
segments to access the boundary region so that the chains have
little capacity to respond to this interaction by changing the
conformational structure of the graed layer. One of our main
points in showing the data in Fig. 4 is to illustrate that the size
of the NPs with graed polymer layers having a graing density
and chain lengths representative of those utilized in measure-
ments and applications of DNA graed NPs depend sensitively
on the NP–polymer interaction. This is just one of the impli-
cations of the deviation of real graed layers from the idealized
brush model oen assumed in modeling polymer graed NPs
and interfaces. This sensitivity of the NP to the actuation of
changes in the dimensions of the graed layer by introducing
molecules that segregate to the graing surface, thereby
altering the polymer–substrate interaction strength,78 implies
that other molecules in solution (“impurities”) could affect the
performance of these NPs in applications.
2.2 Inuence of single-stranded DNA–nanoparticle core
interaction

Another factor that may affect the conguration of the graed
chain layer is the inuence of any attractive interaction between
the surface of the Au NP core and the polymer graed to the NP
on the conformation of the polymer in the graing polymer
layer. Such interactions are normally neglected in ideal polymer
“brush” layers, but, as we shall see, these layers are normally not
© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Influence of the polymer–nanoparticle interaction strength on
the hydrodynamic radius Rh for a 5.0 nm NP as a function of the
number of grafted strands, where each strand is formed by 18 T bases.
We vary the interaction strength between the NP core and the ssDNA
bases by modifying 3s, as it is shown in the legend. We see that
attractive interactions can lead to an appreciable change in the
thickness of the grafted polymer layer, the effect is especially signifi-
cant at lower grafting densities. Lines guide the eye.

Fig. 5 Nanoparticle hydrodynamic radius, Rh, as a function of the
number of ssDNA chains attached to the NP core with radius r ¼
5.0 nm. We vary the length of the chain L, as indicated in the legend.
The open symbols are simulation results and the dashed lines guide
the eye.
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“brush-like”, and it is important to assess the effect of the
polymer–NP interactions on the size of graed NPs.

In Fig. 4, we show the inuence of the strength 3s of an
attractive interaction between the NP core and the graed
chains on Rh. We see that this attractive interaction between the
graed polymer layer and the NP surface can evidently lead to
an appreciable change in the thickness of the graed polymer
layer and the size of the NP, an effect that is especially large at
lower graing densities. When we compare the curves to our
measurements for a 5 nm Au NP, we infer these interactions
must be weak for our 5 nm radius NP. However, previous work
has shown that the attractive interactions become stronger for
blood proteins and much larger Au NPs,74 and we inferred
a similar effect in our earlier work in Au NPs with graed DNA.44

While the polymer–surface interaction does not appear to be
a signicant effect in our measurements on NPs as small as
those considered in Fig. 4, we need to keep in mind that these
interactions can be highly relevant to the thickness of graed
polymer layers in general.71,80
2.3 Inuence of single-stranded DNA length

We next present our simulation results for NP decorated strands
having different length, L ¼ (5, 10, 18, or 40) T bases and
different number of strands N in Fig. 5. We start by xing the NP
core size R¼ 5.0 nm and varying the number of ssDNA attached
to the NP core. As expected, we nd the change in Rh with
increasing N is higher for larger chains.

The primary reported evidence that has been interpreted as
implying a “rod-like” ssDNA chain conformations of the chains
graed on the NP surface has been surmised based upon
measurements of the effective Rh (obtained from the Stokes–Ein-
stein relation and diffusion coefficient estimates from dynamic
© 2022 The Author(s). Published by the Royal Society of Chemistry
light scattering) changes relative to Rh of the NP core. In particular,
a linear scaling in dRh¼ Rh� R with length of the graed polymer
has been interpreted as implying the polymer chains are standing
up straight as in the bristle of a paint brush.81 We indeed nd this
linear scaling in Fig. 6(a) for our R ¼ 5.0 nm NP having graed
ssDNA chains onto the surface of a 5.0 nm radius NP core, but this
apparent linear scaling certainty does not imply that the chains
have been highly stretched “bristle-like form” shown in many
cartoons of polymer brush layers. Fig. 6 shows Rg of the individual
chains in the graed layer for N¼ 20, 60, and 100 indicate that Rg
is relatively unchanged from its value in solution, where the M
scaling of Rg in solution is consistent with a short exible polymer,
Rg � M0.65. Interchain and self-excluded volume interactions are
apparently not strong in these graed chain layers so that the
brush cartoon of highly extended polymer chains is the graed
layer is not supported by our simulation observations, despite the
nearly linear scaling of dRh in Fig. 6(a).81

2.4 Inuence of nanoparticle core size

The increase of Rh arising from an increase of the NP core size is
rather easy to understand and this case has been discussed in
a previous paper in the limit where a “saturated” layer of DNA
chains was graed onto the Au NP surfaces.44 For a given
graing density, the intercept of a plot of Rh versus NP core size
is a reasonable estimate of the thickness of the interfacial layer.
However, the treatment of the case where the surface graing
density is not in the saturated layer limit is complicated by the
uncertainty in estimating the surface graing density when the
NPs become much larger than a scale on the order of a few nm.
For larger particles, we expect the attractive interaction between
the Au core and the ssDNA chains to rapidly form a saturation
polymer layer on the NP surface, making experimental esti-
mates of the polymer graing density highly uncertain. The
signature of this effect is that Rh of the polymer-graed NP has
a size consistent with a saturating coverage almost regardless of
Nanoscale Adv., 2022, 4, 4144–4161 | 4149
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Fig. 6 Comparison of the change in the NP radius from the presence
of grafted polymer layer and the size of an individual polymer in
solution. (a) The change in the hydrodynamic radius, dRh ¼ Rh � R, for
a 5.0 nm in radius NP having grafted with 20, 60, or 100 ssDNA chains
for a range of the ssDNA chain lengths, where the ssDNA chains have
5, 10, 18, or 40 T bases. The symbols are the data, and the dashed lines
are linear regressions to the data with correlation coefficients, r$ 0.9.
The nearly linear scaling of dRh can give the misleading impression that
the ssDNA chains are adopting a rod-like configuration.81 (b) The radius
of gyration Rg for chains grafted onto the same NPs as in panel (a)
(black circles, red squares, green diamonds) in comparison to Rg for
individual ssDNA chains in solution (blue stars). The blue dashed line is
a fit to the blue stars using a power law relation from where we obtain
the scaling exponent n. Here, nz 0.65� 0.007 with r¼ 0.99. We again
conclude that the ssDNA chains attached to the NP core have
a configurational structure similar to ssDNA chains in solution.
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the estimation of the nominal number of graed polymer
chains based on the method described in Section 2.1. There is
an evident need to improve experimental estimates of the
polymer graing densities to account for the signicant roles of
the polymer graing densities to account for the signicant
roles of the polymer–NP interfacial interaction and the poly-
mer–polymer excluded volume interaction in forming these
layers. Hydrodynamic measurements offer some insight into
this problem, as discussed in Section 5.
4150 | Nanoscale Adv., 2022, 4, 4144–4161
3 Theoretical model for the
hydrodynamic radius of spherical
nanoparticles with grafted particles
and polymers

We next develop a general model for the dependence of Rh on
chain length, core size, and chain graing density that can be
used in this and other contexts where such polymer-graed NPs
need to be characterized. In particular, we provide useful rela-
tionships for the estimation of Rh as a function of the ssDNA-
graed NPs structural parameters. In the next subsections, we
derive a relationship that describes Rh for our model NPs that
should be transferable to Au NPs having arbitrary graing
densities and chain lengths, as well as many other types of
polymer-graed NPs in which the shape of the particle core and
the molecular nature of the graed polymer layer is varied. This
development occurs through a succession of models a series of
models of increasing molecular faithfulness of the individual
polymer chains graed onto a spherical nanoparticle (NP)
structure (spheres, ellipsoids, semi-exible polymer chains with
excluded volume interactions), and we then extended the model
to describe collections of these coarse-grained model polymers
using a combination of molecular dynamics simulations of the
conformational structure of the graed polymer layers and the
path-integration program ZENO.43 The reason for this proce-
dure is the extreme complexity of the hydrodynamic properties
of such layers and this approach allows us to systematically
build on known results, which progressively extend and then
validate by simulation, ultimately arriving at description in
which we can describe the hydrodynamic properties of polymer
graed NPs where the chain conformational structure is
explicitly considered, with some condence.
3.1 Spherical nanoparticle with a single small graed sphere

It is well-known that Rh of a spherical particle equals its radius,
Rh ¼ R, and as a rst step, we consider how Rh of a spherical
particle changes due to the addition of another small spherical
particle having a radius r. First, consider the simplest case
where the spheres are tangential, so that the center-to-center
distances is always r + R (see Fig. 8). To determine the change
in the hydrodynamic radius, dRh ¼ Rh � R, of spherical particles
due to the presence of the second one (binary system), we recall
the hydrodynamic–electrostatic analogy proposed by Douglas
and coworkers37,43 that states the Rh of an object is approxi-
mately equal to the capacity C of a conducting particle having
the same shape,

Rh z C, (4)

where the approximation has been established to hold to an
accuracyz1%. In this relation, the units of C are chosen so that
4p30¼ 1 where 30 is the permittivity of the medium in which the
sphere is placed and the charge is taken to be unity so that the
capacity of a sphere then equals its radius, C ¼ R. More
generally, C has units of length in three dimensions.
© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 8 Normalized change in the hydrodynamic radius for a spherical
particle (gold sphere) with an attached ellipsoidal particle (blue ellip-
soid) having an axial ratio, as. The open symbols are calculations and
the dotted lines are fits to eqn (6), with correlation coefficients, r $

0.96. From here we obtain the values of c0 and we plot them as
a function of as in the figure inset. The red dotted line indicates a fit to
eqn (6) with r $ 0.99.
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We can take advantage of the exact solution for the self-
capacity of two-touching spheres having radius, R and r,
respectively, given by Russell82 to estimate Rh for two touching
spheres of generally different diameter,

Cr ¼ �rR
rþ R

�
4

�
r

rþ R

�
þ 4

�
R

rþ R

�
þ 2g

�
.; (5)

where 4 is the logarithmic derivative of the gamma function
and g is the Euler constant, g ¼ 0.5772.. For the case when (r/
R) < 1, Cr can be expanded in a power series in r/R (ref. 82) and
we deduced a simple approximation for dRh, through resuma-
tion of the dominant terms in this expansion,

dRh1 ¼ Cr � RzR
c0 ðr=RÞ3�

1þ ffiffiffiffi
c0

p ðr=RÞ	2 (6)

The constant c0 is xed by the exact result for Cr in the limit
of r/R / 0 and Cr(r/R ¼ 1) to obtain an approximation for Cr,
and thus dRh that cover a large range of r/R. In particular,
solving the Laplace's equation with constant boundary condi-
tions on the surface for two-tangential spheres having the same
radii by consistency leads to precise prediction, Cr ¼ 2 ln(2) ¼
1.386.R, so that c0 ¼ 2.69678 (the best numerical estimate83,84

of dRh1 for two spheres having the same radius equals ¼
0.384R). Fig. 7 shows the results for dRhr/R as a function of the
ratio rh/R, where rh is the radius of the small sphere. The
symbols were obtained by using the path-integration program
ZENO, indicated as a line in eqn (6). No tting parameters were
required, demonstrating the predictive nature of eqn (6) over
a large range of r/R.
3.2 Spherical nanoparticle with a graed small ellipsoid

We now turn our attention to the calculation of the change in Rh

when an ellipsoidal particle rather than a sphere is attached to
the surface of the relatively large sphere, dRhe (see Fig. 8). Here,
Fig. 7 Normalized change in the hydrodynamic radius for a spherical
particle (gold sphere with radius, R) with an attached small spherical
particle (blue particle). The open symbols are calculations, and the
dotted line is given by eqn (6) with r ¼ 0.99.

© 2022 The Author(s). Published by the Royal Society of Chemistry
the ellipsoid is dened by its three semiaxis a1, a2, a3 and for
practical purpose, we only consider prolate ellipsoids, a1 ¼ a2, <
a3. For this case, we found the parameter c0 on eqn (6) depends
on the ellipsoid axial ratio as ¼ a3/a1. Fig. 8 shows the results for
dRhe as a function of the ratio rhe/R, where rhe is the Rh of the
ellipsoid. Here, we vary the axial ratio as it is indicated in the
legend of the main gure. The symbols were obtained by using
the path-integration program ZENO and the lines are ts to eqn
(6). We obtain the parameter c0 from the ts of the data to the
eqn (6) and we nd that it follows the empirical relationship
extending the limiting spherical particle result in eqn (6),

c0 ¼ (2p � 1)ln(1 + as/e) + 1.041, (7)

to a good approximation, and for the special case of spherical
particles, as ¼ 1, we get back c0 ¼ 2.696. The inset on Fig. 8
shows c0 as a function of as as well as the t to eqn (7) (red
dashed line).
3.3 Spherical nanoparticle with a single-stranded DNA
graed chain

Fig. 9 shows the change in the Rh for a spherical particle (gold
sphere) due to the addition of ssDNA chain (chain of blue beads
in gure). The open symbols are calculations and the dotted
lines are plots of eqn (6) considering two limiting values of c0.
We now estimate dRh1, based on a model in which each ssDNA
chain is oriented with the long axis dened by the long axis of Rg

tensor of the polymer radius of gyration tensor is oriented
perpendicular to the local attachment point on the sphere to
which it is attached. The lengths of the principal axes of the
radius of gyration tensor (L1, L2, L3) are obtained from the
diagonalization of the radius of gyration tensor of the ssDNA in
solution and the orientation of this effective ellipsoid is taken to
Nanoscale Adv., 2022, 4, 4144–4161 | 4151
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Fig. 9 Normalized change in the hydrodynamic radius for a spherical
particle (gold sphere) due to the addition of ssDNA chain (blue con-
nected beads). Here, rhc is the hydrodynamic radius of an isolated
polymer chain in solution. The open symbols are calculations and the
dotted lines are plots of eqn (6) considering two limit values of c0
described in the legend.
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be dened the long axis of this ellipsoid, which may be viewed
a as coarse-grained model of the attached chain. Here we use
the convention L1 # L2 # L3, and approximate the “axial ratio”
as,

as ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hL3i=hL1i

p
: (8)

Fig. 10 shows a comparison between the estimated values for
dRh1/R obtained by combining eqn (6) and (8) and the values
calculated by using ZENO. We nd that we can obtain a quite
good approximation of Rh of a particle with a single graed
chain.
Fig. 10 Analytic versus simulated estimates of dRhc1/R (ellipsoid
approximation). The red line is a fit to the identity function y¼ x, with r

¼ 0.99. The inset shows the axial, eqn (8), for the ssDNA chains in
solution as a function of the chain length.

4152 | Nanoscale Adv., 2022, 4, 4144–4161
3.4 Spherical nanoparticle with many graed small spheres
and ellipsoids

We next graduate to the more physically interesting case of NPs
having many attached particles or polymers. Building on the
analysis before, we rst consider dRh for N small particles
attached to the surface of the NP core particle. Within the
electrostatic-hydrodynamic analogy indicated above, this
problem is formally equivalent to the capacity ofN capacitors on
the surface of a sphere,85 which has been treated in previous
studies of diffusion-limited reaction on the surface of cells. In
particular, for a sphere with N randomly attached small
spheres, we estimate dRh by,86–88

dRh ¼ dR*
hrZ


½1þ ZðN � 1Þ=N�z dR*
hr Z


ð1þ ZÞ; (9)

where dR*
h is the saturation values of dRh, when the sphere is

fully covered by a large (N[ 1) number N of small spheres, and
ZhdRhrN=dR*

h, where dRrh is the single attached sphere property
calculated above. We note that if r � R, dR*

h ¼ 2r and if N ¼ 0,
dRh ¼ 0.

Eqn (9) arises in the crossover description of the hydrody-
namics of polymer chains and this functional function has been
termed the “hydrodynamic penetration function”,86 a measure
of the strength of the hydrodynamic interaction within the
polymer coil. Here this term refers to the degree of hydrody-
namic interaction strength within in the interfacial layer
around the NP. The limit Z arrow innity corresponds to the so-
called “non-draining” limit where the layer is surface layer
becomes a hydrodynamically impenetrable layer of uniform
thickness. The crossover function in eqn (9) arises in many
types of interacting polymer problems in addition to the
hydrodynamic properties of polymers in solution–polymer
excluded volume interactions, surface interacting polymers,
capacity of complex conducting polymeric structures, etc.86,89

Fig. 11 shows a comparison between the computational
estimates (black circles) of dRrh and the analytic estimates (red
dashed line), eqn (9), where Cr and Rh are equated.
Fig. 11 Change in the hydrodynamic radius for a spherical particle
(gold sphere) due to the addition of N small spherical object (blue
beads). We find the data is well described by eqn (9) (red dashed line,
with r ¼ 0.99).

© 2022 The Author(s). Published by the Royal Society of Chemistry
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The treatment of many graed ellipsoids or other objects of
xed and general shape to a “bare” supporting particle proceeds
in much the same way as many smaller spherical particles
bound to a sphere. In particular, we calculate dRrh for ellipsoidal
graed particles by sequentially positioning N such particles
randomly on a sphere and calculating Rrh of the graed NP
system aer each particle is added. We may model a graed
polymer layer in a crude coarse-grained approximation by
taking the ellipsoids to be prolate in form and oriented with
their long axis of dimensions oriented normal to the supporting
surface at the point of the ellipsoid attachment. Flexible poly-
mers in solution are known to exhibit an ellipsoidal average
shape in with appreciable anisotropy90,91 and uctuations in
their anisotropy have also been observed.92 We can expect the
repulsive interchain interactions in the graed layer to only
enhance this tendency, which is the basic concept behind the
“brush” picture of such graed layers.76,77 In general, the shape
anisotropy depends on polymer topology, chain stiffness, and
polymer excluded volume interactions.30,49,64,93,94

The model of ellipsoidal chains graed to a spherical
particle in a perpendicular orientation is intended to describe
graed chains that do not have a strongly attractive interaction
with the surface, and in the case of the presence of such
attractive interactions, e.g., when a polymer becomes bound to
the substrate, we can simply modify the model so that the
length of the ellipsoid of revolution along its symmetry axis
(quantied by the largest eigenvalue of the radius of gyration
tensor of the ellipsoid, L3) is made smaller than in the trans-
verse direction (quantied by the smallest eigenvalue of the
radius of gyration tensor of the ellipsoid, L3), i.e., the bound
polymer is then modeled by an oblate ellipsoid of revolution.
Fig. 12 shows the results of our method, as just described for
dRrh, where we model the ellipsoids as being prolate and
oriented normal to the surface of the spherical particle surface.
This is the most relevant case for modeling DNA molecules
graed to Au NPs. We see that eqn (9) describes our estimated
Fig. 12 Change in the hydrodynamic radius for a spherical particle
(gold sphere) due to the addition of N small ellipsoidal objects (blue
particles). We find the data is well described by eqn (9) (dashed lines,
with r $ 0.99).

© 2022 The Author(s). Published by the Royal Society of Chemistry
values of dRrh very well, even when the axial ratio of the ellipsoid
is varied over a large range.

We should mention that many NPs form “auto-graed”
layers when exposed to a solution environment containing
proteins and other biological macromolecules that “largely
denes the biological identity of the particles”.95,96 There has
been tremendous and ever-growing interest in the formation of
this type of “corona” layer in connection with the targeting of
NPs to various tissues in a medical science context97 and in
understanding of toxicity of NPs in some types of NPs, which
can be greatly affected by the nature of this interfacial NP
coating.98,99 The nature of the interactions governing the
formation of these layers can be subtle, and even NP size,74

other solution conditions being equal, can greatly alter the
strength of the NP interaction with the binding proteins. It is
this type of graed polymer layer that is of greatest interest in
medical and environmental impact studies,100,101 and thus in
understanding and modeling the ultimate biological activity of
NPs released into the environment or introduced into the
body.102,103 There has also been a great and ongoing efforts
aimed at the difficult problem of quantifying the interactions
between NPs and proteins.97 It is further notable that the
hydrodynamic size, i.e., Rh, of NPs is strongly implicated in their
cellular uptake.104
3.5 Applications of particle with randomly attached smaller
particles

Themodel of a spherical particle with smaller particles attached
at random to its surface has been widely utilized as a basic
model of the formation of protein layers on NPs, where this
modeling is combined with dynamic light scattering modeling
of Rh of the NP with bound proteins and thermodynamic
modeling of the number of “bound” polymers based on simple
Langmuir adsorption theory, extended to account for the
cooperativity of binding (Hill model).60,105–108 Cooperativity in
molecule binding that naturally arises from many internal
degrees of freedom andmultifunctionality of protein binding to
interfaces.109,110 In particular, the average number of “bound”
particles N is normally modeled as60,105–108

N ¼ Nmax

1þ �
KD



cprot

�n ; (10)

where Nmax is the maximum number of proteins that will “t”
on the NP surface, dening “saturation coverage”, cprot is the
molar protein concentration in solution, KD is the Langmuir
dissociation constant, and n is the empirical Hill parameter
quantifying the cooperativity of the assumed equilibrium
molecular binding process. This type of Langmuir adsorption
process has also been applied successfully to describe the
equilibrium coverage and binding kinetics of inorganic NPs to
macroscopic substrates79 and the kinetics of non-equilibrium
irreversible binding of NPs to macroscopic interfaces. It
should be possible to extend this type of modeling to describe
the kinetics of protein binding to NPs111 under both equilibrium
and non-equilibrium conditions to describe the growth of the
protein corona layer or more generally the growth of layers on
Nanoscale Adv., 2022, 4, 4144–4161 | 4153
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Fig. 13 Comparison between all simulated systems (open symbols)
and fits to eqn (11) dashed lines (r ¼ 0.98). We find good agreement
between eqn (11) and calculation results.
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DNA ad synthetic polymer graed layers based on methods,
models and observations made before for polymers graed and
bound to plane surfaces.68,69,112

We emphasize that previous studies of Rh of proteins bound
to their surfaces60,105–108 have completely neglected the role of
hydrodynamic interactions on the Rh of NPs with bound
proteins, but the analytic modeling of Rh has rather involved
a simple interpolation relation between the limits of no
attached proteins (the “bare” NP) and uniform coated sphere
model as an approximate description of the high protein
coverage limit. The utilization of eqn (9) above should allow
a physically more faithful description of the hydrodynamic
properties of this important class of naturally occurring graed
NPs. We nally note that the ZENO program allows the treat-
ment of arbitrarily shaped NPs and the “graing” of particles
having general shape and orientation to these particles, based
on modeling of the attachment process of these particles.
Vargas-Lara et al.94 has discussed the calculation of the and
intrinsic viscosity of particles and polymers having general
shape, illustrating the application of ZENO in this generalized
mode. We next turn to the modeling of many graed polymer
chains to a NP surface.
Fig. 14 The parameters (a) 4 and (b) dR*
hc as a function of the DNA-

grafted structural parameters. The inset in panel (b) shows the R
dependence of nrmh. Dashed lines are guide for the eye.
3.6 Spherical nanoparticle with many graed small chains

We nally consider the case in which the spherical NP is
“decorated” with Nc ssDNA strands where each ssDNA strand
has a xed length L. For this case we nd that eqn (9) must be
modied to account for the polymeric nature of the graed layer
components. We nd that for this case dRh follows the
relationship,

dRhcN ¼ dR*
hc Zc


ð1þ ZcÞ; (11)

where Zc ¼ dRhc1N4=dR*
hc, where dRhc1 is enhancement of Rh

due to a single chain and dR*
hc is the saturation limit of the

enhancement of Rh by the graed layer (dR*
hc is specied below).

The “cross-over” exponent 4 accounts for chain-core and chain–
chain interactions, and we nd below that this quantity
empirically ranges from 4¼ 0.58 for graed exible polymers to
4 ¼ 0.58 for graed spheres. Fig. 13 shows the simulation
results for all systems considered in this study (particles inter-
acting attractively) along with ts to eqn (11).

Fig. 14(a) and (b) indicate that there are two coverage
regimes, one for rhc/R # 0.14 where the chain–core interaction
is weak so that 4¼ 1, and a second regime, rhc/R > 0.14, where 4
decreases nearly linearly with increasing rhc/R. Evidently, the
curvature of the spherical core particle exerts an appreciable
effect on the extent of the graed layer contribution to Rh. We
also see that the saturation coverage dR*

hc follows a power law
dependence on the ratio L/lp, where lp is the polymer persis-
tence length, and the effective power nh is a function of the ratio,
R/rc. Here we follow a similar procedure to our previous study of
DNA polymer chains under strong geometrical conditions
between two interfaces89 in developing an approximant for the
average thickness of the graed layer, dR*

hc, and

dR*
hc ¼ 6rc

�
L


lp
�nh ; (12)
4154 | Nanoscale Adv., 2022, 4, 4144–4161
nh ¼ [1 + 0.43(R/6rc)]/[1 + 0.70(R/6rc)]. (13)

Finally, we show in Fig. 15 all our simulation observations of
Rh of polymer-graed NPs can be described by the universal
scaling relation, Rh¼ Rh(core) + dRh, where dRh is dened by eqn
© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 15 Comparison between dRh values obtained by simulations
versus the ones estimated by using eqn (11). The dashed line corre-
sponds to a linear relation y ¼ x with r ¼ 0.98.
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(11). This expression can be recognized as rather similar to the
Kirkwood–Risemann mean-eld theory for Rh of a exible
chain, which again has the same cross-over form,85,86,113,114

dRh ¼ dR*
h Z


ð1þ ZÞ; (14)

where R*
h is proportional to the chain Rg and the hydrodynamic

interaction strength parameter Z. Here, R*
h is the limit of strong

hydrodynamic interaction where the polymer domain becomes
hydrodynamically “impermeable” where the hydrodynamic
interaction strength Z scales as the number of chain segments N
divided by Rg

d�2 where the d� 2 power reects the dimensional
scaling of capacity/hydrodynamic radius.85 A renormalization
group (RG) calculation of Rh of exible polymers also leads to
eqn (11) as a leading expansion in the variable f, which equals,
f ¼ (4 � d)/2 h 3/2, where d is the spatial dimensionality.115,116

The “cross-over” expression for Rh of exible polymers as
function of the hydrodynamic interaction and excluded volume
interaction strength becomes more complicated in functional
form beyond the leading order in the 3-expansion.115,116 Fortu-
nately, variable hydrodynamic interactions uctuations are
normally less prevalent in polymer-graed NPs having
a moderate graing density than isolated exible polymer
chains in solution, making the mean-eld cross-over expansion,
eqn (11), a rather good approximation.
4 Other nanoparticle solution
properties relating to “size” and
average shape
4.1 Ratio between the hydrodynamic radius and radius of
gyration

Another important quantity that helps the characterization of
these particles constitutes the ratio Rh/Rg, where Rg is the
radius of gyration of the particle. In particular, for a spherical
particle equals, Rh=Rg ¼

ffiffiffiffiffiffiffiffi
5=3

p
. Experimentally, this quantity
© 2022 The Author(s). Published by the Royal Society of Chemistry
can be obtained by X-ray and neutron scattering and
depending on the technique utilized, and the contrast, Rh/Rg

for the DNA-graed NP may vary. Fig. 17 shows Rh/Rg calcu-
lated numerically considering the scatter particles having
equal contrast than the nanoparticle core (red squares), or
neutrons (blue triangles).

We nd that the mean dimensions of the graed chains are
not signicantly altered from their random coil conformation
in solution even at saturation coverage, so that the term “brush”
is potentially misleading. In particular, we nd that an
approximately linear increase of Rh with the length of the
graed chains at a saturation coverage cannot be taken to imply
that the graed chains adopt highly extended worm-like chain
congurations as oen suggested in cartoon models of graed
polymer layers. As one of the most important results of our
paper, we have developed a general cross-over function
describing Rh for NPs having variable core size, number of
graed chains, and the variable graed chain length, based on
a consideration of the chains as spheres or ellipsoids. We vali-
dated our results against numerous simulations for these
structures, and against experiments under conditions where the
interfacial graing densities could be readily investigated. We
expect these results will be useful in the characterization of
surface-graed NPs.

Our numerical calculations indicate that the uctuations in
the shape of the polymers in the graed layer can give raise the
appreciable uctuations in Rh about its average values even
when the NPs are monodispersed in NP core size, have the same
number of graed chains and the graed chains all have the
same length. With increasing graing density, the variance of
these uctuations rst increases and peaks and they decrease as
the layer becomes fully saturated. We expect these estimates of
the uctuations in the shape of NPs to be important for
understanding the interactions between the NPs and their
interactions with biological molecules and structures.

The quantication of the inuence of the interaction of the
graed chain and the surface of the NP core is also a novel
aspect of the present work. We nd that this interaction can
greatly inuence the effective NP size (Rh), but in the case of Au
NPs having a size truly in the nanometer scale, i.e., 5 nm, this
effect is apparently small because of the weakness of the
ssDNA–Au NP interaction for particles in this size range and for
the solution conditions investigated.

Since the development of a saturated graed layer is ex-
pected to be crucial in many applications in which interfacial
stabilization of NPs is required, it is important to develop new
experimental methods to quantify this aspect of polymer-
graed NPs. We suggest that this saturation effect, and more
generally, the nature of the polymer graed layer, can be
quantied through a combination of static and dynamic light
scattering, neutron, and X-ray scattering and solution viscosity
measurements where the emphasis is on measured routinely
properties by each of these methods.

As described in the Introduction, the presence of a graed
layer of polymer chains metal and other dense NP cores can lead
large values of the ratio Rh/Rg that are signicantly larger than
this ratio for spheres so that the measurement of these solution
Nanoscale Adv., 2022, 4, 4144–4161 | 4155
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properties can provide very useful information about the NP
density prole, especially in the case of NPs having a nearly
spherical shape (particle shape anisotropy also impacts Rh/Rg,
usually making this ratio take on smaller rather than larger
values than the uniform sphere64). Although the qualitative
origin of these large values has long been understood, it has
been difficult to use this effect to obtain quantitative informa-
tion about the NP structure because of the absence of an
analytic theory for calculating Rh of polymer graed NPs and
other microgel particles having diffuse interfaces.

The computational scheme for polymer graed NPs using
ZENO in conjunction with molecular dynamics simulations,
allows this type of quantitative analysis of the physical signi-
cance of anomalously large values of Rh/Rg. We rst illustrate
the inuence of particle anisotropy in the case of a dumbbell
conguration of a sphere attached to another sphere whose size
is generally different. Wyatt has recently provided an estimate of
Rg

2 of this type of dumbbell of spherical particles,117

Rg
2 ¼ 3

5
R2

2
641þ


 r

R

�5

1þ

 r

R

�3
þ
�
5

3

� ð1� xÞ2 þ

 r

R

�3
 r

R
þ x

�2

1þ

 r

R

�3

3
75;

x ¼
1�


 r

R

�4

1þ

 r

R

�3
:

(15)

We combine this result with eqn (5) to estimate Rh/Rg for the
dumbbell as a function of the ratio (r/R) and show the calcula-
tion in Fig. 16. We also include the analytic calculations for the
particular cases including and individual sphere,
Rh=Rg ¼

ffiffiffiffiffiffiffiffi
5=3

p
z 1:29 and for two touching spheres having the

same radii, Rh=Rg ¼ 2 lnð2Þ ffiffiffiffiffiffiffiffi
5=8

p
z 1:09. We see that

increasing the radius of the graed sphere, and thus anisotropy
of the dumbbell, causes a decrease in Rh/Rg, although Rh/Rg

exhibits an unexpected shallow maximum when the attached
Fig. 16 The hydrodynamic radius Rh normalized by the radius of
gyration Rg for a dumbbell as a function of the ratio (r/R). The solid
symbols are calculations and the analytic results (dashed lines with r ¼
0.98) are obtained by combining eqn (6) with eqn (15).

4156 | Nanoscale Adv., 2022, 4, 4144–4161
sphere has a radius of about 0.3 times the radius of the “core”
particle. This overshooting of the hard sphere value of the ratio
Rh/Rg has been observed in simulations of high generation
dendrimers under good solvent conditions where the strong
repulsive interchain excluded volume interactions within these
densely branched molecules cause leads to formation of
distinct domains within the molecule and to an associated
“crenulated” surface morphology.38 The most probable cong-
urations of linear and branched polymer chains under equi-
librium conditions are rather anisotropic, and corresponding
Rh/Rg is normally signicantly less than 1.64 The density prole
of the polymer or particle can also impact this ratio and
measurements of Rh and Rg of polymer graed NPs are
instructive in illustrating this effect, as we now describe. There
are some complications with such measurements that need to
be described rst, however.

Although a combination of static and dynamic scattering
measurements can be highly revealing about the nature of the
graed polymer layer on NPs, it must be remembered that
scattering measurements oen depend on scattering contrast,
which can complicate this type of analysis. For example, the
estimation of Rg by X-rays is normally dominated by the scat-
tering of the metal core of the NP, making the graed layer
nearly “invisible”. By deuterating the polymer chains, the
neutron scattering of this type of particles can be dominated by
the graed chains and themetal nanoparticle can bemade to be
effectively “invisible” by appropriate contrast matching. For
nanoparticles composed of the same chemical species, the
entire particle has essentially the same contrast, which is
another type of “so” NP commonly encountered in applica-
tions. Fig. 17 shows Rh/Rg based on these different experimental
methods. In this gure, the black line shows the case where all
contrast comes from the NP core and the blue line indicates an
ideal neutron measurement estimate of Rh/Rg where all scat-
tering contrast for Rg is derived from the polymer graed
chains. The uniform scattering case, appropriate for NPs having
a uniform chemistry, is shown as the red curve in Fig. 17. The
Fig. 17 The hydrodynamic radius Rh normalized by the radius of
gyration Rg for a 5 nm in radius NP decorated with different number of
strands having each strands 18 T bases. Dashed lines guide the eye.

© 2022 The Author(s). Published by the Royal Society of Chemistry
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ratio Rh/Rg rises with surfaces coverage and peaks near the
saturation coverage z50 graed strands for this NP. The
neutron estimates of Rg, in combination with Rh measurements,
also seem to provide an effective methodology for identication
of the formation of a “saturated” graed layer. Note that Rh/Rg

signicantly exceeds the value for a spherical particle, Rh/Rg ¼
1.29 for the uniform contrast case, where the excess value
provides valuable information about the diffuse graed poly-
mer layer. Values of Rh/Rg corresponding to the equal contrast
estimates in Fig. 17 have oen been reported in microgel
NPs.32,33 Values of Rh/Rg signicantly larger than the hard sphere
value have also been observed polyelectrolyte complexes of DNA
and polyethyleneamine41 of interest in gene therapy and anti-
viral medicines.118 In these systems, the DNA forms a dense core
structure analogous to the metal nanoparticle in the present
paper and the polyethylene molecules form a diffuse peripheral
layer structurally analogous to the graed ssDNA layer. We may
also the presence of the spike proteins on COVID virus and
other spherical viruses with spike like structures on their
surfaces to lead to especially large values of Rh/Rg. We nd that
this ratio can become as large as Rh/Rg ¼ 2.14, when the graed
polymers are assumed to adopt a rod-like conformation when N
is large. Hydrodynamically, these particles behave as if they are
much larger than their spherical core, an effect that we term the
“dandelion effect”.
Fig. 18 In (a) the intrinsic viscosity [h] for a 5 nm in radius NP deco-
rated with different number of strands having each strand 18 T bases.
Evidently, [h] reaches its maximum value when Nz 150 chains, but [h]
must approach the Einstein value 5/2 in the dense “brush limit” when
the grafting density becomes uniform. (b) Enhancement of [h] for the
polymer-grafted NPs as a function of the chain length. The number of
chains attached on each NP is reported in the legend. Dashed lines
guide the eye.
4.2 Intrinsic viscosity

Although Rh and Rg are the primary measures of NP size utilized
in their solution characterization, [h] and second osmotic virial
coefficient A2 are oen utilized to characterize polymers in
solution119,120 and we may expect these solution properties to
also become important in the characterization of NPs in the
future. Here, [h] is dened as,

½h� ¼ lim
f/0

ðh� hsÞ=hs; (16)

where h and hs are the solution and solvent viscosity, respec-
tively, and f is the NP volume fraction and correspondingly A2 is
the leading term in the solution osmotic pressure as a function
of f. Although a simple solution property in principle, there is
no general-purpose program that allows for the calculation of A2
for polymer graed NPs, but the program ZENO currently allows
for the computation of [h] with no greater effort than Rh, where
again the uncertainty estimate from value from hydrodynamics
has been estimated to be about 1%.43 As an illustration of this
type computation, we show in Fig. 18(a) estimates of [h] of DNA
graed Au NPs with a core radius of 5 nm based on the same
graed NP model considered above in our Rh computations. In
Fig. 18(a) we nd that [h] saturates when the numbers of graed
chains are approximately 100, each chain is 18 T bases in
length. We should then also be able to estimate the graing
saturation condition from dilute solution viscosity measure-
ments. Fig. 18(b) shows that we may also gain insight into the
extent of the graed layer by taking the difference, d[h]¼ [h](NP)
� [h](sphere), between [h] of the polymer-graed NP and the NP
core, where h for an spherical particle equals, [h] ¼ 2.5,121 D[h]
then initially increases with the length of the chains and the
© 2022 The Author(s). Published by the Royal Society of Chemistry
number of graed polymers, but this effect ultimately saturates.
However, at very high graing density the graed chain
segmental density must become uniform and thus ultimately
[h] decreases to the value 2.5 for a sphere in this “dense brush”
limit.

It is evident that the common procedure,122–125 of deter-
mining the “effective volume fraction” f of suspensions by
matching the linear concentration dependence of the solution
viscosity to the Einstein result, [h] ¼ 2.5 can be problematic
when the particles have diffuse interfacial layers, as oen
found for graed NPs and “so” NPs. It is then quite under-
standable why the apparent volume fraction is oen reported
to be much larger than 1.125 We suggest this procedure of
volume fraction estimation should be avoided and solution
properties based on a dubious “mapping” onto hard sphere
suspensions should be replaced using the reduced concen-
tration variable, [h]f.
Nanoscale Adv., 2022, 4, 4144–4161 | 4157
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5 Conclusions

We have developed series of models of increasing molecular
faithfulness of individual polymer chains graed onto a spher-
ical nanoparticle (NP) structure (spheres, ellipsoids, semi-
exible polymer chains with excluded volume interactions),
and we then extended the model to describe collections of these
coarse-grained model polymers using a combination of molec-
ular dynamics simulations of the conformational structure of
the graed polymer layers and the path-integration program
ZENO43 to calculate basic solution hydrodynamic properties,
hydrodynamic radius (Rh), radius of gyration (Rg), and intrinsic
viscosity ([h]). We particularly emphasize Rh calculations
because these measurements have been found to be especially
useful in applications aimed at characterizing these NPs in
relation to biophysical activity in many emerging applications
using this type of NP for drug delivery, diagnostics, and other
medical applications, and in connection with assessing the
toxicity of NPs released into the environment, as summarized in
our introduction. The potential applications are made broader
by the fact that when NPs are released into the environment,
they tend to spontaneously acquire a graed layer or “corona”
layer on their surfaces (auto-graing) arising from the physical
binding of polymers in their environment to the NPs and our
modeling methodology can be used also for modeling such
systems under thermodynamic conditions where the molecular
binding to the “bare” NPs can be described by a reversible
reaction process.

We have found that the presence of the graed layer can
greatly alter the “effective size” of the inorganic NPs to which
they are graed, even when the polymer graing density is
relatively low. Moreover, the average hydrodynamic thickness,
of this graed layer, and uctuations in its effective thickness
and correspondingly the NP hydrodynamic size, are also highly
dependent on the length of the graed chains and graing
density, the strength of the interaction potential between the
polymers and the surface of the core NP, and the size of the NP
core relative to the radius of gyration of the graed polymer
chains. The strong hydrodynamic screening effect88 within the
diffuse graed polymer layer then allows us to understand the
relatively large values (signicantly larger that the ratio of hard
sphere particles) of the ratio Rh/Rg observed in polymer graed
NPs, and other so gel particle systems such microgel particles.
Intrinsic viscosity derived measures of hydrodynamic size can
be likewise expected to be “anomalously large”, but we do not
emphasize these measurements because of their more limited
use in NP characterization.

Our results for the solution size ratio Rh/Rg of polymer
graed NPs are contrasted with those for isolated linear poly-
mers, and even polymers having regular branched architectures
such as star and ring polymers, where Rh/Rg is generally less
than the value for hard spheres, oen taking signicantly
smaller values30,50 The extent of this hydrodynamic “screening
effect”88 depends on the polymer graing density and polymer
chain length, and we also investigate the distribution and
variance of these solution properties that arise from
4158 | Nanoscale Adv., 2022, 4, 4144–4161
uctuations in the conformation of the graed chains, as well
as the positions of graing on the supporting sphere. Fluctua-
tions in the graed layer structure can be expected to alter the
interaction between these complex NPs and with bio-
macromolecules of relevance to their medical applications.

We then expect this computational methodology, in
conjunction of experimental measurements, should be useful
for characterizing polymer-graed NPs for use in many appli-
cations in material science and nanomedicine and in needed
studies aimed at evaluating the environmental impact of NPs in
the environment. Although we have combined our applications
to spherical core particles with graed single stranded DNA
layers, the ZENO methodology, in conjunction with molecular
dynamics simulation, allows for the treatment of NPs having
essentially arbitrary shape and polymer monomer structure and
having variable molecular rigidity and local intermolecular
potential interactions. Previous attempts at describing polymer
graed NPs have generally been based on heuristic “layer
models” that do not consider hydrodynamic interaction effects
arising between the molecules in the graed layer and the NP to
which they are graed or between the chains in the layer nor the
effect of uctuations in the overall thickness and shape of the
graed layer that arise in conformational uctuations of the
polymer chains in the layer or chain conformational uctua-
tions. In contrast, our computational method, should enable
the quantication of these uctuation effects through appro-
priately designed simulations and measurements.

As a nal point, we emphasize that the present work has
emphasized the characterization of individual DNA graed Au
nanoparticles based on solution properties performed at high
dilution such as the hydrodynamic radius and intrinsic
viscosity. Many applications of polymer graed nanoparticles,
on the other hand, involve higher NP concentrations where
such nanoparticles start clustering, leading to evident changes
in the optical properties of these solutions15,126,127 that are useful
in colorimetric sensing applications, etc. The effects of nano-
particle association, such as dimer formation,128–130 is clearly
discernible experimentally. Dimerization of DNA graed
nanoparticles has been modeled by the same coarse-grained
model as utilized in the present paper26,27,46 and it would be
a relatively simple matter to calculate the size distribution of the
hydrodynamic radius of these dimers under different condi-
tions to compare with dynamic light scattering and high reso-
lution sedimentation coefficient measurements of these dimers
based on simulations of the kind described in the present
paper. Very interesting measurements have been performed
showing the change in the hydrodynamic radius of DNA graed
nanoparticles when complementary linear chains are physically
bound to the graed chains.131,132 Under more general circum-
stances, the binding of molecules on drug end-functionalized
graed polymers on nanoparticles could be modeled to deter-
mine the degree of this binding to the graed nanoparticle.
This type of information would obviously be useful in many
biomedical applications. There has also been great interest in
creating and controlling larger clusters of DNA graed nano-
particles and even crystalline arrays of nanoparticles.25,29,133–136

Sheets or “membranes” of DNA graed nanoparticles have also
© 2022 The Author(s). Published by the Royal Society of Chemistry
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been synthesized.137 There is thus considerable scope for
extending the present to seemingly endless congurations of
DNA graed nanoparticle that can be created with these
inherently modular materials.
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