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properties in Bi-based layered
supercell multiferroics embedded with Au
nanoparticles†

Jianan Shen, a Zihao He,b Di Zhang, a Ping Lu,c Julia Deitz,c Zhongxia Shang,a

Matias Kalaswad,b Haohan Wang,d Xiaoshan Xu d and Haiyan Wang *ab

Multiferroic materials are an interesting functional material family combining two ferroic orderings, e.g.,

ferroelectric and ferromagnetic orderings, or ferroelectric and antiferromagnetic orderings, and find

various device applications, such as spintronics, multiferroic tunnel junctions, etc. Coupling multiferroic

materials with plasmonic nanostructures offers great potential for optical-based switching in these

devices. Here, we report a novel nanocomposite system consisting of layered Bi1.25AlMnO3.25 (BAMO) as

a multiferroic matrix and well dispersed plasmonic Au nanoparticles (NPs) and demonstrate that the Au

nanoparticle morphology and the nanocomposite properties can be effectively tuned. Specifically, the

Au particle size can be tuned from 6.82 nm to 31.59 nm and the 6.82 nm one presents the optimum

ferroelectric and ferromagnetic properties and plasmonic properties. Besides the room temperature

multiferroic properties, the BAMO-Au nanocomposite system presents other unique functionalities

including localized surface plasmon resonance (LSPR), hyperbolicity in the visible region, and magneto-

optical coupling, which can all be effectively tailored through morphology tuning. This study

demonstrates the feasibility of coupling single phase multiferroic oxides with plasmonic metals for

complex nanocomposite designs towards optically switchable spintronics and other memory devices.
Introduction

Multiferroics, with the coexistence of at least two ferroic
orderings, are both scientically and technologically important
owing to the rich underlying physics and promising applica-
tions.1–4 Since the phenomenon of multiferroics was rst
demonstrated in Ni3B7O13I, the search for single-phase multi-
ferroic compounds has expanded signicantly.5 BiFeO3 is one of
the most studied examples of single-phase multiferroic mate-
rials, yet has limitations for practical applications due to its
antiferromagnetic ordering and low magnetization value.6,7
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Despite the tremendous work on searching for multiferroic
material candidates, the family of single-phase multiferroic
materials remains very limited.3,4,8–10 As a new class of single
phase multiferroic oxides proposed in 2010 and discovered in
2013, Bi-based layered supercell (LSC) oxides have raised enor-
mous interest owing to their structure anisotropy and fasci-
nating physical properties including multiferroic properties
and anisotropic dielectric permittivity.11–16 More specically, Bi-
based LSC oxides are Bi-based transition metal oxides with an
Aurivillius phase.11,13–15 Their room-temperature multiferroic
properties reside in the 6s2 lone pair of electrons of Bi for
ferroelectricity and transition magnetic ions for magnetic
ordering.11–15,17–19 For example, Bi2FeMnO6 with a 2D layered
oxide structure has been demonstrated to have room-
temperature ferrimagnetism and ferroelectricity.11,17,19

Recently, a bismuth-based oxide Bi2AlMnO6 (BAMO) with an
LSC structure was reported to be a multiferroic at room
temperature.13,15 These discoveries have led to new candidates
and paved new design routes for room-temperature single
phase multiferroic materials.

Optical based switching has been considered as one of the
most superior switching mechanisms for electronic/spintronic
devices due to their ultrafast switching speed and unparal-
leled low heating dissipation.20 Various approaches have been
used recently. For example, Lalieu et al. demonstrated single
pulse all-optical switching along with spin Hall effect driven
© 2022 The Author(s). Published by the Royal Society of Chemistry
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magnetic domain motion in the Pt/Co/Gd stacking.21 Aviles-
Felix et al. investigated the single-shot switching of the
magnetization of perpendicular magnetic tunneling junctions
consisting of a Tb/Co nanolayer stacking, where the toggling of
the magnetic state can be controlled by 60 fs-long or 5 ps-long
laser pulses.22 Taking advantage of the state-of-the-art thin
lm growth techniques, very dissimilar materials with various
functionalities can be integrated on selected substrates as
multifunctional nanocomposites, e.g., systems with ferromag-
netic and ferroelectric coupling, and systems with magneto-
optical coupling.12,15,23–26 In general, three types of nano-
composite morphologies have been successfully fabricated
using pulsed laser deposition (PLD), i.e., particle-in-matrix
(PIM) structure, multilayer structure, and vertically aligned
nanocomposite (VAN) structure.23,24,27–30 Among these struc-
tures, PIM is of special interest since it allows the combination
of metal NPs with the oxide matrix, forming novel thin lms.
For instance, Au NPs are conventional plasmonic metamaterial
building blocks displaying strong localized surface plasmon
resonance (LSPR) which offers a pathway to exotic optical
properties and technologically important applications, such as
surface-enhanced Raman scattering (SERS), optical trapping
and manipulation, biosensing and nanomedicine, and
magneto-plasmonic effects.31–40 For example, the Au–TiO2

system has shown enhanced photocatalytic properties and the
enhancement varies as a function of Au particle size.41 Au and Pt
nanoparticles have been introduced into VO2 as an effective
secondary phase to reduce the phase transition temperature
from 360.74 K to 329.16 K or lower.42,43 Interesting optical
dielectric function tuning has been demonstrated in multiple
systems including BTO-Au, ZnO–Au, La0.7Sr0.3MnO3–Au, etc.44,45

In this work, we have combined the newly discovered single
phase multiferroic BAMO LSC as the matrix and the plasmonic
Au NPs to form a new nanocomposite system. By coupling the
room-temperature multiferroic properties of the BAMO LSC and
the LSPR of Au NPs, as shown in the schematic in Fig. 1a, we are
expecting enhanced anisotropic dielectric permittivity, plas-
monic properties, and ferroelectric and ferromagnetic proper-
ties combined in one nanocomposite platform. By selecting
different deposition temperatures (580 �C, 600 �C, and 620 �C),
we hypothesize that the microstructures of the nanocomposites
will be changed and thus their physical properties will be
effectively tuned. Besides, the optimum deposition temperature
is investigated and the physical origins of the various properties
are discussed. The property tuning indicates that it's viable to
tailor the physical properties through morphology evolution by
controlling the deposition temperature. The study may pave
a new avenue towards the design of novel thin lms with mul-
tiferroic properties along with fascinating optical-based
switching potential.

Experimental section
Composite lm growth

The BAMO target used for thin lm growth was fabricated by
mixing Bi2O3, Al2O3, and Mn2O3 powders followed by sintering
at 750 �C for 6 hours. The Au strip was attached onto the target
© 2022 The Author(s). Published by the Royal Society of Chemistry
for deposition. The BAMO-Au thin lms were deposited on
single-crystal SrTiO3(001) and LaAlO3(001) substrates by pulsed
laser deposition (PLD) (with a KrF excimer laser, Lambda Physik
COMPex Pro 205, l ¼ 248 nm). The deposition temperature was
controlled at 580 �C, 600 �C, and 620 �C, respectively. The
background oxygen pressure was maintained at 200 mTorr. The
deposition used a laser uence of 3.6 J cm�2 and a laser
frequency of 2 Hz. Following deposition, the lms were in situ
annealed at 400 �C for 1 hour in 500 Torr of oxygen. Finally, the
lms were cooled down to room temperature at 10 �C min�1.

Microstructure characterization

The microstructure and crystallinity of the thin lms were
characterized by XRD (PANalytical Empyrean) and high-
resolution STEM (Thermo Fisher Scientic TALOS 200� oper-
ated at 200 kV). An FEI Titan™ G2 80-200 STEM with a Cs probe
corrector and ChemiSTEM™ technology (X-FEG™ and
SuperX™ energy-dispersive X-ray spectroscopy (EDS) with four
windowless silicon dri detectors), operated at 200 kV, was also
used in this study. The sample preparation work for STEM
characterization was conducted by manual grinding and thin-
ning procedures accompanied by dimpling and ion milling
processes using a precision ion polishing instrument (PIPS II
Model 695, Gatan). The energy-dispersive X-ray spectroscopy
(EDS) mode in STEM was utilized to investigate the chemical
composition of the thin lms.

Property measurements

Transmittance measurements were carried out using a UV-
vis-NIR absorption spectrophotometer (PerkinElmer
Lambda 1050). The plasmonic response was simulated using
COMSOL Multiphysics® soware. The dielectric permittivity
was investigated by spectroscopic ellipsometry (JA Woollam
RC2). The ellipsometer parametersJ and D, related by rp/rs ¼
tan(J)eiD (where rp and rs are reection coefficients for the p-
polarized and s-polarized light, respectively), were tted with
CompleteEASE soware. The incident angle was set to 55�,
65�, and 75� for improving the accuracy of the model. The
dielectric permittivity was assumed to be anisotropic owing
to the layered structure of the matrix. The permittivity along
the in-plane (IP) direction was modeled using one Drude
oscillator and two Cody-Lorentz oscillators, and the permit-
tivity along the out-of-plane (OP) direction was modeled
using one Drude oscillator and one Cody-Lorentz oscillator.
The tted results have a mean squared error (MSE) of around
5. The magnetic properties were investigated using
a vibrating sample magnetometer (VSM) in a Magnetic
Property Measurement System (MPMS3, Quantum Design).
The IP and OPmagnetization were measured aer calibrating
the VSM set up for potential calibration errors including
high-eld slope and magnet resonance correction, and
sample geometry factor calibration. In addition, multiple
steps have been conducted following the acquisition of the
raw data to eliminate the potential errors introduced during
the measurement of the M–H curve. For example, magnetic
remanence correction was implemented using a built-in
Nanoscale Adv., 2022, 4, 3054–3064 | 3055
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Fig. 1 (a) Schematic illustration of BAMO-Au thin films and the plasmonic behavior induced by Au NPs. (b) XRD q–2q diffraction results of BAMO
and BAMO-Au epitaxial thin films on the STO(001) substrate at various deposition temperatures.
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script; the sample geometry multiplicative factor was ob-
tained and applied to the measurement results using
a sample geometry calculator, and the multiplicative factors
for the samples vary between 0.9 and 1.2. The ferroelectric
properties were examined using a Si tip coated with
a conductive Pt–Ir layer (SCM-PIT V2) with a Bruker Dimen-
sion Icon AFM. A home-built MOKE system was applied with
a He–Ne laser of 632.8 nm at room temperature in a polar
conguration. The incident light was polarized using a linear
polarizer; the Kerr rotation of the light was measured using
a second polarizer assisted by a photoelastic modulator. In
the polar conguration, the reected light was separated
from the normal incident light (0� incident angle) by a 50%
beam splitter and the magnetic eld was perpendicular to the
lm surface.
3056 | Nanoscale Adv., 2022, 4, 3054–3064
Results and discussion

The epitaxial growth of the thin lms was rst demonstrated by
XRD. Fig. 1b shows the XRD q–2q scans of BAMO-Au thin lms
deposited on STO(001) at different temperatures, with a pure
BAMO thin lm as the reference. There are obvious LSC peaks
as labeled in Fig. 1b suggesting highly textured growth of the
layered oxides. The diffraction peaks of Au (111) and (222) were
shown in the samples at all three deposition temperatures
conrming the effective Au incorporation in the system. Among
the various temperature conditions, the lm grown at 580 �C
exhibits the best growth quality which is proved by the XRD
results along with HAADF-STEM results, to be discussed later.
The (00l) set of peaks indicating the LSC structure of the matrix
are well preserved at 580 �C. At 600 �C, the LSC structure is still
© 2022 The Author(s). Published by the Royal Society of Chemistry
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maintained but peaks become broader and the peak intensity
reduces, suggesting the slightly degraded epitaxial quality of the
lm. Finally, most of the LSC peaks disappeared at 620 �C,
manifesting the destruction of the LSC structure at this growth
temperature. It is noted that there are some impurity phases at
620 �C, which could possibly be attributed to the alumina
phase, aluminum manganese phase and/or aluminum bismite
phase. The similar dominant (00l) diffraction peaks as shown in
Fig. S1† suggest that BAMO-Au thin lms were also be able to
grow on the LaAlO3 (LAO) (001) substrate with comparable lm
quality to those on STO substrates.

The microstructure of BAMO-Au thin lms was further
investigated by high-resolution STEM under the HAADF mode
along with EDS mapping analysis as shown in Fig. 2 and 3.
Fig. 2 Microstructure characterization of BAMO-Au thin films. (a) A sch
image of the BAMO-Au thin film taken along the STO[100] zone axis. The i
resolution STEM image of the BAMO-Au thin film taken along the LAO[1
substrate and the film. (d) High-resolution STEM HAADF image and (e) ED
HAADF image and (g, h and i) EDS maps together show the layered stru

© 2022 The Author(s). Published by the Royal Society of Chemistry
Fig. 2b displays the cross-sectional STEM image of the BAMO-
Au thin lm grown on the STO(001) substrate at the deposi-
tion temperature of 580 �C. The layered supercell structure was
well preserved and Au NPs were uniformly distributed in the
LSC matrix. The inset is the selected area diffraction pattern
(SAED) which indicates the highly epitaxial growth of the thin
lm. The SAED pattern and XRD results together conrm the
(111)-oriented growth of Au NPs on the STO substrate. Fig. 2c–e
are high-resolution STEM images and EDS maps of BAMO-Au
thin lms on the LAO(001) substrate. The microstructure is
nearly identical to that on the STO substrate with a slight
difference in the orientation of Au NPs. As shown in Fig. S1,† Au
NPs have two orientations of (111) and (001) on the LAO
substrate where the (111) peak is stronger than the (001) peak,
ematic drawing of the BAMO-Au thin film. (b) High-resolution STEM
nset shows the SAED pattern of the thin film and the substrate. (c) High-
00] zone axis. Au NPs are (001)-oriented at the interface between the
S map of the Au NPs embedded in the matrix. (f) High-resolution STEM
cture of the BAMO matrix.

Nanoscale Adv., 2022, 4, 3054–3064 | 3057
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Fig. 3 Size analysis of Au NPs in BAMO-Au thin films. (a)–(c) Cross-sectional STEM images of BAMO-Au thin films grown on the STO(001)
substate at 580 �C, 600 �C, and 620 �C, respectively. (d)–(f) Histogram distribution analysis of the diameter of Au NPs along with the Lognormal
fitting curve. The mean diameter of Au NPs is calculated for each temperature. The result clearly shows the size increase of Au NPs with
deposition temperature.
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meaning that (111)-oriented Au NPs are dominant. The more
preferred (111) orientation of Au NPs is a result of the total
surface free energy minimization according to Wulff's theorem,
where the (111) crystal plane is the closely packed plane in the
FCC structure and has the lowest surface energy. Thus, the Au
(111) crystal plane is energetically favorable when forming NPs.
The (001)-oriented Au NPs are found at the interface between
the LAO substrate and the lm as shown in Fig. 2c, where the
(001) orientation is conrmed by the inset FFT image. The (001)-
oriented growth at the interface can possibly be attributed to the
low interfacial energy between LAO and Au NPs. The BAMO
matrix is stabilized by alternating Bismuth oxide slabs and
manganese/aluminum oxide octahedral layers along the lm
growth direction as shown in Fig. 2f.15 The dark contrast phase
is the Mn/Al-rich phase whereas the bright contrast phase is
attributed to the Bi-rich layer. This is due to the Z-contrast
mechanism for HAADF-STEM imaging, where Bi has a higher
atomic number (ZBi ¼ 83) than Mn and Al (ZMn ¼ 25, ZAl ¼ 13).
The out-of-plane d-spacing is estimated to be 1.32 nm, which
agrees with the XRD results. Fig. 2g–i display the EDS mapping
analysis which clearly demonstrates the layered distribution of
Bi, Mn and Al elements. It's noted that the uniform distribution
of Al in the layered BAMO lms might not reect the true nature
of the structure and such features could be attributed to several
factors including the limited resolution of the TALOS TEM/
STEM tool in resolving the light elements as well as the
potential ion-milling induced damage during TEM sample
preparation.
3058 | Nanoscale Adv., 2022, 4, 3054–3064
Fig. 3a–c present three cross-sectional HAADF-STEM images
of BAMO-Au thin lms grown on the STO(001) substrate at
different deposition temperatures showing tunable growth
morphologies. The lms were grown at three deposition
temperatures, i.e., 580 �C, 600 �C, and 620 �C, respectively. The
lms thickness was kept in a similar range as the temperature
varies as shown in Fig. 3, which is about 80 nm thick aer 3000-
pulse deposition. The slightly lower thickness in the samples
deposited at 600 �C and 620 �C in the STEM images is due to the
ion beam damage during the ion milling process resulted in
a thinner TEM foil for the samples. Therefore, the growth rate of
the lms is estimated to be about 0.27 Å/pulse. The STEM
images clearly show the distinct morphology variation as
deposition temperature increases. This is manifested in two
ways. First, the average diameter of the Au NPs increases from
6.82 (�1.13) nm to 17.73 (�10.79) nm to 31.59 (�18.05) nm as
the temperature increases from 580 �C to 600 �C to 620 �C as
shown in Fig. 3d–f, respectively. Second, the layered structure of
the BAMO matrix is distorted as temperature increases from
580 �C to 620 �C. At 580 �C, the Au NPs are randomly distributed
in the BAMO LSC matrix, and the layered structure is well
preserved. As the temperature increases to 600 �C, the layered
structure is moderately distorted and the diameter of Au NPs
increases as well. At 620 �C, the size of the Au NPs is signi-
cantly enlarged and the LSC structure of the matrix is no longer
maintained. The dependence of the Au NP size on the deposi-
tion temperature can be attributed to the mobility of adatoms.
At higher growth temperatures, the diffusion of adatoms is
© 2022 The Author(s). Published by the Royal Society of Chemistry
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facilitated, which leads to higher mobility and larger Au nano-
particles. In addition, at higher growth temperatures, small Au
NPs are prone to coalescing into larger NPs as reported previ-
ously.46 The morphology variation of the LSC matrix could be
attributed to two factors. On the one hand, higher deposition
temperature deviates from the inherent optimum deposition
temperature of the LSC structure, causing the degradation of
the matrix. On the other hand, the larger Au NPs further dis-
torted the LSC growth at high temperature. The shape of the Au
NPs is not uniform with mostly being sphere-like and a small
portion being disc-like as conrmed by Fig. 3a–c coupled with
plan-view STEM images (Fig. S3†).

Au is a well-studied plasmonic metal, and its NPs have been
proposed to have a variety of applications in many elds, such
as non-toxic carriers for drug delivery, optical trapping and
manipulation.31,33 Therefore, it's conceivable that the Au NPs in
the BAMO-Au thin lms coupled with the anisotropic LSC
structure would exhibit intriguing optical properties. The
transmittance of BAMO-Au thin lms on the STO substrate was
measured and the data are plotted in Fig. 4a. In contrast to the
smoothly increasing transmittance curve for the pure BAMO
thin lm, the BAMO-Au thin lms show strong plasmonic
absorption within the wavelength range from 700 to 800 nm as
marked by arrows in Fig. 4a. It is noted that there is a sharp drop
Fig. 4 Optical characterization of the BAMO-Au system. (a) Optical trans
Simulation of LSPR and local field enhancement effects using COMSOLM
at different temperatures. Films grown at 580 �C and 600 �C display a typ
hyperbolic dispersion.

© 2022 The Author(s). Published by the Royal Society of Chemistry
at about 380 nm (3.25 eV), which is attributed to the indirect
band gap absorption of the STO substrate.47 A similar plas-
monic absorption is observed for BAMO-Au thin lms grown on
the LAO substrate as shown in Fig. S4a.† The bandgaps for
BAMO-Au thin lms are determined to be 2.7 eV, 2.8 eV and
2.5 eV for growth temperatures of 580 �C, 600 �C, and 620 �C
using the Tauc method as shown in Fig. S4b.† The bandgap
variation may be due to the size-dependent work function of Au
NPs which causes band structure reconstruction at the Au NP
and BAMO interface and leads to a change of electron density in
the BAMO matrix and effectively tunes the bandgap of the
nanocomposites at different temperatures.43,48,49 The non-
monotonous change of the bandgap for lms grown at 620 �C
further reects the fact that their microstructure is seriously
distorted. Therefore, their band structure is not just affected by
the Au size but also the microstructure, which explains why the
bandgap changes non-monotonously with the Au NP size. The
strong absorption can be attributed to the LSPR of Au NPs.
Based on the data, the possible inuence of the Au interband
transition on the overall BAMP bandgap measurement could
exist but might be minimal considering the well separated
BAMO band edge and the Au resonance peak position. In
addition, the pure BAMO lm without Au has a similar bandgap
absorption wavelength to that of the BAMO-Au lm, further
mission spectra of BAMO-Au thin films as a function of wavelength. (b)
ultiphysics® software. (c)–(e) Fitted permittivity for thin films deposited
e I hyperbolic dispersion, and the film grown at 620 �C shows a type II
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conrming the minor impacts. Using COMSOL Multiphysics®
simulation, the LSPR of the BAMO-Au thin lm grown at 580 �C
was simulated and is plotted in Fig. 4b. The plasmonic peak
wavelength is determined to be 760 nm as conrmed by the
transmittance results. The plasmonic effect is remarkably
attenuated at shorter and longer wavelengths as shown in
Fig. S5.† The strong local-eld enhancement effect (hot spots) is
shown surrounding the Au NPs, and is particularly signicant at
the particle–particle edges due to the highly localized excitation
probability, which is consistent with the previous report.32 The
optical dielectric permittivity of the BAMO-Au thin lms was
evaluated using a spectroscopic ellipsometer (JA Woollam RC2).
Fig. 4c–e show the tted permittivity of the BAMO-Au thin lms
deposited at three temperatures. The dielectric permittivity
clearly displays anisotropy along IP and OP directions. Overall,
the IP permittivity is larger than the OP permittivity in the
majority wavelength range of the spectrum. This may be
explained by the layered structure of the matrix. Since the
matrix is an insulating dielectric material, the thin lms have
a typical positive value along the IP direction. In the out-of-
plane direction, the permittivity of the thin lms is depressed
due to the presence of Au NPs, which have a negative permit-
tivity within the visible light and near-infrared spectrum. More
interestingly, all three lms display hyperbolic behavior within
the visible light region. While thin lms grown at 580 �C and
600 �C have a Type I hyperbolic response (3xx, 3yy > 0; 3zz < 0), thin
lms grown at 620 �C have a Type II hyperbolic response (3xx, 3yy
< 0; 3zz > 0).50 The difference could be owing to the disparate
microstructures of the thin lms. As discussed earlier, the thin
lms grown at 580 �C and 600 �C both exhibit a layered struc-
ture. The thin lm grown at 620 �C, however, doesn't preserve
the layered structure. Therefore, the structural change in the
matrix and enlarged Au NPs in the 620 �C sample could be the
main reasons for the Type II hyperbolic properties.

It was previously reported that BAMO thin lms show
room-temperature multiferroic properties.13,15 Interestingly,
these properties are also preserved for the BAMO-Au thin
lms grown at 580 �C with a well-ordered LSC structure as
shown in Fig. 5. The ferromagnetic properties of BAMO-Au
thin lms are shown in Fig. 5a and b for OP and IP, respec-
tively. All the thin lms exhibit obvious ferromagnetic
responses in both IP and OP directions while the ferroelectric
response was only observed for the lm grown at 580 �C. The
ferromagnetic properties of Aurivillius phase materials with
the composition of BiMTMnO (MT is the transition metal)
originate from the double-exchange coupling interaction
between Mn3+ and Mn4+ cations, while the Bi 6s2 “lone pair”
electrons of the pseudo-perovskite structure give rise to
ferroelectric properties.3,11,15,19,51 At higher deposition
temperatures such as 600 �C and 620 �C, the presence of Mn3+

and Mn4+ continues to help preserve the ferromagnetic
properties. However, since the pseudo-perovskite structure of
the matrix was degraded due to the enlarged Au NPs, the
ferroelectric properties were no longer maintained beyond
580 �C. Fig. 5a and b show the ferromagnetic response of the
BAMO-Au thin lms along IP and OP directions. There is
a preferred out-of-plane magnetic anisotropy, and the
3060 | Nanoscale Adv., 2022, 4, 3054–3064
temperature has obvious effects on the ferromagnetic
response, which could be explained by morphology variation
of the thin lms. From the HR-STEM images (Fig. 2), the
BAMO-Au lms show obvious structure anisotropy consisting
of an alternating stacking of Bi3Ox and AlO6/MnO6 layers. The
ferromagnetic properties are attributed to the double
exchange coupling between the Mn3+ and Mn4+. The aniso-
tropic saturation magnetization could be the result of such
distinct structures along IP and OP directions. Such aniso-
tropic magnetic properties have been reported in several
layered oxide systems as well as other thin lm
systems.12,13,15,24,52–55 Fig. S8† shows the saturation magneti-
zation and coercive eld of the thin lms as a function of
deposition temperature. The saturation magnetization (Ms) is
determined to be�4.0 emu cm�3,�1.68 emu cm�3, and�2.74
emu cm�3 for 580 �C, 600 �C, and 620 �C, respectively, at 300 K
along the OP direction. In addition, the Ms along the IP
direction is measured to be �2.6 emu cm�3, �0.98 emu cm�3,
and �0.72 emu cm�3 for 580 �C, 600 �C, and 620 �C, respec-
tively. Clearly, the well-preserved LSC structure at 580 �C gives
the highest saturation magnetization value, and distorted LSC
structures have weaker magnetic properties. Fig. 5c shows
a clear phase and amplitude switching behavior of the BAMO-
Au thin lm grown at 580 �C, demonstrating the switchable
ferroelectric nature of the thin lm. Fig. 5d displays a phase
mapping image of the thin lm characterized by PFM, and the
distinct contrast demonstrates a vertical domain switching.
The ferroelectricity of BAMO-Au is caused by the non-
centrosymmetric structure. A pair of Bi3+ valence electrons
in the 6s orbital is not engaged in the sp orbital hybridization,
which forms a local dipole moment and creates a ferroelectric
polarization as reported previously.4 At higher temperatures,
the layered oxide structure of the matrix is destroyed due to
the larger Au NPs, and as a result the ferroelectricity disap-
pears. The d33 ferroelectric coefficient curve and polarization
hysteresis loop are shown in Fig. S9.† Note that the shape of
the hysteresis loop is not typical, which is possibly due to the
leaky channels of Au NPs. The largest d33 value is determined
to be 60 pm V�1, and the saturation polarization and coercive
eld are 6 mC cm�2 and 30 kV cm�1, respectively. To investi-
gate the interplay between the multiferroics and plasmonic
metal phase, we explored the coupling effect between these
two phases. Fig. 5e shows the polar MOKE (Magneto-optical
Kerr effect) hysteresis loop for lms grown at 580 �C. The
measurement set-up is illustrated in Fig. 5f. Although the
actual measuring wavelength is around 633 nm for MOKE
measurements, which is not the plasmonic resonance wave-
length of the lms, a notable sign of magneto-optical
coupling is revealed from this measurement. However, due
to the limitation of the laser wavelength for the MOKE system,
the measurement was conducted at 633 nm, which was in the
range of the broad plasmonic resonance peak for the samples,
not at the peak wavelength. The magneto-optical coupling
properties could be further enhanced if the MOKE measure-
ments were conducted at the plasmonic resonance peak of
760 nm. The MOKEmeasurement results display the potential
of the BAMO-Au system as a candidate for optical-switching
© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 Multiferroic properties of the BAMO-Au system. (a) and (b) Ferromagnetic response of BAMO-Au thin films along out-of-plane and in-
plane directions, respectively. The insets are the enlarged center area of the ferromagnetic hysteresis hoop showing the coercive field. (c)
Amplitude and phase switching behavior as a function of tip bias for the BAMO-Au thin film grown at 580 �C. (d) Vertical PFM phase map for the
BAMO-Au thin film grown at 580 �C, obtained by poling with +8 V (bright contrast) over 5 � 5 mm2 and �8 V (dark contrast) over 2 � 2 mm2. The
outer area is not poled with voltage, and therefore has a random inherent phase. (e) Polar MOKE measurements for BAMO-Au films deposited at
580 �C. The magnetic field is applied along the out-of-plane direction. The hysteresis loop shows the magneto-optical coupling effect. (f) The
experimental configuration for Polar MOKEmeasurements. The magnetic field is applied along the out of plane direction. The wavelength of the
applied laser is about 630 nm.
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spintronic devices. Based on the above MOKE results, we've
demonstrated magnetic-switching via incoming laser light in
the hybrid lms. Conversely, considering the coexistence of
the multiferroic phase and the plasmonic metal phase (i.e.,
Au), we expect that the magnetization could be switched by
applying an ultrafast laser (femtosecond) at the plasmonic
resonance wavelength, aiming for all-optical-switching spin-
tronic devices similar to some of the previous demonstra-
tions.20–22 Future work is needed for demonstrating such
optical-switching potential in these hybrid systems.

Overall, our demonstration suggests the effectiveness of
deposition temperature in tuning the morphology and proper-
ties of the BAMO-Au system. In comparison to the previously
reported composition tuning method, temperature tuning
provides a more effective and facile approach for tailoring the
microstructure and physical properties. To the best of our
knowledge, this is the rst study to incorporate Au nano-
particles into the layered oxide systems for combined and
coupled functionalities including ferromagnetic, ferroelectric
and optical properties all in one system. Future directions could
include incorporating other plasmonic metals (e.g., Ag, Co) into
the systems for effective coupling in different and specic
wavelength ranges, and further tuning the distribution and
morphologies of metal NPs for precise control of the plasmonic
resonance wavelength. Another possible direction is to explore
VAN nanostructures with layered oxide as the matrix since VAN
can provide an extra degree of freedom through the vertical
strain at the matrix/pillar heterointerface, enabling more
effective tuning of the morphology and physical properties. One
can also make multilayer nanocomposites with layered oxide
and other functional components, providing a more straight-
forward approach for coupling multifunctionalities than other
nanostructures.

Conclusions

In summary, a novel oxide–metal hybrid material system con-
sisting of the LSC BAMO matrix with Au NPs has formed a PIM
system and presented rich multifunctionalities including LSPR,
room-temperature multiferroic properties, and a hyperbolic
response within the visible light spectrum. In addition, BAMO-
Au shows interesting magneto-optic coupling between the
multiferroic matrix and Au NPs. Morphology tuning of BAMO-
Au thin lms by controlling the deposition temperature has
been demonstrated as an effective approach to tailor the
microstructure and physical properties. The microstructure
evolves from a perfect PIM layered structure to the formation of
stacks of Au NPs with increasing deposition temperature, and
the Au NPs get enlarged with deposition temperature. Such
morphology variation effectively tunes the physical properties
including ferromagnetic and ferroelectric responses, and
anisotropic dielectric permittivity, with a hyperbolic response in
certain wavelength ranges. This work provides new tuning
approaches in Bi-based multiferroic layered oxides and effective
coupling of plasmonic metals in multiferroic systems, which
could lead to future optical-switching spintronics and memory
devices.
3062 | Nanoscale Adv., 2022, 4, 3054–3064
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