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Random networks of nanoparticle-based memristive switches enable pathways for emulating highly

complex and self-organized synaptic connectivity together with their emergent functional behavior

known from biological neuronal networks. They therefore embody a distinct class of neuromorphic

hardware architectures and provide an alternative to highly regular arrays of memristors. Especially,

networks of memristive nanoparticles (NPs) poised at the percolation threshold are promising due to

their capabilities of showing brain-like activity such as critical dynamics or long-range temporal

correlation (LRTC), which are closely connected to the computational capabilities in biological neuronal

networks. Here, we adapt this concept to networks of Ag-NPs poised at the electrical percolation

threshold, where the memristive properties are governed by electro-chemical metallization. We show

that critical dynamics and LRTC are preserved although the nature of individual memristive gaps

throughout the network is fundamentally changed by filling the gaps with an insulating matrix. The

results in this work generate important contributions towards the practical applicability of critical

dynamics and LRTC in percolating NP networks by elucidating the consequences of NP network

encapsulation, which is considered as an important step towards device integration.
Introduction

Conventional computer technology is facing fundamental
limitations, which are related to hardware architecture (von-
Neumann bottleneck), the integration density of transistors
(envisioned end of Moore's law) and a tremendous increase in
estimated power consumption. These limitations have greatly
stimulated the research into novel and unconventional
computation concepts.1 The eld of neuromorphic engineering
aims to solve these challenges by designing novel types of
computational hardware, which draw inspiration from biolog-
ical principles like signal thresholding, synaptic plasticity,
parallelism and hierarchy or in-memory computing.2 In the past
decade, memristive devices played a key role as fundamental
building units in the design of neuromorphic hardware and
signicant effort was focused on mass integration of
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, D-24143 Kiel, Germany. E-mail: alva@
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the Royal Society of Chemistry
memristive devices on wafer scales.3–6 The key characteristic of
a memristive device is its recongurable resistance state.
Among different types of memristive devices, lamentary
switching devices based on electrochemical metallization
(ECM) principles7 are of special interest. The major working
principle of this type of memristive devices is the recongura-
tion of metallic laments in nanoscale switching gaps in
response to the application of external voltage or current
stimuli. Accordingly, the conductance of the nanogaps is
determined by the state of the metallic lament. Diverse
switching dynamics such as non-volatile lamentary switching,7

diffusive switching8 or highly dynamic spiking behavior9,10 have
been reported. However, the creation of networks of memristive
devices approaching brain-like complexity via traditional top-
down fabrication technologies poses several challenges as the
performance of each memristive device and the enormous
degree of connectivity within the network has to be under
precise control.1 In view of these challenges, fabrication of
neuromorphic devices based on self-assembly approaches
appears to be a promising and feasible alternative route.11,12

Such devices are typically implemented via the formation of
a complex network of memristive gaps with a stochastic distri-
bution. In these networks, the emerging collective dynamical is
exploited. Following such approaches neuromorphic
Nanoscale Adv., 2022, 4, 3149–3160 | 3149
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functionalities can be implemented, circumventing the neces-
sity of a precise wiring, spatial assembly, and tailoring of
switching characteristics of individual memristive units. Such
approaches turned out to be feasible for reservoir computing,
where complex dynamical systems showing short-term memory
and spatio-temporal correlations are required.13–16 Recently
several reports have shown the existence of different potential
building units from which complex emergent networks can be
formed. Networks assembled from Au-NPs above the percola-
tion threshold exhibit complex memristive switching patterns,
which are caused by atomic rearrangements between adjacent
Au-NPs induced by electrical currents.17 Networks of polymer-
coated Ag-nanowires formed by random self-assembly also
show emergent dynamics applicable for the design of neuro-
morphic systems.18,19

Recently, the technical implementation of critical dynamics
in neuromorphic systems via self-assembled networks of
memristive switches gained considerable interest. This is
motivated by ndings from neuroscience indicating that bio-
logical neuronal networks operate in a regime of critical
dynamics, which is seen as benecial for solving computational
tasks efficiently.20 The presence of critical dynamics in biolog-
ical neuronal systems was supported by the fact that sponta-
neous neural activity in cortical tissues takes place via brief
bursts separated by periods of highly reduced activity, so-called
“neural avalanches”.20,21 Experimental observations of this
avalanche activity in cortical neuron tissues from rats suggest
that avalanches exhibit scale-invariant dynamics where the
occurrence of different avalanche sizes can be described by
a probability distribution in the form of a power law.21 The
origin of such behavior is frequently related to self-organized
criticality. Self-organized criticality can be seen as a gener-
ating mechanism for avalanches and associated scale-invariant
dynamics.22

In general, critical dynamics universally occur in systems
which are poised at the transition between two phases, which
are composed of a multitude of dynamical units that inuence
each other.20 There, a macroscopically observed avalanche may
be triggered by a microscopic local change in the system that is
collectively passed along the system due to the mutual inter-
action between single units. Several computational benets
have been described for this state, including the maximization
of dynamic range, signal transmission and information
capacity.23 Based on this, it was hypothesized that the brain also
operates at the edge of the transition between complete
ordering and disordering.24 With regard to memristive systems,
hints on critical dynamics were found in networks of metal-
insulator-metal switches (Ag–Ag2S–Ag). This network showed
spatially distributed switching throughout the network and
power-law scaling of persistent metastable network states.25

Recently, networks of Sn-NPs poised at the electrical percolation
threshold (a second order phase transition) were shown to
exhibit critical dynamics with corresponding avalanche
patterns similar to those observed in neural tissues.26 Critical
dynamics in random networks of memristive switches are
expressed by scale-invariance in dynamic features of the
network. These dynamic features include the uctuations in
3150 | Nanoscale Adv., 2022, 4, 3149–3160
magnitude and temporal structure of network conductance that
originate from the underlying memristive activity. Moreover,
uctuations of the network conductance are organized in
avalanche patterns, which indicates that the memristive activity
in the network is correlated. Characteristic for critical dynamics
are scale-invariant distributions of avalanche sizes and dura-
tions.26 Further, those networks implement long-range
temporal correlations (LRTC), which is commonly a concomi-
tant feature of critical dynamics. LRTC is a dynamical feature of
a system, describing that the past activity of the system deter-
mines the future activity at any given time, which indicates
capabilities to implement a dynamical memory. Such a dynam-
ical memory is benecial for mapping of temporal information
into a system, a property that is important in the context of
reservoir computing.15,16 One common procedure for proving
the presence of LRTC in a system is to demonstrate a power-law
decay of the autocorrelation functions in the time domain.27

Another indication for LRTC can be found by scale-invariant
uctuations in the network activity, also in the time domain.
In this connection, detrended uctuation analysis (DFA) is
a frequently used method to characterize such scale-free uc-
tuation and to demonstrate LRTC.28 Because of the dynamical
memory properties, LRTC is seen as benecial for neuro-
morphic computation approaches.16 To implement critical
dynamics and LRTC, both features that suggest brain-like
degree of complexity, into neuromorphic systems tailoring the
connectivity (by poising at the percolation threshold) within
networks of NP-based memristive switches appear to be
a feasible strategy. However, the practical applicability of this
approach can be still debated and also the understanding of the
origin of the emergent phenomena has to be improved.
Particularly, an elaboration of this concept towards composite
systems is still missing so far and would be benecial to support
practical applicability.

In this work, we extend the concept of implementing critical
dynamics and LRTC for neuromorphic systems via Ag-NPs
networks poised at the electrical percolation threshold (in the
following named as “percolating NP networks”) and address the
question how lling the memristive gaps in the network with an
insulating matrix inuences the network dynamics and appli-
cability. The use of Ag-NPs in this work is motivated by the fact,
that the nanoscale behavior of Ag-NP-based memristive gaps is
already well-understood,8,29 which provides suitable comple-
mentary knowledge for future development, aiming to under-
stand the emergence of collective phenomena in random
memristive networks. A Haberland-type gas aggregation source
(GAS)30 was used for the vapor phase synthesis of Ag-NPs.
Generally, a GAS offers a broad choice between elemental and
alloy NPs and good control on the properties,31 which allows to
extend the engineering of memristive gaps towards Ag-based
alloy NP systems with enhanced stability and degree of
freedom.29 For the practical application of percolating NP
networks in neuromorphic systems maintaining their func-
tionality within a composite system is highly relevant. This is
because encapsulation of the network into an insulating
medium is in most cases an inevitable step of electronic device
integration. However, there is only insufficient knowledge
© 2022 The Author(s). Published by the Royal Society of Chemistry
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about the consequences on the overall network dynamics, when
the character of the underlying memristive units are funda-
mentally altered by lling the gaps with an insulating material.
This is because critical dynamics of percolating NP networks
reported so far were in an exposed scenario, i.e. without
encapsulation of the network. Although several reports on the
electronic properties of composite systems comprising perco-
lating NP networks exists,32,33 a connection between the brain-
like dynamics (i.e. critical dynamics and LRTC) and integra-
tion of percolating NP networks into insulatingmatrices has not
yet been made. In particular, this poses questions regarding to
the consequences for the network functionality (and therefore
practical applicability), when the nature of the memristive gaps
throughout the network is fundamentally altered by lling the
gaps with an insulating matrix. Therefore, we fabricated
exposed percolating NP networks and compared them with
similar networks, which were covered with ceramic layers of
SiOxNy. Comparing both network types, the nature of the
memristive gaps is changed from air-type (for exposed NPs) to
solid-state-type (for embedded NPs). Characterization of
percolating NP networks is done by evaluating their temporal
patterns of memristive switching activity in response to
a constant stimulus (voltage input) towards hallmarks of brain-
like behavior, such as critical dynamics21 and LRTC.27 For the
quantication of LRTC, autocorrelation functions34 and
detrended uctuation analysis28 were applied. Critical dynamics
in the network activity is demonstrated by the emergence of
scale-invariance and the according power laws in dynamical
network features. Particularly, this requires an avalanche anal-
ysis analogous to approaches used in neuroscience.21 The main
focus of this work is to demonstrate, that the network behavior
applicable for neuromorphic systems (i.e. critical dynamics and
LRTC) is preserved when an insulating matrix is added to the
percolating NP network.

Results

Fig. 1 summarizes the fabrication route and illustrates
morphological properties of percolating NP networks, as
investigated in this work. Ag-NPs are synthesized following the
GAS technique, as illustrated in Fig. 1a. Ag atoms are sputtered
by a DC magnetron from a metallic target into a high-pressure
sub-chamber leading to a vapor phase aggregation of NPs and
transport along the pressure gradient from the GAS into
a deposition chamber. High-resolution TEM images of indi-
vidual Ag-NPs can be found in the ESI S1.† Networks of Ag-NPs
were deposited onto lithographically structured Si wafer pieces
with multiple electrode. The lateral lling fraction of the Ag-NPs
corresponds to the electrical percolation threshold. To achieve
this, the network conductance was monitored in situ during the
deposition of Ag-NPs and the deposition was stopped aer the
onset of conduction, aiming for the critical dynamical regime.26

This is elucidated in Fig. 1b, which shows the measured current
owing through the network during the deposition process with
increasing Ag-NP lling fraction. The deposition of Ag-NPs was
stopped at the steep slope of current increase (i.e. at the elec-
trical percolation transition). For those samples in this work,
© 2022 The Author(s). Published by the Royal Society of Chemistry
where the dynamics were studied under the presence of an
insulating matrix, networks were subsequently covered by
a SiOxNy layer (from reactive magnetron sputter deposition) in
the same vacuum system.

A schematic illustration of percolating NP networks is shown
in Fig. 1c. In the critical regime around the percolation
threshold, there is no conducting path of the size of the whole
system scale, but a multitude of memristive gaps is randomly
distributed through the whole network. It has been previously
reported that NP networks poised at the percolation threshold
have scale-free morphological properties, meaning that the
number of potential memristive gaps per group of electrically
connected NPs follows a power law distribution.16 This means
the conductance of percolating NP networks is not determined
by a persistent conductive path, but by the states of all mem-
ristive gaps throughout the network. The state of memristive
gaps are prone to be resistively switched by electrochemical
metallization (ECM) upon application of external voltage
stimuli. A SEM image showing the real morphology of a perco-
lating NP network without matrix is given in Fig. 1d. An outline
of the electrical behavior of percolating NP networks is given in
Fig. 2a. There, a percolating NP network without matrix was
tested under application of voltage pulses with varying ampli-
tude. The current levels in response to external stimulation of
1 V can be interpreted by a persistent network state with stable
conductance. This is reasoned by the fact, that uctuations of
the current level are too low to discriminate them against noise.
In contrast to the response from 1 V pulses, the current levels
exhibit distinct jumps between different levels at higher voltage
amplitudes. These jumps originate from resistive switching
activity of the memristive gaps, distributed through the whole
network. Electrical elds across the memristive gaps are able to
induce the formation or disintegration of laments, switching
the gaps to a conducting or insulating state, respectively.35

Accordingly, resistive switching events, which are occurring in
individual gaps, are changing the overall state of the network (in
terms of conductance). We denote a distinct change of network
conductance (which can be clearly discriminated against noise)
as a network transition event. The exact denition of a network
transition event used in this work is given in the methods part.
While comparing the network responses at different voltages, it
can be seen that the richness of network transition events
appears to increase with the applied voltage, meaning that the
frequency and magnitude of network transition events becomes
larger with increasing the voltage amplitude. We quantied this
observation by the coefficient of variations CV (ratio of standard
deviation to the mean) calculated for the current responses
from each individual pulse (see methods). By this, CV charac-
terizes the uctuation of network conductance observed within
one applied voltage pulse. A scatter plot of the CV for nine
pulses plotted against pulse voltage is given in Fig. 2b, which
indicates that the uctuation of the network conductance levels
increase with voltage amplitude. This can be related to the
typical threshold behavior of lament-type memristive gaps. It
is commonly reported for Ag-based NP memristive switching8,29

and individual Ag-laments in a nanogap10 that they exhibit
a threshold behavior in their switching dynamics. The origin of
Nanoscale Adv., 2022, 4, 3149–3160 | 3151
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Fig. 1 (a) Principle of Ag-NPs deposition by GAS. Target sputtering via a DC magnetron and formation of NPs in the gas phase is done in a sub-
chamber separated from the deposition chamber. The NPs are transported along the pressure gradient to the deposition chamber, forming
a beam of NPs oriented towards the substrate. (b) Electrical percolation transition detected via in situ current measurements during the
deposition of Ag-NPs. For the fabrication of percolating NP networks, the deposition of Ag-NPs was stopped at the onset of conduction, which
marks the critical regime. (c) Schematic illustration of percolating a NP networks. The state of the network (in terms of overall conductance
between the electrodes) is not defined by a dominating conducting path, but is subject to ongoing transitions between different metastable
states due to the activity of memristive gaps throughout the network. The inset illustrates a growing filament by ECM, which is the dominating
memristive mechanism in Ag-based systems. (d) SEM image of a percolating NP network without matrix.

Fig. 2 (a) Dynamics of percolating NP networks under voltage pulse stimulation with different amplitudes. The voltage is pulsed between
0 (white regions) and the chosen voltage (1 V to 5 V, grey regions). An activity threshold can be observed, where no network transition events are
observed for 1 V pulses and the dynamics becoming richer with increasing voltage amplitude. (b) Current fluctuations in individual pulses
quantified in terms of coefficient of variation (standard deviation divided by mean) shown as scatter plot. It can be seen, that fluctuations of
current levels, which indicates frequency and magnitudes of network transition events, are increasing with pulse voltage.

3152 | Nanoscale Adv., 2022, 4, 3149–3160 © 2022 The Author(s). Published by the Royal Society of Chemistry
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such a threshold behavior mainly comes from the underlying
cation mobility and redox processes.7 Presumably, the
threshold behavior of the macroscopic percolating NP network
is a reection of the underlying threshold mechanisms of
individual memristive gaps. The presence of a threshold
behavior for switching activity was similarly observed in
networks with insulating matrix, as illustrated in the ESI S2.†
Long-term sequence of network transition events

The percolating NP networks are investigated towards the
emergence of brain-like dynamics (critical dynamics and LRTC)
in their electrical response. A particular focus lies on the ques-
tion whether the existence of an insulating matrix (lling the
memristive gaps) changes the network functionality. For this
purpose, in total six percolating NP networks were fabricated and
an SiOxNy matrix was added to three of them. The other three
samples remained exposed. To acquire the network dynamics
(i.e. the temporal sequence of network transition events), long-
term current measurements over similar measurement times
of z11.5 h were conducted (see methods). All samples were
stressed with the same external bias level of 5 V. A representative
time window of 2 h of the current response for a network without
matrix is plotted in Fig. 3 (top). It illustrates the complex mem-
ristive switching pattern with a multitude of transitions between
different conductance states. For the sake of convenience, values
related to the network conductance are given in units of
conductance quantum G0 ¼ 7.748 � 10�5 S. Values in the order
of G0 are typical for percolating NP networks and emerges in the
limit where the conductance is limited by nanoscale gaps and
corresponding atomic scale laments.36 Microscopically the
observed pattern results from the complex and recurrent inter-
connectivity of a large number of memristive gaps in the
network. A memristive switching event locally at a certain gap
leads to a redistribution of the electrical elds within the
Fig. 3 Top: Measured conductance of a percolating NP network
without matrix upon constant voltage application of 5 V. (2 h extract
from the overall measurement). The representation is given in
conductance units of G0 for convenience (G0 ¼ 2e2/h ¼ 7.748 � 10�5

S). The dynamics corresponds to transitions between different meta-
stable states in the network. Bottom: Temporal sequence of network
transition events extracted from the upper panel.

© 2022 The Author(s). Published by the Royal Society of Chemistry
network, which in turn could trigger switching at other gaps. By
this, disturbance of one memristive gap could lead to a pro-
longed cascade of transitions between multiple metastable
conductance states of the whole network. This mechanism leads
to the characteristic avalanche behavior of percolating NP
networks. A thresholding routine (see methods) was applied to
the temporal sequence of conductance changes to extract the
network transition events and to discriminate them against
noise. In particular, all transition events below 0.01 G0 were
omitted, which is above the noise level of the measurement
setup. By this, all network transition events contributing to the
evaluation are real effects from the samples and noise effects
from the measurement setup are excluded. Illustrations of the
thresholding procedure are further given in the ESI S3 and S4.†
The temporal sequence of network transition events resulting
from the 2 h window displayed in Fig. 3 is shown in the bottom
panel. A rst glance suggests that the network transition events
appear to bemore clustered than it would be expected by chance.
This is a rst indication on temporal correlations and avalanche-
like dynamics in the temporal sequence of transition events.

Long-range temporal correlations

In biological neuronal networks, information is present in
collective activity patterns showing self-affine properties and
presence of LRTC.27 Furthermore, LRTC is a phenomenon that
frequently coexists with critical dynamics of biological neuronal
networks.27 To identify self-affine properties and LRTC in the
temporal sequence of network transition events, temporal
correlations were quantied by two different methods:
Fig. 4 Analysis for LRTCs in the temporal sequence of network tran-
sition events. Color code for samples without/with matrix is blue/red.
Two different methods were applied: ACFs as shown in (a) and DFA as
shown in (b). The ACFs (left/right panel emphasizes samples without/
with matrix) are governed by slow decay in form of a power law,
suggesting the existence of LRTCs. Decay slopes 3 were estimated by
linear regression unit a lag k of 50 data points. The determined slopes
are annotated in the plots. The DFA confirms the positive LRTCs by
means of Hurst exponents H over 0.85. The values for all Hurst
exponents as determined by linear regression are given in the plot.

Nanoscale Adv., 2022, 4, 3149–3160 | 3153
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autocorrelation functions (ACFs) and detrended uctuation
analysis (DFA). The ACFs shown in Fig. 4a suggests a slow
correlation decay in the form of a power law, which implies that
network transition events in the past have a signicant inuence
on current events. Such a behavior is considered as a long-term
memory in temporal processes.28 In addition, calculating the
ACFs of shuffled temporal sequences of network transition events
results in complete destruction of any correlation (see ESI S5†).
Decay slopes 3 of the ACFs were determined via linear regression
in a shorter range until a lag k of 50 data points and showed that
the slopes for percolating NP networks with insulating matrix
tend to be only slightly higher than for networks without. More
importantly, the presence of autocorrelation remains, even aer
addition of an insulating matrix. We note that the comparison in
ACFs between networks with and without matrix is elaborated
here based on a representation until a maximum lag of 500 data
points, however, we emphasize that autocorrelation is still exis-
tent in all samples up to higher lags too (see ESI S6†).

The secondmethod, DFA, is an already well-established tool in
neurobiology to detect LRTC in neural oscillations and to nd
estimations for the Hurst exponent.28 In this context, Hurst
exponents are used to determine whether neuronal activity is
positively or negatively correlated and to quantify the extent of
temporal correlations.28 Themajor advantage of DFA is that it can
be applied to non-stationary temporal sequences. Since it is ex-
pected that critical dynamics imposes a considerable non-
stationarity (due to the characteristically occurring avalanches,
as described in the next sections), we applied DFA to the temporal
sequence of network transition events to gain insights that are
complementary to the ACFs. The results of the DFA, which are
log-log plots of the uctuation function (quanties the temporal
uctuation of network transition events, see methods or ref. 28)
versus temporal scale t (window size as number of data points
showing the degree of uctuation, see methods or ref. 28) where
the linear scaling H is an estimation of the Hurst exponent. The
DFA results are given in Fig. 4b. Here, the Hurst exponent
describes correlations in the activity (i.e. temporal sequence of
network transition events) of the percolating NP networks, anal-
ogously to approaches from neuroscience. Power law scaling is
observed for the whole observed range indicating strong LRTC.
Moreover, the magnitudes of Hurst exponents conrm positive
correlations for all samples, as already observed from the
ACFs.28,34 Conducting the DFA with shuffled temporal sequences
also leads to destruction of any temporal correlation, which is
expressed by a strongly decreased Hurst exponent (see ESI S7†).
The DFA supports the most important observation from the ACF
analysis regarding the impact of adding an insulating matrix for
the network functionality. Only minor variations on the qualita-
tive level (networks with matrix exhibit slightly higher uctuation
functions and lower Hurst exponents) can be supposed, however,
the presence of strong positive correlations does not considerably
change aer addition of an insulating matrix.
Scale-invariant dynamics

Further evaluation with respect to brain-like dynamics in
percolating NP networks with and without matrix is dedicated
3154 | Nanoscale Adv., 2022, 4, 3149–3160
to power-law behavior and occurrences of avalanches. For this
purpose, the statistical features of thresholded network transi-
tion events (see Fig. 3 bottom for representative illustration)
were investigated. This includes the magnitude of a network
transition event DG, given as absolute change of network
conductance. Further, the temporal structure of the network
transition events was quantied by interevent intervals IEI,
which is the time between two consecutive events. Probability
density functions (PDFs) of the extracted magnitudes of
network transition events are plotted together with the
according power law ts (by maximum-likelihood method) in
Fig. 5a and b. The power law ts show good agreement to the
observed PDFs over the whole experimental range. To conrm
the existence of heavy-tails in the distributions, likelihood-ratio
tests37 including the whole observed range were applied to test
the power law tting against a potentially better description by
exponential PDFs. For all samples, power law ts were statisti-
cally more signicant than exponential ts, which underlines
the scale-invariance of the DG distribution over the observed
range. A scale-invariant distribution of network transition
events DG indicate, that numerous gaps distributed all over the
network are involved in the observed dynamics. The calculated
power law exponents b are describing the scaling of DG for the
six samples and show close similarities. They were determined
as 1.68, 1.65 and 1.72 for networks without and 1.69, 1.54 and
1.47 for networks with insulating matrix.

Furthermore, PDFs of the extracted IEIs together with the
according power law ts involving the whole observed range are
given in the panels of Fig. 5c and d. Again, likelihood-test
conrmed that power laws are more signicant representa-
tions of the data than exponential PDFs. The occurrence of
scale-invariant IEI distributions is, besides the results from
ACFs and DFA, another characteristic for a temporally corre-
lated structure. We note that the observed range of IEIs for
percolating NP networks without insulating matrix extends over
4 orders of magnitude, as given in Fig. 5c, whereas the observed
range in case of existence of an insulating matrix is narrower,
with a stronger truncation at higher IEI values. However, this is
likely to be an effect of slightly higher event rates observed for
networks with insulating matrix, as discussed in the ESI S8.†
The power law exponent g describes the scaling of IEIs. g

ranged from 1.48 to 1.58 for networks without insulating matrix
and from 1.47 to 1.61 for networks with insulating matrix.
Taking into account that the power law exponents b and g,
describing the magnitudes and temporal structures of network
transition events, respectively, are closely similar, the results
indicate that all samples behaved in a similar way.
Avalanche analysis

Fig. 6 depicts the evaluation of the temporal sequence of
network transition events with respect to avalanches. The
evaluation scheme for avalanche was adapted from approaches
in neuroscience.21 For avalanche analysis, the temporal
sequence is cut into time bins, which have the size of the mean
value of all IEIs. An avalanche is dened by a sequence of time
bins where each bin shows at least one network transition
© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 Observed probability density functions (PDFs) of network transition event magnitudes DG quantified as changes in network conductance
(a/b for samples without/with insulating matrix) and interevent intervals IEIs (c/d for samples without/with insulating matrix) together with power
law fits calculated by maximum-likelihood estimation. Color code for samples without/with insulating matrix is blue/red. The estimated power
law exponents b and g, for the DG an IEI distributions, respectively, are annotated in the plots with standard errors as uncertainty.
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event. Then, avalanche sizes S and durations T are dened as
number of network transition events and number of time bins
within one avalanche, respectively. The observed PDFs of
avalanche sizes S together with the according power law ts over
the whole observed range are shown in Fig. 6a and b. Plots of
the observed PDFs for avalanche durations T are shown in
Fig. 6c and d, again with power law ts over the whole observed
range. In these plots, s and a denote the power law exponents of
avalanche sizes and durations, respectively. The representation
scheme and color codes are the same as in Fig. 5. Likelihood-
ratio tests including the whole observed range again showed
that power laws are better descriptions for avalanche size and
duration PDFs than the exponential form. To extract the power
law exponents from avalanche size and duration PDFs, lower
bounds xmin (see methods) were estimated to account for the
apparent deviations from power law behavior at small scales. To
estimate suitable bounds in the low value regime, we followed
the guidelines developed in ref. 37 and 38. The power law
exponents together with standard errors as uncertainties, which
were calculated under application of a xmin value, are given as
insets in the plots of Fig. 6. The corresponding ts of values
above xmin are provided in the ESI S9.†

Differences in the avalanche statistics between percolating
NP networks with and without insulating matrix are becoming
apparent. Firstly, the probability for larger scale avalanche sizes
and durations is higher for networks without insulating matrix.
© 2022 The Author(s). Published by the Royal Society of Chemistry
Secondly, different tendencies in the calculated power law
exponents were observed. The power law scaling s for networks
without insulating matrix were 2.94, 1.98 and 2.15 whereas the
scaling was steeper for networks with insulating matrix (3.55,
3.58 and 3.85). The same tendency was observed for avalanche
durations where values for a were estimated as 4.09, 3.35 and
2.46 for networks without and 5.19, 4.78 and 5.26 for networks
with insulating matrix.

In order to characterize another property of critical
dynamics,39,40 the dependence between the mean avalanche size
S(T) for given durations T is plotted, as shown in Fig. 6e and f.

From this, the characteristic power law exponent
1
snz

can be

extracted via the slope of S(T). For percolating networks without
insulating matrix, the mean avalanche size for a given duration
scales with 1.4, 1.5 and 1.3, whereas the scaling was 1.2, 1.2 and
1.2 for networks with insulating matrix. According to theory, the
power law exponent for avalanche size s and durations a are

connected to
1
snz

via the crackling noise relationship:39,40

a� 1

s� 1
¼ 1

snz
(1)

An overview of the evaluation of this relationship for all
samples is given in Table 1. Although the theoretical crackling
noise relationship is not perfectly met by most of the samples,
the experimentally determined values are in reasonable
Nanoscale Adv., 2022, 4, 3149–3160 | 3155
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Fig. 6 Analysis of the temporal sequence of network transition events
towards avalanches. Color code for samples without/with insulating
matrix is blue/red. (a) and (b) show the PDFs of avalanche sizes S
together with a maximum-likelihood power law fit over the whole
observed range for samples without and with insulating matrix,
respectively. The power law exponents s noted within the plots were
not calculated based on (the shown) fits over the whole range, but
under application of a xmin value. Reduced plots showing the fits above
xmin, which were decisive for extracting the exponents s, are given in
the ESI S9.† The uncertainties given for the power law exponents
equals the standard error. (c) and (d) show the PDFs of avalanche
durations T following the same evaluation scheme, as for avalanche
sizes. (e) and (f) show the dependence between mean avalanche size
S(T) and avalanche duration T. From these slopes, the characteristic

power law exponents
1
snz

were extracted by linear regression for each

sample.

Table 1 Evaluation of the crackling noise relationship for all perco-
lating NP networks

System Sample

a� 1

s� 1

1

snz

Without insulating matrix 1 1.6 � 0.2 1.4 � 0.1
2 2.4 � 0.4 1.5 � 0.1
3 1.3 � 0.3 1.3 � 0.1

With insulating matrix 4 1.6 � 0.2 1.2 � 0.1
5 1.5 � 0.2 1.2 � 0.1
6 1.5 � 0.5 1.2 � 0.1

3156 | Nanoscale Adv., 2022, 4, 3149–3160
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agreement, with only one sample without insulating matrix
(sample 2) as exception. However, we note that this does not
change the representative character of sample 2, because it
exhibits all more signicant hallmarks on critical dynamics
(LRTC, scale-invariant network dynamics and avalanches) in
line with all other samples. Generally, the evaluation of the
crackling noise relationship crucially requires accurate esti-
mations of the exponents a and s, which could not have been
the case for sample 2. Nonetheless, the crackling noise rela-
tionship provides additional support, that critical dynamics are
observed in percolating NP networks without matrix, as well as
for networks where an insulating matrix was added.

Discussion

The results in this work demonstrate that the implementation
of brain-like behavior, such as critical dynamics or LRTC, viaNP
networks poised at the percolation threshold is feasible for
a broader range of material systems. In contrast to similar NP-
based memristive networks in the literature,26,41 the mem-
ristive activity Ag-NP based networks presented here is expected
to be signicantly dominated by electrochemical metallization
(ECM).8,35,42 More importantly, the comparison between perco-
lating Ag-NP networks with and without a SiOxNy matrix shows,
that the switching dynamics is preserved aer the addition of an
insulating matrix. Similar network behavior, in terms of
temporal correlations in the sequence of network transition
events, scale-invariance of dynamical features like magnitudes
of network transition events and interevent intervals and pres-
ence of scale-invariant avalanches, was observed in both
systems. This indicates that the collective behavior of mem-
ristive gaps is preserved upon addition of SiOxNy. These
observations lead to important implications regarding the
practical application of percolating NP networks. The results
imply that tailoring the network connectivity (which is done
here by the electrical percolation threshold) and insulating
matrix integration (through addition of a ceramic layer) can be
treated as independent from each other in the fabrication
procedure. This is highly benecial, because the establishment
of network functionality (i.e. critical dynamics and LRTC) still
solely requires tailoring of the NP lling factor and a deliberate
insulating matrix integration does not considerably affect these
functionalities.

From a general point of view, the dynamics in a system of
highly interconnected dynamical units crucially depends on the
underlying network connectivity23,43 and dynamical properties
of the individual units,44,45 which makes both features impor-
tant for the engineering of critical dynamics and LRTC in
memristive material systems. Regarding the properties of
individual memristive gaps, it can be expected that their
dynamics are governed by a volatile character. This can be
argued from the fact that rather low currents are owing
through individual gaps during formation of lamentary
structures, which commonly leads to formation of thin (and
therefore volatile) laments.10,29 Comparable volatile dynamics
were, for instance, also observed for Ag/PVP/Ag cross-points in
Ag-nanowire networks.46 Moreover, it is expected that the
© 2022 The Author(s). Published by the Royal Society of Chemistry
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memristive gaps do not behave uniformly, but that the degree of
volatility underlies a certain variance. This is reasoned by the
fact, that the time for spontaneous decay of a lament strongly
depends on parameters like the lament thickness or curvature
on the lamentary structures, which was comprehensively
described for the dynamics in Ag-nanowire/silk/Ag-nanowire
cross-point structures.47 The observed similarity in the critical
dynamics and LRTC of both systems is to a certain degree
surprising, because the underlying ECM-based physical mech-
anisms, by which laments within the memristive gaps are
formed and disintegrated,8,29,48 are presumably altered upon
addition of an insulating layer like SiOxNy. Consequently, the
dynamical properties of individual memristive gaps are also
expected to be altered. Major consequences of adding a matrix
would include for instance, that the migration of Ag+-species is
now enabled within a volume instead of migration on a surface
(when a matrix is missing). Furthermore, the interfacial ener-
gies of laments and diffusivity of Ag-species, which affects
lament morphology, are altered.8,47 Although the conditions,
that are responsible for the memristive gap dynamics, are
different for percolating NP networks with and without matrix,
our results suggests that the underlying dynamics behave
similarly. A possible explanation for this can be provided from
a kinetic point of view, under the assumption that a common
rate determining mechanism inuences the dynamics of both
systems similarly. According to literature,35,42 the ECM-based
memristive dynamics of lamentary Ag-structures can be
kinetically limited by one of three different mechanisms, which
contribute to the formation of laments: Nucleation at cathodic
sites (which initiates lamentary growth), migration of Ag+-
species across the gap or electron-transfer at the Ag-gap inter-
face during electrochemical oxidation. If one of these three
mechanisms is rate limiting for the percolating NP networks
with and without matrix, from a kinetic viewpoint, this mech-
anism could determine the dynamics equally in both systems.
We expect that rate limitation by nucleation does not play a role
for percolating Ag-NP networks, because a growing lament and
a cathodic site will be the same metal, which consequently
excludes any signicant nucleation barrier. Further, the
migration of Ag+-species across the gaps is not considered as
a common rate-determining step, because surface migration
(networks without matrix) and volume migration (with matrix)
are expected to behave kinetically different. Only the electron-
transfer rate at the Ag-gap interface, mainly depending on the
kind of active metal, could contribute similar kinetics to both
systems. Reasoning from a kinetic point of view, a common rate
determining mechanism will most likely result in a similar
behaviour of both systems. We thus propose that a similarity in
the electron-transfer rate of both systems (with and without
insulating matrix) could be an explanation for the similarity in
the observed dynamics.

Conclusion and outlook

In conclusion, we expand the concept of implementing brain-
like critical dynamics and LRTCs via percolating NP networks
for neuromorphic applications26 towards Ag-NP based systems,
© 2022 The Author(s). Published by the Royal Society of Chemistry
where the memristive gap dynamics is governed by electro-
chemical metallization. The network dynamics were character-
ized via ACFs and DFA (indicating the existence of LRTCs) and
analysis of scale-invariant dynamical features and avalanches
(indicating critical dynamics). More importantly, it was shown
that these functionalities are preserved, when insulating SiOxNy

matrices were added onto the percolating NP networks, which
fundamentally changes the nature of memristive gaps from air-
type to solid-state type. This was supported by the absence of
qualitative differences in the critical dynamics and LRTCs of
networks with and without matrix. Both systems exhibited long-
range temporal correlations in the sequence of network tran-
sition events, scale-invariance of dynamical features like
magnitudes of network transition events and interevent inter-
vals and presence of scale-invariant avalanches. These ndings
strengthen the prospects regarding to practical applicability of
percolating NP networks in neuromorphic systems, because
embedding the system (which must be carefully poised at the
percolation transition) without functionality loss is inevitable
for a potential device integration procedure. For future progress
in this eld, we suggest to combine the understanding of
nanoscale Ag-based electrochemical memristive switching
dynamics (which has been extensively studies in a broad range
of materials systems) with network science approaches, to
model the collective network behavior. This may allow for
understanding of the emergent features observed here for the
percolating Ag-NP networks, and especially may elucidate
further details on the impact of an insulating matrix.

Materials and methods
Preparation of percolating NP networks

Conventional UV lithography processes (application of image
reversal photoresist and a li-off process) were used to fabricate
electrode structures on commercial Si-wafers with 1 mm thick
thermal oxide (Siegert Wafer), as illustrated in the ESI S10.†
Either Au or Pt in combination with an adhesion promoter were
used as electrode materials (thickness varied between 50 nm
and 80 nm) due to their electrochemical passivity. A custom-
built Haberland-type GAS30 attached to an in-house high
vacuum deposition setup was used for the deposition of the Ag-
NPs to build up the network in the spacing (�10 mm) between
the electrodes. During the deposition of the Ag-NPs a potential
of 3 V was applied across the electrodes and the current was
monitored continuously using a Keithley 2450 source measure
unit and an electrical feedthrough system. The deposition of Ag-
NPs was stopped by a shutter system aer detection of the
electrical percolation transition (see Fig. 1b where the electrical
percolation transition becomes apparent at around 8.5 min).
When required, the insulating matrix was deposited from
another DC magnetron in same deposition chamber without
breaking the vacuum by reactive sputtering from a Si target and
under a gas mixture of 50 sccm Ar and 0.44 sccm N2. Qualitative
XPS analysis (see ESI S11†) indicates that the resulting matrix
material is silicon oxynitride, formed by oxidation subsequent
to the deposition. The effective thickness of the covering matrix
was 22 nm. The SEM micrograph that was taken from
Nanoscale Adv., 2022, 4, 3149–3160 | 3157
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a percolating NP network without matrix deposited on an
electrode structure as described above, conducted on a Zeiss
Ultra Plus microscope.

Measurement of network dynamics

For the present study, the dynamics of 6 percolating Ag-NP
networks was probed with 3 samples having no matrix and 3
samples having a silicon oxynitride matrix. To probe the
network dynamics, the samples were measured by continuous
detection of the current response (with 84 ms temporal reso-
lution) to the application of a constant DC bias using a Keithley
2400 source measure unit. For each of the 6 samples, a contin-
uous long-term measurement of z11.5 h under a DC potential
of 5 V was performed. The data in Fig. 2a was acquired under
pulsed stimulation (with high levels at different amplitudes
ranging from 1 V and 5 V and a low level of always zero) with
a pulse width of approximately 20 s.

Coefficient of variation

The coefficient of variation (CV) was applied to characterize the
uctuations of current levels observed during the pulse stimu-
lation measurement, as shown in Fig. 2a. The CV was calculated
for the current data acquired at each pulse and is given as

CV ¼ s

m
(2)

where s is the standard deviation and m is the mean. The scatter
plot (Fig. 2b) shows the CV among all pulses of the measure-
ment plotted versus pulse amplitude.

Autocorrelation function

The autocorrelation function (ACF) rk of a discrete temporal for
a given lag k can be estimated as34

rk ¼

1

N � k � 1

XN

i¼kþ1

ðxi � mÞðxi�k � mÞ

1

N � 1

XN

i¼1

ðxi � mÞ2
(3)

where N is the total length of the temporal sequence, xi is an
element of the temporal sequence and m is the total mean of the
temporal sequence. The ACF was applied for the temporal
sequence of (non-thresholded) absolute changes in the network
conductance. The power law scaling 3 of the ACFs was deter-
mined by linear regression up to a lag of 50 datapoints.

Detrended uctuation analysis

Detrended uctuation analysis (DFA) was used as a second
method to characterize temporal correlations and self-affinity in
the temporal sequence of (non-thresholded) absolute conduc-
tance changes. The major advantage of DFA is that inuences
from non-stationaries (which are expected for the present data
due to alternating periods with avalanche activity and absent
activity) are reduced in the quantication. The following DFA
algorithm according to ref. 28 was applied, which can be used to
extract the Hurst coefficient H of a discrete time series:
3158 | Nanoscale Adv., 2022, 4, 3149–3160
Firstly, the mean subtracted cumulative sum series yt of the
time series xi can be calculated

yt ¼
Xt

i¼1

xi � m (4)

where m denotes the mean. For 50 different window sizes W
(equally distributed on the logarithmic scale), the series yt can
be split into boxes with 50% overlap. For each box (with
a specic window size W), the linear trend can be removed via
linear regression and the standard deviation of the box siW can
be calculated. For all of the 50 different window sizes, the
uctuation function F(W) can be calculated as the mean of all
standard deviations with equal box size.

F(W) ¼ siW (5)

Finally, the uctuation function F(W) can be plotted versus
window size W on a double logarithmic scale. The slope of F(W)
calculated via linear regression delivers an estimation of the
Hurst exponent H.

Power law statistics and avalanche analysis

Prior to power law and avalanche analysis, a thresholding
procedure (see ESI S3 and S4†) was applied to discriminate
network transition events in the network state against noise. A
network transition event in the context of this work means
ameasurable change in conductance of a percolated NP network,
which in addition satises the following thresholding procedure.
As a rst thresholding condition, all changes in conductance
smaller than 0.01 G0 were discarded to account for the noise level
of the electrical measurement instrumentation. As a second
condition, only switching events were taken into the evaluation,
which exceed uctuations of 3 standard deviations (dened by
the past 30 values in the temporal sequence). Only above-
threshold transition events were subject to the power law and
avalanche analysis. All probability density function (PDF) ttings
in this work were done using the Python package “Powerlaw”.37

This Python package follows the principles developed in ref. 38.
These ttings have the general power law form (where x is the
distributed quantity and b is the power law scaling exponent)

f(x) f x�b (6)

PDF ttings of network transition event magnitudes DG and
interevent intervals IEIs were done by maximum likelihood esti-
mation of the power law exponents b and g, respectively. Fitting
of DG and IEIs PDFs was done over the whole observed range.

Avalanches were dened analogously to the common evalu-
ation scheme as in neurobiology.21 The temporal sequence of
network transition events is separated into time bins having the
width of the mean IEI value. An avalanche is dened as
a sequence of bins, where each bin shows at least one transition
event. Avalanches are separated by periods with absent activity
(i.e. sequential bins having zero transition events). The
avalanche size S is determined as number of transition events in
one avalanche and the avalanche duration T is the number of
time bins. The tted PDFs for avalanche sizes and distributions
© 2022 The Author(s). Published by the Royal Society of Chemistry
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as shown in Fig. 6 are done viamaximum likelihood estimation
without a lower bound xmin, to show the good agreement of
power laws with the whole observed range. The maximum
likelihood estimations of the exponents s and a, instead, were
performed by constraining the PDF tting to a lower bound
xmin, to account for slight deviation at small scale occurrences.
The value for xmin was determined by minimization of the
Kolmogorov–Smirnov distance (as proposed by ref. 38) and
under the additional constraint that s/b < 0.05 (s is the standard
error of the estimated power law exponent) to exclude that xmin

is chosen too high and valid data will be discarded. All ts above
xmin, that were decisive for estimating the power law exponents
s and a as mentioned in Fig. 6 are given in the ESI S9.†

All tted power law PDFs in this work were tested against
exponential PDF (which could be indicative of non-correlated
temporal sequences) with respect to the whole observed range
via likelihood-ratios, as proposed in ref. 38. Each test suggested,
that the power law form is the better description than the
exponential form under conrmation of statistical signicance
(we observed p-values�0.1). Furthermore, the whole power law
and avalanche analysis was representatively done for a shuffled
temporal sequence of network transition events from a sample
without insulating matrix, as shown in the ESI S12.† There, it
can be seen that power law statistics become destroyed upon
shuffling the sequence of network transition events, which
indicates loss of correlated activity.
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