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Evaluation of bactericidal potential and catalytic
dye degradation of multiple morphology based
chitosan/polyvinylpyrrolidone-doped bismuth
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In this study, 0.02 and 0.04 wt% of chitosan (CS) were successfully incorporated in a fixed amount of
polyvinylpyrrolidone (PVP)-doped Bi,Oz nanostructures (NSs) via a co-precipitation approach. The
purpose of this research was to degrade hazardous methylene blue dye and assess antimicrobial
potential of the prepared CS/PVP-doped BiOs nanostructures. In addition, optical characteristics,
charge recombination rate, elemental composition, phase formation, surface morphology, functional
groups, d-spacing, and crystallinity of the obtained nanostructures were investigated. CS/PVP-doped

Bi,Os nanostructures exhibited efficient catalytic activity (measured as 99%) in a neutral medium for
Received 15th February 2022 d t-f truct hile the inhibiti d usi Verni l inst
Accepted 28th April 2022 opant-free nanostructures while the inhibition zone was measured using a Vernier caliper agains
pathogens Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) at low and high doses to

DOI: 10.1039/d2na00105¢ check antimicrobial activity. Strong bactericidal action was recorded against S. aureus bacteria such that
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1 Introduction

Increased economic activity and fast industrial growth have
exacerbated water pollution and health-related concerns glob-
ally." World Health Organization (WHO) estimates that each
year 2.3 million people die from water-borne (typhoid, cholera,
hepatitis, and diarrhea) and carcinogenic diseases.>* Around
70% of water pollution is produced due to industrial waste dyes
(acidic, basic, and azoic) and heavy metals (cadmium,
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a significant inhibition zone was measured at 3.09 mm.

chromium, nickel, lead, etc.). All such pollutants are highly
soluble in nature and pose a serious health risk to humans and
wildlife.> Dyes are excessively used in paper coloring i.e.,
temporary hair colorants, cotton dyeing, and paper stock
coating. Especially methylene blue (MB), a basic dye, has an
aromatic molecular structure that is stable and nonbiodegrad-
able posing strong ecological threat to aquatic life.® According
to published research, 15% of the most extensively produced
dyes are released into water bodies both directly and indirectly.”
As a result, it is important to employ a method capable of
degrading synthetic dye directly into non-toxic molecules such
as water and carbon dioxide. Scientists use traditional
approaches such as chlorination, aerobic treatment, adsorp-
tion, and ion exchange to remove organic contaminants from
water. Unfortunately, these techniques have drawbacks and
limitations such as high energy consumption, secondary
pollution caused by inadequate removal, and transfer of dye.®®
Catalysis in the presence of nanomaterial-based
conductors attracted interest of researchers owing to their
minimal toxicity, chemical stability, low cost and nature-
friendly characteristics.' In order to degrade synthetic dyes
such as MB, this research uses a reducing agent and nano-
catalyst.”** Mastitis has a substantial economic burden on the
dairy sector. Infectious agents such as bacteria, viruses, and
fungi cause mastitis. Chemical, microbial, and physical
changes in milk, and clinical abnormalities in mammary gland

semi-
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tissues, are all associated with this disease.** Coliform, Escher-
ichia coli and Staphylococcus aureus are the most prevalent
bacterial pathogens linked to mastitis.*>'®

Nanomaterials have attracted researcher's attention due to
their unique physiochemical properties and enhanced dye-
contaminated wastewater treatment methods.””* Small NSs
with size ranging from 1 to 100 nm have astonishing surface-to-
volume ratios when compared to those of bulk chemical
compositions, resulting in significant increases in chemical
(biological, catalytic activity, etc.) and physical properties. Metal
oxide nanomaterials have large surface area, and attractive
nanostructural, optical, mechanical, and thermodynamic
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characteristics that are advantageous for catalysis and anti-
bacterial activities.** Numerous metal oxide nanomaterials
(ZnO, TiO,, La,03, Ce0,, and Bi,03) are being used in catalysis
and to check antibacterial activity; particularly as an important
p-type semiconductor, Bi,O; has remarkable anode semi-
conductor properties including a broad band gap, low toxicity,
high conductivity, antibacterial activity and degradation capa-
bility for organic dyes.*** Chemical (co-precipitation, sol gel,
and redox reactions) and green synthesis techniques are
utilized to synthesize Bi,O; NSs.>*>***' Among these, the co-
precipitation method is considered as ecofriendly, inexpen-
sive, energy-efficient and easy to use.”® A number of research

Added CS

(a) Maintain
pH~12
s —
LS el I
A% & &
A 2y
* * %
* kW

Addition of PVP (2%, 4%)
; < 1

— Y

«—

Bi(NO,);.5H,0 Preparation PVP-Bi,0, PVP/CS-Bi,0,

of Bi,0;

Experimental Steps
B Heating

@ Stirring

@ Centrifugation

(b)

H,O0

o
=

Bi,0; -NC

C

\

N

)

Nl +

= &im

/\L
uondaosa(q é

$

Bi,O; -NC
Fig. 1

2714 | Nanoscale Adv, 2022, 4, 2713-2728

Multiple morpholgy based
PVP/CS-Bi,O; nanostrucutres

H+ /f_\\
M e\

H

N
HyC/ 2 Nen,
7/ LMB

(a) Synthesis of PVP/CS-doped Bi,Os3 (b) catalysis mechanism of the prepared NSs.
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studies were conducted on Bi,O3; NSs prepared through various
synthesis routes to check the influence of antimicrobial activity
and dye degradation.*>** However, the obtained results were
not impressive for bactericidal action and dye degradation
performance. The addition of a polymer into metal oxides
increases their stability and improves physiochemical proper-
ties which results in efficient dye degradation and antibacterial
performance.

Polymers can interact with metal ions either through
complex or ion-pair formation, which might be an attractive
substitute for a stabilizer and thus can be targeted to attain
specific physicochemical parameters of NSs.>* Polymeric mate-
rials have received much attention from scientists for usage in
biological and environmental applications.** Numerous types of
polymers (polyvinyl alcohol, polyvinyl chloride, poly-
vinylpyrrolidone, and chitosan) are used for metal oxide doping
to attain significant outcomes for various applications.**™**
Among them, PVP is a synthetic polymer that is considered an
effective capping agent for metal oxide NSs. Its properties are
attributed to the presence of both carbonyl groups and func-
tional groups that strengthen metal oxide NSs within its
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composite.*>*” As it exhibits excellent physicochemical proper-
ties, it is used as an additive in different materials and to
stabilize NSs.*** Coincidently, recent studies have shown that
PVP has great water solubility, low toxicity, biocompatibility,
and exhibits promising results against antimicrobial
activity.>>>> Chitosan is an alkaline polymer prepared by
partially hydrolyzing chitin, the primary component of crusta-
ceans and fungus cells, and extensively used for pharmaceutical
and biomedical purposes. It has superior biodegradability,
biocompatibility, low toxicity, and film-forming characteris-
tics.>® CS is mainly composed of amino and hydroxyl groups,
both significant in metal ion chemical adsorption, and these
groups can bind with metal ions more efficiently than any other
polysaccharide, making a strong template for synthesizing
metal oxide NSs.””-*!

The motivation of this research is to synthesize PVP/CS-
doped Bi,O; NSs utilizing an ecologically friendly co-
precipitation technique for degradation of organic dyes from
contaminated water and also to assess material's bactericidal
potential. Numerous characterization techniques were
employed for detailed analysis of synthesized NSs. Catalytic
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(a) XRD patterns, (b) FTIR spectra and (c—f) SAED images of PVP/CS-Bi,Oz (2% and 4%) NSs.
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activity (CA) tests were performed for degradation of MB dye.
Furthermore, Staphylococcus aureus (S. aureus) and Escherichia
coli (E. coli) pathogens were used to examine its potential for
antibacterial activity.

2 Experimental section
2.1 Materials

Bismuth nitrate (Bi(NO3);-5H,0, 98%) was acquired from BDH
Laboratory Supplies. Sodium hydroxide (NaOH, 98%), poly-
vinylpyrrolidone (PVP) and chitosan (CS) were supplied by
Sigma-Aldrich.

2.2 Synthesis of polyvinylpyrrolidone/chitosan-doped
bismuth oxide

0.5 M of Bi,O; was prepared under continuous stirring at 80 °C.
NaOH was incorporated dropwise to maintain pH = 12 under
vigorous stirring for 1 hour. Further the colloidal solution was
centrifuged at 7500 rpm repeatedly and dried for 12 hours at
150 °C. The obtained Bi,O; NSs were crushed into fine powder.
Using the above method, the desired amount of PVP was dis-
solved to prepare PVP-doped Bi,O; and various concentrations
of CS (2% and 4%) were added to get PVP/CS-doped Bi,O3; NSs
as represented in Fig. 1(a).

2.3 Catalysis

The degradation efficiency of synthetic dyes in the presence of
sodium borohydride (NaBH,) and the synthesized nano-catalyst
was determined through CA measurements. MB is a positively
charged thiazine dye frequently used as a reductant in analytical
chemistry, and is colorless in the reduced form and blue in the
oxidized form.®* Using a quartz cell, 0.1 M NaBH, solution (400
pL) was dissolved in 3 ml MB. Furthermore, 400 pL synthesized
NS solution was incorporated in aqueous solution of MB.
Absorption reaction progress was spectrophotometrically
monitored at room temperature. In the presence of NaBH,, MB
changed to leucomethylene confirming degradation of dyes.
Samples without a nano-catalyst were referred to as blank. %
degradation was calculated as:
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Co—C;

0

% Degradation = x 100
where C, represents initial absorbance and C, represents the
concentration at specific time.

2.3.1 Catalysis mechanism. Adding a nano-catalyst and
reducing agent to the dye are the major factors considered to be
significant in the catalysis mechanism as demonstrated in
Fig. 1(b). The chemical material provides an e~ to the ongoing
reaction referred to as the reducing agent. MB receives an e~
from the diminishing agent in a chemical reaction to act as an
oxidizing agent. The redox reaction occurs during CA, and
involves the transfer of an e~ from the reductant to the acceptor
of an oxidant. This leads to electron absorption in MB and causes
the breakdown of the synthetic dye. Furthermore, MB was tested
in the presence of reducing agent (NaBH,), this oxidation reac-
tion was incredibly slow and time consuming. To overcome these
issues, incorporation of nano-catalysts (Bi,O; and PVP/CS (2%,
4%)-doped Bi,03) into oxidation-reduction reactions serves as
electron relay and allows electron transfer from the donor (BH, )
to the acceptor (MB). Adsorption of BH, ™ ions and dye molecules
is increased by using NSs while a large number of active sites
encourage them to react with each other quicker resulting in
efficient dye degradation.®*** The presence of a reducing agent
and nano-catalyst increases the degradation efficiency. As re-
ported above, a catalytic route was adopted for dye degradation
utilizing reducing agents and nano-catalysts in this study.®

2.4 Isolation and identification of Staphylococcus aureus
and Escherichia coli

Large quantities of dairy milk specimens were obtained from
Pakistani public, private institutions and dairy farms and eval-
uated for surf-field mastitis. Furthermore, the acquired samples
were incubated in 5% sheep blood agar. On Mannitol salt agar
(MSA) and MacConkey agar (MA), colonies were formed in order
to isolate Gram-positive (G +ve) S. aureus and Gram-negative (G
—ve) E. coli pathogens, respectively. Pharmacological (catalase
and coagulase) and morphological (gram staining) methodol-
ogies were used to identify distinctive colonies.
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(a) UV-vis spectra (b) PL spectra of PVP/CS (2%, 4%)-doped Bi»Osz NSs.
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2.5 Antimicrobial activity

Antibacterial performance of the prepared NSs was examined
through the agar well diffusion approach with germ strain (G
+ve and G —ve) swabbed 1.5 x 10° CFU mL™" on MSA and MA
for S. aureus and E. coli, respectively. Moreover, negative and
positive controls were assigned to DIW (50 pL) and ciprofloxacin

IPoaras=1lvls e ol v sl
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(0.005 mg/50 uL), correspondingly. Different concentrations of
Bi,O3 and PVP/CS (2%, 4%)-doped Bi,O3; NSs were injected into
a 6 mm well on MSA and MA plates with a micropipette and
sterilized cork borer at low (0.5 mg/50 pL) and high (1.0 mg/50
uL) doses. Petri plates containing doses were incubated for 24 h
at 37 °C. Furthermore, a Vernier caliper was used to assess the

B spectrum 20

B Spectrum 25

. Spectrum 36

Fig.4 EDS image of (a) Bi,Os (b) PVP-doped Bi,Os3 (c) PVP/CS 2%-Bi,Os (d) PVP/CS 4%-Bi,O= and (e) mapping image of PVP/CS 4%-Bi,Oz NSs.
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diameter of the inhibition zone that results in the determina-
tion of antibacterial performance. One-way variance analysis in
SPSS 20 was employed to determine the bacterial efficiency by
measuring the inhibitory zone.

2.6 Characterization techniques

Structural and crystalline behaviors of obtained powder were
determined using powder XRD ranging from 10° to 60°. FTIR
spectroscopy was performed between 4000 and 400 cm ' to

Fig. 5
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identify functional groups present in PVP/CS (2%, 4%)-doped
Bi,O; NSs. The chemical composition, surface study,
morphology and d-spacing of PVP/CS (2%, 4%)-doped Bi, O3 NSs
were analyzed through EDS, SEM and HR-TEM respectively.
Additionally, SAED analysis was performed to check crystallinity
of the prepared samples. A Genesys 10S UV-vis spectropho-
tometer was employed to determine the optical properties while
PL spectroscopy was used to investigate electron-hole recom-
bination in the synthesized sample.

20 nm

(a—d) TEM image of BiOz and PVP/CS (2%, 4%)-doped Bi,Os and (a’—d’) d spacing of Bi,Os and PVP/CS (2%, 4%)-doped Bi,Oz NSs.

© 2022 The Author(s). Published by the Royal Society of Chemistry
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3 Results and discussion

XRD identifies NSs crystallinity, crystal structure, and crystal
size ranging from 20 10-60° (Fig. 2(a)). Diffraction peaks
appearing at 26 values 29.503° (311), 33.040° (122), and 47.577°
(140) revealed the monoclinic structure of Bi,O3, well matched
with the XRD standard card (JCPDF 01-083-0410/00-041-1449).%
An additional broad characteristic peak observed near 13.5°
corresponds to PVP and shows its amorphous nature.®” Upon
doping, PVP peaks become more broadened and less intense
than that of a pure nanocatalyst owing to enhancement in
structural instability and the decrease in the crystallite size.***
Furthermore, an increasing amount of CS results in diffraction
peak shift while decreased intensity is attributed to the
enhanced structural disorders and significant decrease in the
crystallite size. The crystallite size calculated from the most
intense peak of all prepared samples using the Debye-Scherrer
formula was 69.5 nm, 17.5 nm, 58.4 nm, and 26.25 nm for Bi,O;
and PVP/CS (2%, 4%)-doped Bi,O3; NSs respectively. FTIR was
used to elucidate functional groups in the prepared Bi,O; NSs
(Fig. 2(b)). The Bi-O-Bi stretching vibration, C-C stretching and
product vibration mode of NO; were assigned to 540 ecm ™",
1076 cm™ %, 1357 cm™ ' bands correspondingly.**”®”* The man-
ifested band at 1640 cm ' was attributed to the bending
vibration of H,O while the band at 3300-3500 cm *
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corresponded to the stretching vibration of absorbed hydroxyl
function groups.””® Furthermore, bands at 2950 cm~' and
1652 cm ™' in FTIR spectra of PVP were assigned to the presence
of asymmetric stretching of CH, and stretching of C-O (amide
C=0 bond), respectively.” Bands at 1423 cm™ ', 1288 cm ™, and
1652 cm™ ' have been assigned to C-H bending, CH, wagging
and the -C=0 group respectively.” With the addition of pure
PVP in the prepared Bi,O; NSs, the band which appeared at
1652 cm™ ' shifted towards a lower wavenumber at 1640 cm ™"
probably indicating that the C=O0 bond is getting weakened
and there exists an interaction between metal ions and PVP
through oxygen of the C=0 group of the polymer. This dis-
tinguishing band may show the interaction of PVP with metal
ions.” Upon doping with chitosan, shift of bands toward
a lower wavelength was observed, which is attributed to the -OH
or NH, functional group of CS.”*7® Strong hydrogen bonding
interactions between two types of molecules form a homoge-
neous phase.” Additionally, SAED analysis indicates bright
circular rings of Bi,O; and PVP/CS-Bi,O; NSs represented in
Fig. 2(c-f) suggesting highly crystalline nature of the samples.
XRD measurements satisfying Bragg's diffraction conditions
were well correlated with various planes of NSs.

Fig. 3(a) reveals the band gap energy (E,) and optical prop-
erties of the synthesized samples assessed with a UV-visible
spectrophotometer between 250 and 500 nm. It shows
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Fig. 6 Catalytic activity of dopant free and PVP/CS (2%, 4%)-doped Bi,Oz NSs in (a) acidic medium (b) basic medium and (c) neutral medium.
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catalyst in the basic medium.

a considerable absorption peak at 295 nm for Bi,05.*° The
wavelength acquired from UV-visible absorption spectra deter-
mined E, of dopant free and PVP/CS-doped Bi,O; NSs to be
4.18 eV, 4.27 eV, 4.09, and 4.13 eV respectively.** Upon doping
with PVP, the absorption in higher wavelength (blue shift) was
observed, ascribed to an increase in E, and decrease in the
crystallite size. Furthermore, addition of CS resulted in
absorption toward longer wavelength (red shift) indicating
a decrease in E, and increase in the crystallite size. Increasing
amount of CS reduces the crystallite size that results in
increased E; which is well matched with the XRD results.

PL analysis elucidates the electron-hole pair recombination
process in all synthesized samples as shown in Fig. 3(b). The
photoluminescence signal is produced when electrons in the VB
are excited to the CB at an excitation wavelength and subse-
quently return to the VB.* Bi,O; NSs emit broad emission peaks
in the visible range from 520-542 nm, attributed to Bi** ions,
when excited at 300 nm.** The luminescence of ions in the green
region is produced by the *P;-'S, transitions, or charge transfer
between the bonding oxygen and Bi*" ions.*** When PVP was
incorporated, peak intensity decreased, indicating lower charge
recombination while peak intensity increased upon increasing
the concentration of CS, which suggests a high photo-generated
charge carrier recombination tendency.®*

2720 | Nanoscale Adv., 2022, 4, 2713-2728
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(a) Plot of the concentration ratio (C/Co) versus time, (b) plot of In(Co/Cy) versus time spectra for dye reduction and (c) stability of the

The chemical composition of PVP/CS (2%, 4%)-doped Bi,O3
NSs determined through EDS is represented in Fig. 4(a-d).
Strong peaks of Bi and O were observed that confirm the pres-
ence of Bi,O; NSs in the synthesized samples. The carbon peak
is attributed to PVP/CS used in the samples. The sodium (Na)
peak was probably generated by the use of NaOH to sustain the
pH of samples while Au peaks originate due to the coating
sputtered upon the samples to reduce charging effects. Small
peaks of Cu and Zn could be attributed to the effect of the brass
sample holder utilized during EDS observation and to some
contamination. Additionally, EDS mapping of the as-prepared
higher doped specimen was carried out to analyze the distri-
bution pattern of its elemental constituents in order to check
additional interfacial contact as represented in (e). Five
components (Bi, O, Na, Cu, and Zn) were found to spread in the
higher doped samples. As already mentioned, Na, Cu, and Zn
were assigned to contamination, the sample holder used for
EDS analysis.

TEM images confirmed the morphologies of Bi,O; and
doped Bi,0; as illustrated in Fig. 5(a-d). The image of the
control sample showed multiple morphologies including
quantum dots while a few nanorods were also observed
(Fig. 5(a)). Addition of PVP showed that quantum dots were
covered with PVP (Fig. 5(b)). Addition of low concentration of CS

© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 8
coli at low dose.

to PVP/Bi,O; resulted in agglomeration of nanorods and
quantum dots, which led to the formation of nanoclusters
(Fig. 5(c)). Upon higher amount of CS addition, agglomeration
increased with the significant nanorod-type structure of CS

Table 1 Antibacterial efficacy of Bi,Oz and PVP/CS (2%, 4%)-doped
Bi,O3 NSs

S. Inhibition Inhibition
aureus zone (mm)  E. coli zone (mm)
0.5mg/ 1.0 mg/ 0.5mg/ 1.0 mg/
Samples 50 puL 50 pL 50 puL 50 pL
Biy0; 0.85 1.25 0 0.60
PVP doped Bi,0; 0.95 2.35 0 0.85
CS 2% 1.15 3.05 0 1.05
CS 4% 1.35 3.09 0 1.25
Ciprofloxacin 4.25 4.25 4.25 4.25
DIW 0 0 0 0

© 2022 The Author(s). Published by the Royal Society of Chemistry

In vitro antimicrobial activity of the prepared NSs against (a) S. Aureus at high dose (b) S. Aureus at low dose (c) E. coli at high dose and (d) E.

visible (Fig. 5(d)). Additionally, interlayer d-spacing was calcu-
lated from HRTEM images using Gatan software (Fig. 5(a’-d’)).
Bi,0; and PVP/CS (2%, 4%)-doped Bi,O; NS d-spacing values
were found to be 0.271 nm, 0.311 nm, 0.193 nm, and 0.199 nm,
which are well compatible with the XRD results.

Catalytic activities of pure and PVP/CS (2%, 4%)-doped Bi,O3
NSs with NaBH, for MB degradation under acidic, neutral, and
basic conditions were investigated using a UV-vis spectropho-
tometer. Dye sludge is frequently released at various pH levels;
the rate of degradation is influenced by the pH solution and
affects nano-catalysts that have been synthesized. Undoped and
PVP/CS (2%, 4%)-doped Bi,O; nanomaterials showed the
maximum degradation of 99.48%, 77.90, 97.95%, and 75.54%
in neutral (pH = 7), 98.35%, 98.93%, 98.27% and 96.68% in
basic (pH = 12), and 89.54%, 68.07%, 94.51% and 93.84% in
acidic (pH = 4) media (Fig. 6(a—c)). In all media, PVP/CS (2%)-
doped Bi,O; demonstrated the highest catalytic activity. The
surface area crystallite size and shape of the nano-catalyst
substantially influence CA. On doping with CS, variation in

Nanoscale Adv., 2022, 4, 2713-2728 | 2721
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Fig. 9 Graphical representation of antimicrobial activity of (a) S. Aureus and (b) E. coli, and efficacy of (c) S. Aureus and (b) E. coli pathogens.

Table 2 Literature comparison of antibacterial activity of the synthesized NSs with the present study

Nano-catalyst Synthesis route Antibacterial activity Outcome References
Bi,O; nanoparticles Pulsed laser ablation 0% against E. coli No effect at different 37
concentrations
Bi,O; nanoparticles Bacillus licheniformis on 16% against S. aureus — 38
methicillin-resistant
Bi,O; nanoparticles Green synthesis 2 mm for E. coli and 1 mm Minor enhancement in the 39
for S. aureus in 10 mg mL ™" inhibition zone on
concentration increasing the concentration
RGO-Bi,0; nanocomposite Solvothermal method 6.5 mm (100 g mL ") against Increase in concentration of 40
E. coli RGO-Bi,0; leads to higher
toxicity
Chitosan biopolymer- Ultrasound-assisted 14 and 15 mm against E. coli — 41

functionalized zinc-doped
bismuth oxide nano needle
Bi,O; nanostructures

the dye degradation was observed, which is attributed to the
presence of more active sites provided by catalyst's large surface
area which results in high catalytic efficiency. In addition, the
surface area is generally large, but the influence of the nano-
catalyst is limited due to micro-porosity, which inhibits the

chemical precipitation

method
Co-precipitation

2722 | Nanoscale Adv, 2022, 4, 2713-2728

and S. aureus respectively in
200 mg mL " concentration
1.25 mm, 0.60 for S. aureus
and E. coli respectively in 1.0
mg/50 pL concentration

By addition of dopants the
antibacterial activity
gradually increased

Present work

reactants from diffusing to the catalyst surface.?” Furthermore,
a slight difference between an acidic and basic medium is
ascribed to increased electrostatic attraction between MBY,
a positively charged dye and the catalyst which is negatively
charged. The nanocatalyst surface in the basic medium tends to

© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 10 Schematic mechanism for antimicrobial activity of the prepared NSs.

acquire a negative charge while absorption of cationic adsor-
bate species in acidic media is hindered by the catalyst's posi-
tively charged surfaces.*®® The charge on the catalyst surface
grew progressively negative as pH increased; enhancing the
adsorption behavior of cationic dyes on Bi,O3; and PVP/CS (2%,
4%)-doped Bi,O3; nano-catalysts.

The large surface area of PVP/CS-doped Bi,O; NSs resulted in
enhanced catalytic activity. Consequently, the catalytic degra-
dation of MB by PVP/CS (2%)-doped Bi,O; NSs is significantly
improved, and the dye is effectively degraded Fig. 7(a). The rate
constants (k) have been calculated for catalytic degradation
kinetics by measuring slopes of In(Cy/C;) against time. Degra-
dation rate constant k for undoped and doped Bi,O; NSs was
calculated to be 0.03095, 0.24174, 0.06604 and 0.66335 min %,
respectively Fig. 7(b).

Investigating the stability of the nano-catalyst is of economic
importance. As mentioned earlier, catalytic activity in the basic
medium exhibits excellent dye degradation results. Therefore,
the stability of the catalyst in the basic medium was investigated
by allowing the experiment to stay for at least 72 hour in order to
examine whether the reduction of dye as observed in the pres-
ence of the nanocatalyst is stable or not. In this case, the
degraded dye was kept in the dark and the degradation was
monitored using absorption spectra obtained through a UV-vis
spectrophotometer every 24 hours, as shown in Fig. 7(c). The
obtained results indicate that no loss of degradation occurred
under stable conditions for 72 h. Degradation was observed to
be in its fairly original form which affirms the stability of the
catalyst.

Fig. 8 represents bacterial activity of doped and undoped
Bi,O; NSs which is summarized in Table 1. Comparison to the
E. coli results reveal that doped Bi,O; has improved bactericidal
synergism and activity against S. aureus. The inhibition zone

© 2022 The Author(s). Published by the Royal Society of Chemistry

was recorded from (0.85-1.35) to (1.25-3.09) in S. aureus at low
and high doses and (0.60-1.25) in E. coli at high dose as shown
in Fig. 9(a and b). All concentrations of E. coli at low dose
exhibited zero efficacies as shown in Fig. 9(d). A negligible
efficiency was shown by Bi,O; for E. coli and S. aureus at low and
high doses respectively Fig. 9(c and d). Furthermore, inhibition
zone 4.25 mm against S. aureus and E. coli for ciprofloxacin
(positive control) parallel to 0 mm DIW (negative control) was
recorded. Apart from this, doped Bi,O; NSs showed substantial
(P < 0.05) antibacterial efficacy against S. aureus as compared
with E. coli. In general, cell walls of Gram negative bacteria are
thicker and have a more complicated structure than Gram
positive bacteria. The comparison of the present work with the
literature is presented in Table 2.

Nanomaterials produce oxidative stress that is directly
proportional to their concentration, shape and size. The particle
size and concentration affect antibacterial activity. The size of
the material has an inverse relationship with the antimicrobial
efficacy.®® Small sized particles produce more reactive oxygen
species (ROS) causing cytoplasmic components to extrude and
kill bacteria by harmful microorganism membrane implant.®>*>
Sufficient distribution of Bi*" inside bacterial cells increases its
antimicrobial activity as it destroys bacterial membrane
stability and inhibits biofilm formation as shown in Fig. 10.**

4 Conclusion

In the present work, Bi,O; and PVP/CS-doped-Bi,O; NSs were
successfully synthesized to achieve an improved bactericidal
and catalytic activity. Among all the prepared samples, CS
doping in PVP-Bi,0; with 2% and 4% concentrations showed
effective catalytic and antimicrobial activities, respectively. In
view of the experimental results, Bi,O; exhibited a monoclinic

Nanoscale Adv., 2022, 4, 2713-2728 | 2723
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structure with varying crystallite sizes (69.5 nm, 17.5 nm,
58.4 nm, and 26.25 nm) upon PVP and CS doping. The peak
shifts observed towards lower wavelength revealed with FTIR
confirmed the presence of dopants while a significant peak was
observed at 540 cm ' for Bi,0;. Aggregated quantum dot
morphology of Bi,O; was observed while with the addition of
PVP, a layer was formed on quantum dots and a nanocluster
was observed upon CS doping. Additionally, nanocluster
formation was recorded with an increasing amount of CS, all of
which was confirmed with TEM images. The interlayer d-
spacing (0.271 nm, 0.311 nm, 0.193 nm, and 0.199 nm) was
calculated with HR-TEM images showing good agreement with
XRD. Optical properties and band gap (4.18 eV, 4.27 eV, 4.09,
and 4.13 eV) results were obtained through a UV-vis spectro-
photometer. PL spectroscopy revealed a lower peak intensity
upon doping with PVP, indicating the lower charge to hole
recombination rate, whereas peak intensity was increased for
different concentrations of CS, showing an enhanced charge to
hole recombination. In conclusion, Bi,O; doped NSs with
natural polymers were found to be ecologically friendly, low-
cost and effective against pathogens and catalytic dye
degradation.
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