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This study used an artificial intelligence (Al)-based crystal inverse-design approach to investigate the new
phase of two-dimensional (2D) pristine magnesium hydride (Mg,H,) sheets and verify their availability as
a hydrogen storage medium. A 2D binary phase diagram for the generated crystal images was
constructed, which was used to identify significant 2D crystal structures. Then, the electronic and
dynamic properties of the Mg,H, sheets in low-energy periodic phases were identified via density
functional theory (DFT) calculations; this revealed a previously unknown phase of 2D MgH, with a P4m?2
space group. In the proposed structure, the adsorption behaviors of the Li-decorated system were
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Accepted 8th April 2022 theoretical grawmetrlc_ density of 6 wt%, with an average H, adsorption energy of —0.105 eV. Therefore,
it is anticipated that P4m?2 MgH, sheets can be employed effectively as a medium for hydrogen storage.

DOI: 10.1035/d1na00862e Additionally, this finding indicates that a deep learning-based approach is beneficial for exploring
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1 Introduction

Hydrogen energy is a promising clean energy source that can be
utilized as a primary energy carrier with extensive applica-
tions."” However, designing a crystalline material for hydrogen
storage with the required high gravimetric densities for opera-
tion under ambient thermodynamic conditions remains
a challenge. Consequently, numerous chemical hydrogen host
materials with high hydrogen capacities have been suggested
for such applications, including metal hydrides (MHs),>*
chemical hydrides,” and complex hydrides.*” Due to their
specific properties of high thermal stability, low cost, reaction
reversibility, and significant gravimetric hydrogen storage
capacity, MHs have long been regarded as a promising material
for hydrogen storage. However, they are limited by high
desorption temperatures, low plateau pressure under ambient
conditions, and relatively slow absorption/desorption kinetics;
therefore, much research, including simulations, has been
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focused on enhancing the properties of MHs to enable their use
in hydrogen storage applications.®

Another promising approach is the use of lightweight phys-
ical adsorbents with high surface areas, reversible H, charging
(and discharging), and facile kinetics, such as carbon-based
nanostructures (e.g. nanotubes®®), metal-organic frame-
works,"** and covalent organic frameworks.”*'* Unlike chem-
ical storage, generally, these physical adsorbents are limited by
weak van der Waals interactions between adsorbed hydrogen
molecules and substrates, which significantly reduces the H,
storage capacity of these substances due to the desorption of H,
at very low temperatures. Consequently, metal ions,">*®
including alkali metals, alkali earth metals, and transition
metals, have been extensively used as dopants to produce ideal
H, binding strengths (~—15 kJ mol™*) and increase H, storage
capacities." In this regard, much research has been conducted
on the use of two-dimensional (2D) materials with a lightweight
alkali metal or alkali earth metals for storing hydrogen. For
example, many potential hydrogen storage systems have been
proposed using Li-, Na-, or Ca-decorated graphene,'®>* boron-
nitride layers,*** and carbon-nitride compounds.>*

Recently, much research has been conducted on the struc-
ture of 2D groups of MHs, and over 100 stable MH monolayers
have been reported. These 2D MHs were explored using
substitution-based systematic structural investigations. They
generate known layered lattice structures by combining
hydrogen with all the metals in the periodic table and offer
arich array of electronic properties for use in materials ranging

© 2022 The Author(s). Published by the Royal Society of Chemistry
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from metals to wide-gap semiconductors.” However, despite
their high gravimetric hydrogen capacity in the bulk state and
their large surface area for the attachment of additional
hydrogen molecules, the use of MH sheets as a hydrogen
storage material has not been proposed. To date, the identifi-
cation of novel 2D MHs has been via substitution-based
methods, although depending on the combination of crystal
structural motifs and atomic elements, these approaches could
omit a structure from the search area.

Considerable efforts have been made to use artificial intel-
ligence (AI) technology to predict new material structures.
Compared with existing well-known structure-prediction tech-
niques, such as evolutionary algorithms or substitution-based
methods, deep learning-based approaches allow the computa-
tional cost to be reduced by exploring scoped target chemical
spaces, which are represented as a continuous latent vector. In
chemistry, two of the most popular generative models are the
variational autoencoder and the generative adversarial network
(GAN); these are used with various chemical representations,
such as graph-based encoding for crystal structures, three-
dimensional (3D) grid images, and point cloud images.
Recently, Xie et al. developed a CDVAE model to design the
periodic structure of stable materials.”® Long et al. developed
a GAN-based inverse design framework for crystal structure
prediction in the binary Bi-Se system.* Fung et al. proposed an
inverse design framework MatDesINNe and applied it to MoS,
for band gap engineering.** A compositional conditional GAN
(CCCGAN) model for designing Mg-Mn-O ternary materials
was devised that successfully predicted 23 new crystal struc-
tures.** We utilized this model in our study, noting that it can
generate the structural motifs of materials using point-cloud-
based structural image representation without any elemental
consideration.This study used a deep learning-based generative
model and a systematic theoretical study using the density
functional theory (DFT) to propose a new crystal structure for
a 2D Mg,H, sheet. In terms of hydrogen storage, 2D MgH, with
a PAm?2 space group was identified as a promising medium, and
pristine and Li-doped 2D MgH, were investigated as potential
materials for storing hydrogen. Additionally, the adsorption
energy and configuration of gas molecules were analyzed, and
the adsorption conditions of multiple hydrogen molecules on
Li-decorated MgH, were investigated.

2 Computational methodology
2.1 DFT calculations

The calculations in this study were conducted using the DFT
method with spin polarization, as implemented in the Vienna
Ab initio Simulation Package (VASP).*>** Projector-augmented
wave (PAW)* potentials (as parameterized by using the Per-
dew-Burke-Ernzerhof (PBE)*® functional within the generalized
gradient approximation) were used together with dispersion
corrections obtained from Grimme's DFT-D3 method® to
capture the inherent long-range atomic and molecular interac-
tions between MH and Li, and hydrogen molecules with the Li-
MH system. All calculations used a cut-off energy of 520 eV, and
the system was relaxed until the forces on each atom were below

© 2022 The Author(s). Published by the Royal Society of Chemistry
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0.01 eV A%, Supercells of 2 x 2 or 3 x 3 were used with a I'-
centered 12 x 12 x 1 or 8 x 8 x 1 k-point mesh. To prevent
artificial interactions, the periodic supercell was separated in
the z-direction by a vacuum space of over 20 A, whereas the
thermal stability of the metal hydride was verified using Ab
Initio molecular dynamics (AIMD) simulations. The molecular
dynamics simulations of the MgH, sheet were conducted at
room temperature (300 K), and this aspect was explored using
a 5 x 5 supercell. The time step was set to 3 fs, and the simu-
lation went up to 6 ps. The ionic temperature was controlled via
a Nosé-Hoover thermostat.

2.2  Generative model

For the application of deep learning techniques for exploring
materials, this study used a GAN model as the learning model
for its 2D crystal structure system. A GAN comprises two
network groups—a generator and discriminator—which learn
in a hostile manner. The goal of the generator group is to learn
the distribution of training data and create a real fake image,
which it does by using the Gaussian noise vector as an input to
produce a fake image. The purpose of the other GAN network—
the discriminator—is to learn better discrimination between
the real and the fake, and it is trained to provide improved
feedback to the generator. The fake outputs produced by the
generator become closer to the actual image by reducing the
Wasserstein distance between the distributions of fake gener-
ation and real training data. To ensure learning stability,
deconvolution layers were applied to both the generator and
discriminator. The GAN model for applying point cloud input to
the crystal structure was obtained from Kim et al.,* and the
compositional conditional part of the model was removed and
utilized for successive training progression. The deep learning
model was constructed using PyTorch 1.5.

3 Results and discussion

3.1 Training of the generative model and material
prediction

Before configuring a deep learning neural network for the
generation of a new 2D crystal structure, it was necessary to
select an appropriate representation that preserves the struc-
tural information of crystals with a reasonably sized memory.
To encode the solid crystal structures into low-dimensional
representations, a point-cloud-like image representation of
a 2D matrix was used comprising a unit cell, lattice parameters,
and fractional coordinates of each element.** No additional
processes were required since this representation is both
invertible and consistent with the material structures. This
representation is advantageous over graphical representations,
as the inverse transformation from an image to a crystal
structure is a precise correlation. Furthermore, this represen-
tation has low memory requirements compared with 3D voxel
representations.*

First, 2D structural data were obtained from the Material
Clouds 2D structure database,®® which is a data subset of
approximately 1000 easily exfoliable 2D monolayers containing

Nanoscale Adv., 2022, 4, 2332-2338 | 2333


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d1na00862e

Open Access Article. Published on 08 April 2022. Downloaded on 10/24/2025 2:29:40 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Nanoscale Advances

less than 8 atoms per unit cell. There were 134 binary and 105
ternary system nanosheets whose stability had been confirmed
previously via DFT computational exfoliation calculations. As
the aim was to generate binary MHs, the initial training set
contained 134 unique structures. The problems of data shortage
and invariance were addressed by augmenting the data using
transitional and rotational transformations for each initial
original structure of about 1000 structures.** Following data
preprocessing, 134 000 training data sets were available for the
training of this study's model. Fig. 1 shows the complete
configuration of the model.

The model was trained for approximately 200 epochs, and
following the training with the 2D binary system data, it was
confirmed from the model's losses that its learning had pro-
gressed satisfactorily. A total of 500 crystal images of binary Mg-
H 2D nanosheets were generated via the trained generator. To
evaluate the performance of the generative model, we calculated
the validity and reproduction ratio. Validity is a relatively weak
criterion based on simple physical rules and was proposed by
Court et al.*® According to this criterion, a structure is valid as
long as the shortest distance between any pair of atoms is larger
than 0.5 A. In our model, 96.8% of structures were observed as
valid structures. The reproduction ratio means how much
percent of the training data was reproduced during the gener-
ation. We use StructureMatcher from pymatgen,*® which finds
the best match between two structures considering all invari-
ances of materials. The matching criterion parameter is set as
stol = 0.5, angle_tol = 10, and Itol = 0.3. Totally, 87.3% of the
structural motifs in the training data were reproduced in our
model. Then, the structural optimization was performed using
the loose convergence criterion (while fulfilling the preset
material project relaxation option) for the generated material
candidates, and the formation energy of each was determined
(Fig. 2). The formation energies are defined as follows:

Ermert = (Mg X Enmgsolidy — P X (EHo(gasy2)) /Mot (1)

where E¢ner, Emglsolid)y aNd Epp(gas) are the total energy of the
optimized generated MgH crystal structures, the energy per
atom of solid-state pure Mg, and the energy per molecule for H,
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Fig. 1 Deep learning-based generative model for the 2D crystal
system used in this study.
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Fig. 2 Phase diagram of the 2D Mg,H; , among the generated
structures. The triangles colored red are the structures with negative
formation energies.

gas, respectively. g, 1y, and ng represent the number of
elements of Mg, H, and total, respectively.

Fig. 2 shows the phase diagram of the generated Mg, H;_,
(the same as that of Mg,H, but with a representation as
a proportion of the elements in Mg), which plots the formation
energies of all generated structures. In Fig. 2, the red triangles
located below the level of zero formation energy indicate the
selected structures that primarily satisfy thermodynamic
stability. For these selected materials, additional strict criteria
for the structural optimization and phonon calculations were
included. Consequently, three structures of 2D magnesium
hydride monolayers were filtered out: two MgH, with P3m1
(164) and P4m2 (115) space groups and one Mg,H, with a P1 (2)
space group. For brevity, MgH, with P3m1 and P4m2 space
groups and Mg,H, with a P1 space group are referred to as I-
phase MgH,, II-phase MgH,, and III-phase Mg,H,, respectively.

Fig. 3(a)—-(c) present the top and side views of the optimized
geometries of the discovered structures, and their structural
details are summarized in Table 1. The lattice parameters of I-
phase MgH, are a = b = 3.001 A, o = 89.9°, § = 89.6°, and y
= 119.9°, whereas the parameters of II-phase MgH, area = b =
3.198 A and « = § = y = 90°. I-phase Mg,H, has parameters of
a=h=3.083A,a=87.4°,=101.3°,and y = 120°. In Fig. 3(d)-
(f), the electronic band structures of each nanosheet are plotted
with the edges of the valence and conduction bands marked in
green and red dots, respectively. I-phase MgH, has an indirect
bandgap of 4.88 eV (Fig. 3(d)), II-phase MgH, has an indirect
bandgap of 4.74 eV (Fig. 3(e)), and I-phase Mg,H, has an indi-
rect bandgap of 0.50 eV (Fig. 3(f)). As can be seen in Fig. 3(g)-(i),
these Mg, H,, structures are stable depending on their phonon
band structures with a nonimaginary frequency.

The dehydrogenation enthalpy for each compound (AHq in
Table 1) was also calculated. All dehydrogenation enthalpies
were calculated with a zero-point energy correction. The lowest
value is shown by the II-phase MgH, at 0.05 eV, whereas the
values for the I-phase MgH, and IlI-phase Mg,H, are 0.41 and
0.13 eV, respectively. These values are relatively lower than the

value of «-phase bulk MgH, (0.80 eV).** The lower

© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 The 2 x 2 supercell of the explored structures: (a) I-phase
MgH,, (b) Il-phase MgH,, and (c) lll-phase Mg,H,. The electronic band
structures of (d) I-phase MgH,, (e) Il-phase MgH,, and (f) Ill-phase
Mg,H,. The phonon band structures of (g) I-phase MgH,, (h) ll-phase
MgH,, and (i) Ill-phase Mg,H,. All band structures were plotted using
the Sumo package.**

dehydrogenation enthalpy facilitates easier removal of
hydrogen atoms from Mg-H MHs. Therefore, 2D Mg-H MHs
were expected to release H, gas at a lower temperature than the
a-phase bulk MgH,.

The I-phase MgH, structure was discovered previously using
a substitution-based crystal-prediction model,”” whereas III-
phase Mg,H, possesses an asymmetric structure in which one
side is covered with a metal (a polymorph of Mg-decorated I-
phase MgH,). However, II-phase MgH, has a previously
unproposed symmetrical structure with hydrogen covering both
of its sides.”” So, this paper focuses on the analysis of II-phase
MgH,. According to the available data from the Materials
Project webpage (https://www.materialsproject.org), the most
stable structure for MgH, at 0 K is a tetragonal phase MgH,
(ID: mp-23710) with 6 atoms in the unit cell and with the
symmetry of P4,/mnm (136) (named a-phase MgH,), Fig. S1(a).t
On the other hand, the layered bulk structure of the 2D II-phase
of MgH, with a tetragonal symmetry of P4,/nmc (137), is only
0.038 eV per atom less stable than the a-phase, Fig. S1(b).T So
the slight energy difference of 0.038 eV per atom could be

View Article Online
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readily compensated for by the energetic fluctuation in a ther-
mally excited statistical system.

To investigate the thermal stability of MgH,, (note: MgH,
used without a phase modifier essentially means 2D II-phase
MgH,) AIMD simulations were performed at 300 K up to 6 ps.
Top- and side-view photographs of the structures at 0, 3, and 6
ps, respectively, are provided in Fig. S2(a), (b), and (c).t No
distortions or defects were identified in the initial pristine
structure, which indicates the thermodynamic stability of MgH,,
under room temperature conditions.

Therefore, it is confirmed that the approach presented
herein, which combines a deep learning-based crystal genera-
tive model with DFT calculations, can identify unrevealed 2D
MgH,. Solid crystals can be defined by unit cells, atomic coor-
dinates (structural motifs), and types of elements, although the
crystal representation used in this study did not contain infor-
mation about the latter. Although this model did not generate
a new structural motif that was absent in the training data, it
was successful in generating the unrevealed structures that
were omitted from the classical substitution-based method.
With the future development of Al technology in the field of
materials, the crystal representation containing information
about types of elements and structural motifs will facilitate
more effective explorations of new materials.

3.2 Decoration of Li atoms on the surface of MgH, and the
adsorption of H, molecules

Next, we considered the transition metal (TM) doped MgH,.
Since it has already been investigated that TM-doped MgH, (-
phase MgH,) materials have improved hydrogen adsorption
and cycle performance,”® TM doping was expected to help
improve performances in our 2D MgH, structure. Furthermore,
thanks to the characteristics of the 2D layered structure, the
doped TMs were expected to serve as nuclei to hold additional
H, molecules. Among TMs, such as Al, Ca, K, Li, and Na metals,
Li metal was the most stable when doped into the 2D MgH,
structure. So, the Li atoms on the surface of MgH, (Li-MgH,)
were considered to examine the hydrogen storage properties of
a single-layer MgH, surface. As shown in Fig. 3(b), four different
highly symmetric sites (Mg top, H top, Mg bridge, and hollow)
were selected to determine the most stable position. The most
stable site for adsorbed Li atoms was found to be located at the
site of the Mg bridge by —0.94 eV per unit cell. The binding
energy of each Li atom on the MgH, - (2 x 2) supercell is
defined as follows:

Ey, = Eiot — Emgn2 — EvLi (2)

Table1 The space group, lattice parameters (a, a, 8, and v), formation energy (E¢), and dehydrogenation enthalpies (AHy) of the crystal structures

identified using the generative model

Name Space group a(A) a(®) B8 (°) (%) E¢ (eV) AHjy (eV)
I-phase MgH, P3m1 3.001 89.9 89.6 119.9 —0.130 0.41
II-phase MgH, Pam2 3.198 90.0 90.0 90.0 —0.01 0.05
III-phase Mg,H, P1 3.083 87.4 101.3 120 —0.03 0.13

© 2022 The Author(s). Published by the Royal Society of Chemistry
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where E, Emgn, and Ey; are the total energy of Li-adsorbed
MgH, (Li-MgH,), pristine MgH,, and the energy for the iso-
lated Li atom, respectively. Table 2 summarizes the binding
energies.

To clarify the mechanism for H,-host interactions, this
section considers the adsorption behavior of H, molecules on
a single Li-atom-decorated MgH, surface. The adsorption
energies are defined as follows:

E.q = (Ewor — ELi—Mgn2 — r2 X Enp)/nn (3)

where Ei, Emgr, and Epimenz are the total energy of H2 -
adsorbed Li-MgH,, pristine Li-MgH,, and energy for the H,
molecules in a vacuum, respectively. ny, is the number of H,
molecules.

H, molecules were adsorbed on the surface of Li-MgH,. The
average adsorption energies, distances between the Li atoms
and hydrogen molecules (dr;p), and bond length of the
adsorbed H, molecules (dy_g) as a function of the number of
adsorbed H, molecules are summarized in Table 3. The H,
bond length is elongated as the number of adsorbed H, mole-
cules increases due to the weakening of the interior H-H bond
in the H, molecules resulting from the polarization caused by Li
atoms. Multiple potential configurations were considered for
the first H, molecule with H, at different angles to the MgH,
plane. The optimized ground state structure with an E,q of
—0.104 eV and a corresponding dy;4; of 0.754 A is shown in
Fig. 4(a). In this figure, the electrons can be seen to accumulate
in H, close to the Li side, whereas the other side demonstrates
the contribution to adsorption by the polarization mechanism.
This polarization weakens the H-H bond with an elongated dy;_
u of 0.754 A and aids in subsequent H, adsorption via an
induction force. To image the process of H, adsorption, addi-
tional H, was added in a stepwise manner. As shown in
Fig. 4(b), when the second H, approaches the host, H,-H,
repulsive interactions cause the first one to move to Mg. Here
the binding energy per H, molecule is —0.105 eV, and the

Table 2 Binding energy of the Li atom on P4m2 MgH

Binding site Epind,vi (V)
Mg top —0.412
Mg bridge —0.924
H top —0.293
Hollow —0.731

Table 3 The calculated adsorption energy (E,q) values of H, on Li—
MgH>. dii_p2 and dy_y represent the average distance of Li to the H
and H—H bond lengths, respectively

Number of

H, molecules Eaq,n2 (€V) diino (A) du-nu (A)
1 —0.104 2.113 0.754

2 —0.105 2.244 0.755

3 —0.111 2.556 0.763

4 —0.082 2.911 0.754
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average H, bond length (dy;_g) is increased from 0.755 to 0.763
A, as indicated in Table 3. The optimized structure of three H,
molecules adsorbed onto Li-MgH, is illustrated in Fig. 4(c).
When the third H, is added, the E,q increases to —0.111 eV and
the average H, bond length increases to 0.763 A. Then, as shown
in Fig. 4(d), the fourth H, is added with an E,q of —0.082 eV and
a preference to be located opposite to the third one. However,
the adsorption behavior of the fourth H, does not follow the
same trend; its E,q decreases further to —0.082 eV, and the dy_y
value is reduced further from 0.763 to 0.754 A. As shown in
Fig. 4(c) and (d), in accordance with the adsorption results,
there are significantly lower charge-density differences on the
third (fourth) H, molecule than on the first and second ones.
Thus, up to four hydrogen molecules can exist on one Li-
decorated MgH, structure with an adequate adsorption energy
(E.q) of —0.082 eV. The theoretical gravimetric hydrogen density
(Gtneor) can be estimated using Giheor = Mina/(Mhost + M),
where Mo and My, indicate the quality of the host material
and the H, molecules, respectively. Consequently, the Li-MgH,
(4H,) system can be expected to produce a remarkable G,eor Of
6 wt%.

Next, the hydrogen-binding mechanism was clarified by
investigating the electronic properties of the surface of the H,/Li-
MgH, structure. Fig. 4(e) and (f) show the PDOS of Li-MgH, with
one and two H, molecules. With a single H, molecule, the states
of H and Li are hybridized around the peaks at —9.4 and —0.4 eV
in Fig. 4(e). As shown in Fig. 4(f), for two H, molecules, the
hybridized peak at —9.4 eV divides into two at —9.6 and —8.6 eV,
respectively. With the addition of the third and fourth H,
molecules, the hybridization peak at —9.4 eV splits into three and
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Fig. 4 Charge density difference plot of the Li-decorated MgH,
system with the adsorption of (a) one H,, (b) two H,, (c) three H,, and
(d) four H,. The partial density of states (PDOS) of (e) one, (f) two, (g)
three, and (h) four H, adsorbed Li—-MgH,.
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four peaks according to the number of H, molecules, as shown in
Fig. 4(g) and (h). In the system with three adsorbed H, molecules
(Fig. 4(g)), the split hybridized peaks are located at —9.6, —8.6,
and —8.0 eV, respectively. As shown in Fig. 4(g), (four H, mole-
cules), the split hybridized peaks are located at —9.5, —8.5, —8.1,
and —7.8 eV, respectively. The division of the hybridization peaks
reduces the intensity of the individual peaks, which indicates
a reduced bond strength between the H, molecule and host
material in accordance with the previous analysis.

Consequently, four additional H, molecules could be stored
by Li-decorated 2D MgH, with an E,q of —0.105 eV and a Giheor
of 6 wt%. Considering that the host material in this study is 2D
MH, which contains a chemisorbed hydrogen source, it can be
said to possess additional hydrogen storage capacity, which
makes it competitive against other Li-decorated 2D hydrogen
host materials, including h-BN (~6 wt%)* and borophene
(6.80-11.49 wt%).**** Therefore, the Li-decorated system of a 2D
MgH, sheet with a P4m2 space group is anticipated to be
a viable medium for substantial hydrogen storage.

4 Conclusions

This study successfully demonstrated that a deep learning-
based crystal structure-prediction model can generate reliable
2D materials with the potential for effective and substantial
hydrogen storage. The GAN model in this study effectively
explored the structural space of the 2D material and identified
an unknown structure, which has not been proposed previously
using classical substitution-based methods. The 2D MgH,
material with a PAm2 space group was confirmed to be a ther-
mally stable structure with the potential for significant
hydrogen storage. The hydrogen storage properties of the pris-
tine and Li-decorated P4m2 MgH, monolayer were investigated
using the DFT method, and it was revealed that pristine MgH,
can act as a source of chemisorbed hydrogen with a dehydro-
genation enthalpy of 0.05 eV. Additionally, four additional H,
molecules are capable of being physisorbed onto the surface of
2D Li-decorated MgH, to produce efficient hydrogen storage
materials with an average H, molecular adsorption energy of
—0.105 eV and a gravimetric hydrogen capacity of 6 wt%.

This study's findings indicate that the combined approach of
Al and DFT calculations can be used to predict 2D crystal
structures efficiently; consequently, 2D P4m2 MgH, is proposed
as a novel hydrogen storage medium. It is anticipated that this
study's findings will accelerate the development of hydrogen
storage materials and other desired functional materials both
theoretically and experimentally.

Code and data availability

As mentioned, all DFT calculations were performed using the
VASP package. Furthermore, the original code of the generative
deep learning model was obtained from https://github.com/kaist-
amsg/Composition-Conditioned-Crystal- GAN. We modified the
code to suit the purpose of our study. The code and data used
in this study are provided along with the ESI} in the
code_data.zip.

© 2022 The Author(s). Published by the Royal Society of Chemistry
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