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Remediation of pharmaceuticals from wastewater
via computationally selected molecularly
imprinted polymers†
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Pharmaceuticals are vital components of our daily life; however, as micropollutants, they also pose a

significant wastewater treatment challenge. As the complete avoidance of pharmaceuticals is not a desired

or viable solution, a targeted wastewater treatment must be implemented. Molecularly imprinted polymers

can remove these contaminants from wastewater; however, determining their optimal constituents is a

costly and lengthy experimental process. Here, we present a computational protocol used to design

imprinted polymers for the targeted removal of fluoxetine, leveraging rigorous molecular models and

simulation methods to study the crucial complexation step during the pre-polymerisation mixtures. Our

molecular dynamics results validated with available experimental measurements correlate calculated radial

distribution functions and predicted hydrogen bonding with experimental imprinting factors for various

functional monomers. The simulated results are also analysed via Kirkwood–Buff integrals for the study of

the role of functional monomers in the whole pre-polymerisation mixture. Marked dependencies of the

functional monomer's carbonyl, hydroxyl and esters interactions are described, and functional monomer

selection criteria using hydrogen bonding time and KBI initial slope and limiting value are proposed. This

analysis offers further insights into why itaconic acid, amongst methacrylic acid, 2 (hydroxyethyl)

methacrylate, acrylamide and acrylonitrile, is the optimal monomer for imprinting fluoxetine when ethylene

glycol dimethacrylate is used as crosslinker and dimethylsulfoxide as solvent. Our computational protocol

compiles off-the-shelf open-source software with well-established simulation methodologies to offer a

viable alternative to the resource and time-consuming experimental task of choosing the best functional

monomer for a given target molecule.

Introduction

Over 3000 pharmaceuticals are currently available in Europe
alone,1,2 with undeniable positive impact regarding their
intended use; however, a high fraction of them constantly

end up in wastewater, increasing concerns over potential
risks to both ecosystems and human welfare.3–5 One such
drug, investigated here, is the anti-depressant fluoxetine
(FLX), more commonly known as Prozac. FLX is a selective
serotonin reuptake inhibitor approved for use by the FDA
since 1987,6 that by 2002 reached $22 billion in sales. FLX
modern-day prescriptions are still very high, with over 25
million in the USA during 2018.7 The NHS monthly
prescription cost analysis for England reports over 630 K
prescription of FLX on March 2021.8 With such high
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Design, System, Application

Devised decades ago, as man-made mimics of antibodies, molecularly imprinted polymers (MIPs) are still a promise. The development of MIPs capable of
efficiently recognising, sensing, capturing or catalysing a target molecule is not without challenges. Some herculean experimental efforts are well known in
the field in which the imprinted polymers have successfully achieved the molecular recognition capability of natural enzymes, where patents back up only
a few with mature technology to sustain a commercial model, i.e., manufacturing MIPs or MIPs based devices. However, these efforts are overwhelmingly
surpassed by studies in which expected results are not attained. The crux of the matter is often found in i) the enormous combinatory of reactants available
or ii) our limited understanding of the complex molecular interactions during their synthesis, in fact, a combination of both. Here we compile a series of
available molecular dynamic methodologies articulated as a step-by-step protocol for describing the molecular interactions of all relevant molecules in the
MIPs' pre-polymerisation mixture. The design of an optimal MIP for the removal of the antidepressant Prozac from wastewater is showcased.
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quantities deployed, it is not surprising that FLX is found in
surface waters, with typical concentrations in the microgram
per litre level.9,10 Its bioaccumulation is also a problem, with
trace levels moving through the food chain, eventually
ingested by humans.11,12

The complete avoidance of pharmaceuticals to protect
water systems is not an attainable solution to the problem.
While traditional wastewater treatment plants offer some
reduction of these harmful micropollutants, their complete
removal is currently not achievable via conventional
methods.13 Therefore, our long-term goal is to offer a
technology specifically designed to capture drugs at point
sources e.g., at hospital wastewater systems,14 while our
current focus is the fundamental understanding of this
systems at the molecular level. With the foresee
understanding, we envisage such technology to be based on
molecularly imprinted polymers (MIPs) as core specific
adsorbent layer in ultrafiltration membrane units for small
organic molecules, such as FLX. A comprehensive review of
MIP suitability in wastewater treatment can be found
elsewhere.15

MIPs are a class of polymer that possess cavities with high
affinities towards a chosen template molecule (TM) and have
been shown to have a wide variety of applications, as
biosensors,16 in the detection of small drugs molecules,17–21

antibiotics,22 and pesticides.23,24 Detection of small
molecules lends itself well to wastewater treatment,15 and
environmental analysis-based applications.25,26 Targeted
design of adsorbents with optimal surface functional
monomers (FM) is achievable if sound comprehension of the
complex molecular interactions is gained. The idealised
imprinting method is outlined in Fig. 1 with a) FM, b)
crosslinker (CL) and c) TM, these compounds are
homogenised in a given porogen solvent portrayed as a
yellow background. Fig. 1 also shows the different stages of
the MIP synthesis, 1) the TM and FM complexation step in
the pre-polymerisation mixture, 2) the polymerisation of the

CL molecules around the stabilised complex, 3) the extraction
of the TM and solvent, and 4) the rebinding of the TM into
the pristine imprinted cavity. All these steps are driven by
intermolecular interactions, which are promoted or inhibited
by the selection of the solvent, that also aid in the production
of pores for the transport of the TM.

What is referred to as the pre-polymerisation mixture
contains all MIP's components, namely TM, FM, CL and
solvent molecules. How the entire system interacts before
polymerisation has been one of the most important factors to
consider for the generation of specific cavity sites.27 However,
with so many possible compositions, the optimum system's
determination is both a time-consuming and expensive
experimental process. Computational modelling can leverage
our understanding of molecular interactions in the pre-
polymerisation mixtures efficiently, leading to narrow the
choices for the MIP's constituents alongside their optimal
composition.

A wide variety of computational techniques are applicable
for MIPs, a comprehensive appraisal of computational
technics in the field has been recently compiled by Nicholls
et al.,28 and specifically for the detection of antibiotics in
environmental and food samples by us and coworkers.29 One
prevalent approach is functional monomer selection through
screening via molecular mechanics, where the TM and FM
interactions in vacuum are characterised by binding energies
scores.30 Quantum mechanics methods, such as density
functional theory (DFT), have become more widespread, as
they offer a transferable approach to determine the TM and
FM energy interactions at the cost of higher resource
utilisation compared to classical methods.31,32 Mostly, DFT is
limited to only one TM–FM interactions since larger systems
are still computationally expensive. Classical methods are
less transferable but much cheaper to use allowing for the
implementation of advanced sampling techniques like
molecular dynamics (MD) on larger systems.33,34 MD allows
for the full pre-polymerisation mixture to be simulated.

Fig. 1 A general imprinting process for the production of MIPs. See text for details.
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Similarly to MD, Monte Carlo (MC) methods also allow for
these systems to be simulated using random sampling.35 The
choice of MC over MD depends on the MIP's properties of
interest.28

The tendency to use computational approaches to aid the
design of MIPs has increased since 2001, however it is still
marginal when compared to the total number of publications
in the field, as shown in Fig. 2. It is our ambition that the
compiled protocol presented here will assist the
computational tasks, boosting this trend, as currently less
than 5% of the experimental MIP synthesis are supported by
insights gained from simulations.28,29

Computational methodology

Capitalising on our previous work on modelling MIP
systems,36–39 in this work, the pre-polymerisation mixture for
a FLX-MIP is simulated using MD. Methacrylic acid (MAA),
itaconic acid (IA), 2 (hydroxyethyl)methacrylate (HEMA),
acrylamide (ACA) and acrylonitrile (ACN) were selected as FM
candidates. The CL and solvent are ethylene glycol
dimethacrylate (EGDMA) and dimethylsulfoxide (DMSO),
respectively. The validation of our predictions is done with
available experimental data.40 To study the effect of FM
selection (i.e., MAA, IA, HEMA, ACA and ACN), we propose the
protocol depicted in Fig. 3.

Setup molecular models/simulation cells

The optimised potentials for liquid simulations – all atom
(OPLS-AA)41 force field was implemented for all MIPs
components. The pre-polymerisation mixture is synthesised
in the liquid phase; therefore, this force field offers a suitable
starting point. The topology files for all molecules were
obtained from the ATB repository,42 the specific MolID are
given in the ESI.†

Here, the protocol was initiated with MAA as it is the most
commonly used FM for MIP synthesis. The pre-
polymerisation mixture simulations cells were setup
following the experimental ratio of 1 : 2 : 50 : 583 of FLX :MAA :
EGDMA :DMSO.40 As FLX offers two main hydrogen bonding
sites (see Fig. 4), two FM per TM were chosen as an ideal
start.

To simulate the pre-polymerisation mixture an initial
simulation cubic cell was populated with 10 molecules of
FLX, 20 FM, 500 CL and 5830 solvent molecules. All
components were randomly inserted in the simulation cell.
This cell undergoes a sequence of energy minimisation, NVT
and NpT ensemble simulations. The simulation sequence
details, i.e., order, ensemble, time steps, cut-off, thermostat
and barostat, can be found in Fig. S3 and Table S3 in the
ESI.†

MD simulations

All simulations were conducted using open-source software
GROMACS,43 version 2019. Force field validations are
described in detail in the ESI,† including liquid densities of
pure components, water surface tensions and water/octanol
partition coefficients (KOW) calculations for FLX. The effect of
different FM was investigated while all other components
and ratios remained the same.

Post simulation analysis

Analysis including radial distribution functions44 (RDFs, g(r)),
Kirkwood–Buff integrals45,46 (KBI) and hydrogen bond (HB)
formation47,48 were used to interrogate the simulations'
trajectories.

A g(r) is defined as the ratio between the average number
density at any given distance, r, from any atom and the
density at the same distance, r, from an atom in an ideal gas,
with the same overall density.44 By definition g(r) = 1 for an
ideal gas, for all r. Any deviation from this value is due to
intermolecular interactions.44

The Kirkwood–Buff solution theory relates molecular
interactions to macroscopic properties.45,46 This theory
describes structural thermodynamics over the complete range
of compositions for solvents using RDFs. The KBI (eqn (1))
can be related to many physical properties, including the
interaction/binding energies of atoms. KBI represents the
volume per number of atoms and allows a quantitative
comparison between the RDFs for the various pair
interactions.

KBIij ¼ 4π
ð∞
0

gij rð Þ − 1
� �

r2dr

or

KBIij ≈ 4π
ð
0

R

gij rð Þ − 1
� �

r2dr

(1)

Eqn (1) shows the relation between the KBI and RDF where r
is the distance between the atoms i and j in an open system,

Fig. 2 The total number of MIP papers (green) including
computational MIP design (blue) between the years 2001–2021. Data
obtained through web of science (keywords: “Molecularly Imprinted
Polymer” and “Comput*”) and the MIP database.com.

MSDEPaper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

9 
N

ov
em

be
r 

20
21

. D
ow

nl
oa

de
d 

on
 1

/1
6/

20
26

 1
1:

54
:2

3 
PM

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d1me00142f


Mol. Syst. Des. Eng., 2022, 7, 196–204 | 199This journal is © The Royal Society of Chemistry and IChemE 2022

which can be approximated and applied to closed systems
with R being the cut-off distance.

The specific atom pairs used here are those that are likely
to give rise to HB, thus important for the FLX–FM complex
formation in the pre-polymerisation step. The MIP's

component chemical structures, the chosen atom pairs, and
their labels are defined in Fig. 4 and 5. It is worth noticing
that the calculations involving HB complexes with the FLX
fluorine atoms (PF1-3, in Fig. 4) as the (trifluoromethyl)
benzene HB has been proved to be too weak as measured

Fig. 3 Computational MIP protocol chart.

Fig. 4 2D schematic showing the chemical structure of all MIP's components, used here, including the atom (red) and names (in brackets) used
for RDF and KBI analysis.

MSDE Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

9 
N

ov
em

be
r 

20
21

. D
ow

nl
oa

de
d 

on
 1

/1
6/

20
26

 1
1:

54
:2

3 
PM

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d1me00142f


200 | Mol. Syst. Des. Eng., 2022, 7, 196–204 This journal is © The Royal Society of Chemistry and IChemE 2022

and characterised by established and novel NMR methods,47

the calculated RDF for FLX fluorine atoms and HB analysis
can be found in the ESI,† where their peaks and HB time%
values are all outcompeted by the other relevant interactions.

The GROMACS subroutine hbond43 was used to calculate
the HBs formed between the two specific atom pairs, namely
the TM and FM atom pairs. HBs are determined by a specific
cut-off distance and angle between donor hydrogen and
acceptor, the common cut-off distance of 0.35 nm and angle
of 30°, for energetically significant HBs were used here. HBs
were determined at each frame of the simulation48 giving a
percentage time spent by the FLX and FM as a complex (i.e.,
hydrogen bonding), allowing a comparisons between the
systems.

Results and discussion
From unitary cell to production cell

We used seven different supercell sizes to determine an
appropriate simulation box size (keeping the same ratios and
density of elements). Out of all the simulations, Fig. 6a and b
illustrates the RDFs between TM–CL (PH-EO1) and FM–CL
(MH-EO1) in the ten-TM box and the 100-TM box (maximum

size), both systems' peak positions and intensities are similar
(disregarding the expected noise in the ten-TM case). This
indicates that the smaller system is still representative of the
physics generated in the larger one but at lower computing
time/power for the simulations (see Table 1).

The smaller system shows more noise than that of the
larger one: this is expected with only 10% the number of
molecules. To improve the statistics of the ten-TM system, 18
duplicates were ran with the same parameters however each
with a newly randomly generated starting configuration. The
number of duplicates used was determined through time
tests produced for the large system (Tables 1 and 2).

The wall time taken for a 10 ns simulation of the ten-TM
cell using one node was 18 h. Based on this, running 18
duplicates of the ten-TM system is equivalent to the time/
computing power of a single 100-TM box ran for the same 10
ns on 12 computer nodes (26 h – the most efficient for the
100-TM system). This then offers a larger overall simulation
time and number of molecules/configurations analysed.

The pair interactions between FLX–FM are the result of
considerably fewer molecules available for sampling during
the simulation (compared to that of CL), therefore the
variation between duplicates is more predominant. We used

Fig. 5 2D schematic showing the chemical structure for all remaining FM studied here.

Fig. 6 RDFs for the ten-TM cell (blue) and the larger 100-TM cell (red), atom pairs between both a) FLX–CL and b) FM–CL.

MSDEPaper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

9 
N

ov
em

be
r 

20
21

. D
ow

nl
oa

de
d 

on
 1

/1
6/

20
26

 1
1:

54
:2

3 
PM

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d1me00142f


Mol. Syst. Des. Eng., 2022, 7, 196–204 | 201This journal is © The Royal Society of Chemistry and IChemE 2022

simulated annealing49 to solve this problem in a timely
manner, the results for which can be seen in Fig. 7. The
annealing temperature range was from 298–1000 K in 500 ps,
this temperature maintained for 18 ns, then reduced back to
298 K at the same rate.

On Fig. 7a, without any special treatment, the two average
RDFs happen to be much further away from each other than
with simulated annealing, shown on Fig. 7b. The high
temperature annealing step actually increases the likelihood
for all molecules to interact with each other, therefore
reducing variability in each RDF.

In passing, using duplicates (or here, duplicates of
duplicates) improves configuration sampling: without them,
we would have had no way to tell whether any of those RDFs
were converged as smoothness is never a good convergence

indicator for RDFs; only such repeats are. This suggests that
using multiple smaller systems is better than using a single
larger one. It is worth noticing that a FM–TM complex
identified at higher annealing temperatures will persist for
longer at the lower experimental synthesis temperature.

Considering all of the above, the annealing step was
included in our protocol for all subsequent simulations, as
presented in Fig. 3.

The effect of different FM

All FMs, their atom pair complex with the highest HB time
and corresponding KBI limiting value are compared against
the experimental imprinting factors (EIF)40 in Table 3. All HB
time and corresponding KBI limiting values can be found in
the ESI† (Table S4 and Fig. S9).

The EIFs show the efficiency of the imprinting
procedure,40 determined by the ratio between the rebinding
capacity of the synthesised MIP and a NIP (non-imprinted
polymer) made at the same conditions without the TM.
Hence a NIP contains no specific cavity sites for the chosen
TM; therefore it measures only generic surface binding, if
any.

By comparing the HB times and EIFs, it can be seen that
ACN offers the worse EIF at 1.1 and, significantly, the
shortest HB time. MAA follows as the second-lowest EIF at
2.2, with the second short HB time. Both HEMA and ACA
have similar HB times along with equivalent EIFs. Lastly, IA
has the best EIF while producing the longest HB time as each
carbonyl group contributes synergistically to the formation of
HBs. These results indicate that the FLX complex with the
longest HB time will convey the more favourable self-
assembly pre-polymerisation system. Moreover, all systems'
preferred atom pair for HB time consisted of FLX as the
hydrogen donor and varying acceptors depending on the FM
(see Table S4†). The carbonyl, as acceptor group, in IA, ACA
and MAA can be ranked considering the number of carbonyl
groups and substituents size attached to the carbonyl (see
Fig. 4 and 5) as IA > ACA > MAA, which correlates with their

Table 1 Time vs. system size tests (ran using 4 nodes × 16 CPUs)

Number of
unit cells (TM)

Simulation time
after 1 h run (ps)

Real time for 1
ns run (min)

Real time for
10 ns run (h)

1 5344 11.23 1.87
8 1360 44.12 7.35
16 920 65.22 10.87
32 480 125.00 20.83
64 260 230.77 38.46
100 160 375.00 62.50

Table 2 Time vs. number of nodes (16 CPUs per node) for the 100-TM
large simulation cell

Number of
computer
nodes

Simulation time
after 1 h run (ps)

Real time for 1
ns run (min)

Real time for
10 ns run (h)

1 40 1500.00 250.00
2 80 750.00 125.00
4 160 375.00 62.50
8 260 230.77 38.46
12 380 157.89 26.32
32 700 85.71 14.29

Fig. 7 RDFs between FLX and FM, comparing the impact of a) no annealing and b) annealing simulation run. With the first average 18 individual
runs (blue) and the second (red), individual runs 1 to 18 for are shown in blue and red respectively using thinner lines.
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EIFs. It is worth noticing that in HEMA, the preferred
acceptor was the ester oxygen, even with a carbonyl group
available. Finally, ACN only offers one acceptor group, a
primary amine that ranked last in respect to EIF.

While the predicted HB time is a fingerprint of the quality
of the TM–FM complex, the KBI analysis conveys information
about the whole pre-polymerisation mixture, i.e. not only the
TM–FM complex interactions. To facilitate the analysis, the
full KBI curves as a function of r, the distance between the
relevant atom pairs (from 0 to the maximum length of the
simulation box), are plotted in Fig. 8a. The KBI value
reported in Table 3 corresponds to the limiting value at rmax.

For an open system, the KBI can be split into two main
regions;46 the first is the excluded volume, Vex, which is
defined as the region from the centre of the atoms in which
the g(r) ≅ 0, hence KBI is always negative, for a spherical
particle with hard-core diameter σ, Vex = 4πσ3/3.46 The second
region, the remaining of the KBI excluding Vex, fluctuates
between negative or positive values depending on the
strength of the molecular interactions. The values of the KBIs
for pure Lennard–Jones (LJ) particles46 can be used as
references for the analysis of Fig. 8a. In general, the KBI
limiting value for a LJ fluid with gas-like density and low
interactions will be positive, while highly dense interactive
fluids will be negative. The liquid densities of our studied
MIP systems are similar; as such, the positive KBI limiting

value for ACA implies the lowest level of interactions away
from the complexation region. An ideal FM will have a high
HB time, while its KBI limiting value is negative, as time will
be expending exploring the complexation region rather than
interacting with other molecules in the pre-polymerisation
mixture, increasing the probability of an efficient TM–FM
complex, this two factors once again points to IA as the best
FM for this system.

Finally, focusing our attention into the KBI complexation
region from 0 to 1 nm (Fig. 8b), where the attractive forces
should overcome the repulsion of the atoms core in a good
complex, we can notice that the KBIs' slopes, calculated
between 0 to 0.5 nm are ranked as IA(a+b) = −1.36; IAa = −0.69;
IAb = −0.67; ACN = −0.65; MAA = −0.64; HEMA = −0.62 and
ACA = −0.60. This further characteristic is added to our FMs'
computational selection criteria.

Conclusions

Fluoxetine molecularly imprinted polymers pre-
polymerisation mixtures with variations on functional
monomer were simulated using molecular dynamics to
analyse self-assembly characteristics of the template
molecule/functional monomer complex. The specific
functional monomers used were methacrylic acid, itaconic
acid, 2 (hydroxyethyl)methacrylate, acrylamide and
acrylonitrile. Analysis on the simulated systems was
completed through RDFs and hydrogen bonding time, as well
as comparing KBI initial slopes and limiting values with the
performance of the experimental systems. The computational
analysis is validated by the previous experimental work in the
same system, making itaconic acid the best functional
monomer for fluoxetine removal from wastewater via
molecularly imprinted polymers. Moreover, these results
show that this computational method offers a general
approach for the rational design of MIPs prior to
experimental production, specifically with the difficult choice
of functional monomer.

Table 3 HB, KBI and EIF for all FMs studied. The specific atom pairs used
for the RDF and KBI analysis are given in the second column. Both
carboxylic groups within a molecule of IA atom pair contributions to HB
(and KBI) were added up

FM Atom pair HB time (%) KBI limiting value (nm3) EIF40

IA PH-IOa 10.61 −0.549 6.3
PH-IOb 10.31 −0.935
PH-IOa+b 20.92 −1.484

ACA PH-AO 18.85 3.384 2.6
HEMA PH-HO2 16.90 −1.475 2.8
MAA PH-MO1 13.47 −1.290 2.2
ACN PH-AON 7.76 −2.940 1.1

Fig. 8 a) The full KBI curves for the FM atom pairs in Table 3. b) Zoom into the KBI complexation region from 0 to 1 nm.
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