Materials Advances

CORRECTION

View Article Online

Cite this: Mater. Adv., 2022, **3**, 4387

Correction: Signal transmission encryption based on dye-doped chiral liquid crystals via tunable and efficient circularly polarized luminescence

Chengxi Li, ab Xuefeng Yang, ab Jianlei Han, Da Wenjing Suna and Pengfei Duan 🕩 *ab

DOI: 10.1039/d2ma90045a

rsc.li/materials-advances

Correction for 'Signal transmission encryption based on dye-doped chiral liquid crystals via tunable and efficient circularly polarized luminescence' by Chengxi Li et al., Mater. Adv., 2021, 2, 3851-3855, DOI: https://doi.org/10.1039/D1MA00368B

The authors regret that the molecular structure of the commercial molecule R/S-811 in Fig. 1 was incorrect. This correction does not affect any of the conclusions of the article. The correct Fig. 1 is given below.

Fig. 1 A scheme of (a) the preparation method of N*LC with CPL activity and (b) the non-positive correlation between thickness and g_{lum} in N*LC, the double-layer structure showing the highest q_{lum} .

The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.

a CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No. 11 ZhongGuanCun BeiYiTiao, Beijing 100190, P. R. China. E-mail: duanpf@nanoctr.cn; Tel: +86-10-82545510

b University of Chinese Academy of Sciences, Beijing 100049, P. R. China