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Capacity prediction of K-ion batteries: a machine
learning based approach for high throughput
screening of electrode materials†

Souvik Manna, Diptendu Roy, Sandeep Das and Biswarup Pathak *

Machine learning (ML) techniques have revolutionized the field of materials science in recent decades.

ML has emerged as an excellent tool to accelerate the screening of electrode materials for alternative

metal ion batteries, particularly K-ion batteries, which can outperform the conventionally used lithium-

ion batteries with drawbacks of low abundance and high reactivity in air. Since specific capacity is an

important metric to estimate the performance of a battery, hereby we attempt to predict the specific

capacity for potassium battery electrode materials using ML based on compositional features for the first

time. We have employed various ML models and Kernel Ridge Regression is identified as the most

reliable model for our dataset, considering mean absolute percentage error as the performance metric.

From the obtained specific capacity values, we have also determined the number of K ions that can be

intercalated in the formula unit of considered electrode compounds. DFT calculations have been

performed to confirm the stability of intercalated electrode materials. Our results show that the

application of ML algorithms can circumvent the huge computational cost associated with DFT-based

screening studies for identifying suitable electrode materials with high specific capacity, which is crucial

for efficient battery technology.

1. Introduction

With the increase in energy demands, harnessing energy from
renewable sources has become increasingly important for
sustainable development. However, renewable energy sources
are intermittent in nature as they depend on factors like

weather, location, efficiency, and available infrastructure. Thus,
efficient large-scale energy storage systems are required to
store, transfer, and utilize the energy produced from renewable
energy sources.1 Rechargeable metal-ion batteries are used
extensively to store energy in the form of chemical energy,
which can be converted back to electrical energy whenever
required. Among all the metal-ion batteries, Li-ion batteries
(LIBs) are leading the energy storage devices market, especially
in portable devices such as smartphones and laptops.2,3

Li metal-ion batteries have even opened extraordinary possibi-
lities in the automotive sector and electric vehicles market
recently.4,5 The long cycle life, high efficiencies and high energy
densities are the main reason behind the success of LIBs.2,6

However, for large scale energy storage, LIBs have certain
shortcomings such as their relatively low energy density,
and safety issues owing to their high reactivity in air.4,6–11 Very
low abundance of Li sources is also a major concern, which
ultimately contributes to the high price of these batteries.6,12,13

These issues demand cheap, efficient and sustainable alterna-
tives to LIBs.

Potassium (K) is one of the metal ions that could replace
lithium in energy storage devices. K is more abundant com-
pared to Li sources and hence reduces the production cost.14

K-ion batteries have a similar rocking chair mechanism like
LIBs. K+ having large atomic radius (1.38 Å) has a small Stokes
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radius in various organic electrolytes, which results in higher
ionic conductivity.15 The standard potential of K/K+ in a non-
aqueous medium, especially in the most common solvent
propylene carbonate, is �2.88 V, which is more negative
compared to Li and Na.16 Organic electrode materials are also
used as cathode materials for K ion batteries.17 K ions having
low de-solvation energy possess faster diffusion over the elec-
trode/electrolyte interface.18 Readily available and cheaper elec-
trolyte solutions and salts of K ion batteries are also a reason
for their low price compared to LIBs. For example, KPF6 is
much cheaper than the similar analogues of Li and Na.19

Currently, extensive investigation is ongoing regarding the
layered transition metal oxide cathode materials having larger
interlayer distances and diffusion paths for K ion batteries.20

Adopting K ion battery technology can also lead to the produc-
tion of cheaper Co-free batteries, often based on transition
metals such as Fe, Mn, and V.21 Though the electrode materials
for LIBs have been extensively explored, the same is not true for
K-ion batteries. However, seeking suitable electrode materials
for K ion batteries is experimentally challenging and even
theoretically, requires high computational facilities. The major-
ity of the electrode materials used for LIBs are still unexplored
for K-ion batteries due to the difficulties in experimental and
computational screening of a large number of electrode mate-
rials with high accuracy.22–24 Therefore, machine learning (ML)
could be an advanced tool that can save both time and cost, and
at the same time screen many electrodes with minimum
computational cost. Among different factors affecting the suc-
cess of ML, data takes the central position. Every ML model
depends on the amount and quality of data needed for training.
Taking advantage of different computational material data-
bases like Materials Project, OQMD, AFLowLib, ESP, CMR,
and NOMAD, applications of ML for determining battery prop-
erties are increasing day by day. Besides computational data,
ICSD and COD provide data from published literature, while
NASA battery datasets contain experimental battery data and so
on.25–32 Although the use of DFT based data is not standard for
every context, it still delivers sensible insights which ultimately
help in the guidance of experimental research.33,34 ML com-
bined with data from various databases can be used for
predicting any specific property of interest for a particular
battery material.23,29,35–39 Application of ML in the field of
materials science can be found in the prediction of microscopic
properties like band structure, formation energy, density of
states, etc. which play an essential role in research areas like
solar cells, batteries, and catalysis.40–55 Kernel ridge regression
(KRR) and support vector regression (SVR) have been used by
Seko et al. for the prediction of thermal conductivity and
cohesive energy of binary and tertiary compounds.56,57 ML
techniques have also been used for the prediction of different
properties for their applicability as materials in photovoltaic
cells and glass alloys.58–60 Application of ML on battery systems
was first carried out by Salkind et al., predicting the state of
charge and state of health and from then onwards investigation
on the application of ML in battery monitoring has continued.61

Siqi Shi and coworkers have predicted the activation energy in

cubic Li-argyrodites with hierarchically encoding crystal struc-
ture based descriptors.62 Application of ML has also been
reported for the determination of interphase stability of Li-doped
Li7La3Zr2O12.63 Sendek and coworkers have used the logistic
regression for screening of 12 000 Li-containing solids as solid-
state electrolytes for LIBs by rapid screening.52 ML has also been
applied for the identification of chemical factors and descriptors
affecting the reaction kinetics of Li batteries.64,65 Meredig et al.
built a ML model to estimate thermodynamic stability and
proposed around 4500 stable novel materials.66 The multilayer
automated feature selection method has been reported to incorpo-
rate expert knowledge.67 ML has also been used as an alternative as
well as faster method than DFT, for prediction of thermal, electro-
nic and mechanical properties.29,68–70 However, certain challenges
exist in applying ML to materials research, such as contradictions
between high dimension and small sample data, conflict and
compromise between complexity and accuracy of machine learning
models, and inconsistency and collaboration between learning
results and domain expert knowledge.71,72 Method development
and guidelines for different ML-based publications highlighting
supervised learning and its interpretability have been elaborated
recently by Rodrigues and co-workers.73

Capacity is one of the important metrics for the measure-
ment of battery performance. The longevity of a battery mainly
depends on the cycle life of a battery and the former is directly
related to the capacity of a battery. The capacity can be
calculated from the number of ions intercalated in electrode
materials and in order to do so quantum mechanically, we need
to perform time consuming DFT calculations for each indivi-
dual electrode material. However, we can utilize the different
advance machine learning model as a tool to speed up the
screening of electrode materials based on capacity as a target
variable. Very few studies have been carried out on the experi-
mental capacity prediction on the basis of cycle life via ML for a
particular electrode material.74,75 In a recent report, ML has
been used for the prediction of voltage for a large number of
electrode materials for metal ion batteries.76 They have con-
sidered both low and high metal ion concentration. However,
we want to calculate the specific capacity of non-intercalated
systems by learning from known electrode materials without
the help of high ion concentration. In this study, we have
utilized the Li, Na, and K ion battery data for the training of
ML models in order to predict the capacity of those electrode
materials for the K ion battery. To the best of our knowledge,
this is the first work regarding the prediction of theoretical
capacity on the basis of the structure of electrode materials for
metal ion batteries. Here, we have directly predicted the capa-
city of a non-intercalated electrode material without knowing
the number of K ions getting intercalated, i.e., without doing
any DFT calculation. The capacity of different electrode materi-
als varies rapidly, and the range of minimum capacity and
maximum capacity is very high. Keeping that in mind, we have
only considered the monovalent ions and not bivalent and
trivalent ions for intercalation. We have also not considered
the lower alkali metal ions since the radius of those ions will
increase as we go down the group. Among the metal ion
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batteries, LIBs have been explored extensively; however, experi-
mentally or by DFT calculation, testing all of those LIB elec-
trode materials for K ion batteries is a lengthy process.
Therefore, after considering the Li, Na and K ion battery data
as the training set, we have replaced the Li and Na by K for an
approximate estimation of capacity with the help of different
machine learning models. Here, we have used Support Vector
Machine (SVM), ExtraTrees Regression (EXR) and Kernel Ridge
Regression (KRR) to fit the training dataset. In addition to our
particular interest, i.e., capacity, we further used the predicted
capacity for the calculation of number of K ions that could be
intercalated in the electrode materials for LIBs and sodium ion
batteries. In the Materials Project database, there are many
instances of the same electrode with different numbers of
intercalated ions and capacity. However, we have considered
only the non-intercalated system for a particular ion intercala-
tion with maximum capacity as the target variable, so that the
machine can learn about the capacity by maximum intercala-
tion of specific ions for a fixed electrode material. The perfor-
mance of different ML models was assessed by mean absolute
percentage error (MAPE). DFT calculation for a few unknown
electrode materials has been performed to validate the machine
learning model. We have provided a schematic diagram
(Scheme 1), which shows the steps followed in our work.

The training data for these metal ion batteries has been
retrieved from the Materials Project database.30,77 Overall, 2118
data points have been considered in the training set, among
which 69.53% are Li, 22.41% are Na and 8.06% are K ion
battery data. We have excluded the repeating formula unit cells,
as we are considering non-intercalated electrode materials for
learning about the capacity. From the dataset, the ML model
may overconcern with LIB electrode materials, and ignore some
knowledge about those for Na/K ions, since the contribution in
the overall data from LIBs is very high compared to the other
two metal ion batteries. The overall known dataset is divided
into training set and validation set. The training set has been

used to train the ML model whereas the validation set was used
to validate the performance of our machine learning models.
The validation set is composed of 20% of the total data and the
rest of the data is used for training. The training set remains
unique for all the ML models used and the same is true for the
validation set. The amount of Li, Na and K ion data used for
training has been shown in Fig. 1. To describe the electrode
materials, we have generated 196 unique elemental features
depending on the chemical formula of individual electrode
materials using choice-based feature vectorization.78 Along
with these features, other structural parameters such as lattice
parameter (a, b, c), lattice angle (a, b, g), and volume of
void, have also been considered, so that these features can
represent each electrode material uniquely. The method for
calculating the void volume has been shown in Text S1 (ESI†).
In order to specify the intercalated ion, we have also included
some elemental properties like ionic radius, ionization energy,
and heat of atomization, among others. After the generation
of features, scaling has been performed on each descriptor
except on the target variable using the StandardScaler module
of the python package to bring down all the features in the
same scale to avoid the biasness of our data set based on the

Scheme 1 Illustration of the systematic steps followed in the present work.

Fig. 1 Distribution of different metal ion battery data used in the ML
model for training.
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magnitude of each descriptor of electrode materials by the
machine.

Furthermore, to check the importance of considered
features towards the desired target variable, we have performed
Lasso Regression. Using Lasso regression, we have calculated
the feature importance of each individual feature and based on
the magnitude of the feature importance we have screened the
features. We have only considered the features having feature
importance greater than zero and eliminated the rest during
the fitting of the ML models. The mathematical expression of
LASSO Regression is given as,

Xn
i¼1

yi � y
0
i

� �2
þlm

where y is the actual value and y0 is the value of the best fitted

line. The value of yi and y
0
i varies from i = 1 to n, where n is the

number of observations. Using Lasso regression, we have
calculated the slope (m) value for each descriptor. l is a
constant and considering its value equal to one, the slope for
each descriptor has been established. The features having

m value equal to zero were considered as irrelevant and those
features were dropped. As a result, the number of considered
features has shrunk from 199 to 71 i.e., 36% of features remain
after Lasso regression. The selection of features based on
feature importance has been shown in Table S1 (ESI†) and
Fig. S1 (ESI†). From Table S1 (ESI†), it is observed that lattice
parameters (a, b, c), S orbital contribution, average number of
valence electrons, void volume, Allred Rochow electronegativity
etc., contributed more towards the target variable specific
capacity. Variance in Allred Rochow electronegativity and aver-
age number of valence electrons are found to be among the
most important features.

2. Data analysis

To find out the correlation among the features, the heat map is
generated, as shown in Fig. 2 using the correlation function
from the seaborn library. From the correlation values of differ-
ent features, most of the features are found to be independent
of each other. Some features are positively correlated, while
some show a negative correlation. For example, Variance in

Fig. 2 Heatmap showing the correlation among the considered features.
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Allred Rochow electronegativity is negatively correlated whereas
average valence electrons are found to be positively correlated
with the target variable (capacity). Hence, the choice of these
features will be able to represent each electrode material
uniquely. Though few elemental features are found to be
dependent on each other, those features are not dropped so
as to represent the intercalating ions. The elemental descrip-
tors considered for the generation of input features are listed in
Table S2 (ESI†).

Understanding the nature of the dependence of features is
highly important and, in this regard, a joint plot helps us to
find out the density of features. From Fig. 3, it is observed that
molecular weight and polarizability follow almost the same
trend, whereas Pauling electronegativity values are diverse at
higher magnitude. There is an indirect correlation between
molecular weight and polarizability as electron density
increases with the increase in atomic mass.79 Therefore, it is
very likely to observe a similar trend between these two para-
meters. Any trend in change of capacity with respect to average
Pauling electronegativity could not be identified. The high

range of electronegativity for most of the electrode materials
may be the cause for this. To understand how the capacity of
electrode materials changes with the change in the electronic
properties of these materials, average s, d and f valence
electrons have been calculated by taking the average of the
valence electrons of the constituent atoms of the electrode
materials, which is then plotted as the contribution of valence
electrons with change in specific capacity. From Fig. S2 (ESI†) it
is evident that the average capacity values fall in the range of
higher s electron contribution, whereas in the case of the d
orbital valence electron contribution, the capacity values are on
the lower side. Thus, a large number of electrode materials have
more s orbital valence electrons and fewer d orbital valence
electrons. However, the capacity range varies from low magni-
tude to high magnitude of the f-orbital valence electron. The
reason behind the observed phenomenon may be that most of
the electrode materials in our data consists of transition metals
with valence d orbital electrons and filled s orbital electrons.

In Fig. S3 (ESI†), the distribution of capacity with the
different lattice parameters (a, b, c) and lattice angle g, of

Fig. 3 Joint plots for the density and distribution of capacity with respect to molecular properties, (a) average Pauling electronegativity, (b) molecular
weight, (c) average polarizability, and (d) average specific heat, of constituent elements in the electrode material formula unit.
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electrode materials has been presented. From the plot, the
distribution ranges of a and c are found to be wide, whereas the
distribution range of the lattice parameter b is found to be very
limited. The capacity is found to vary considerably for similar
values of lattice parameter b. Similarly, with change in gamma
the capacity is found to change without any uniform trend.
Though the capacity value distribution is dispersed with
respect to the lattice parameter, still the consideration of lattice
parameters as descriptors is important to include the domain
knowledge and structural properties of the various electrode
materials. For instance, there are multiple unit cell structures
for the same electrode material compound in the Materials
Project database and hence, lattice parameters as descriptors
help in distinguishing them. The box plot between gravimetric
capacity and the ionic radius of intercalated ions has been
presented in Fig. 4. The mid-line in the box plot is the median,
the lower line outside the box is the minimum range and
the upper line outside the box is the maximum range of our
property of interest. The average capacity for Li ion batteries is
found to be higher followed by Na and K ion batteries. With
increase in ionic radius, the number of intercalated ions within
an electrode material is expected to decrease and so is the
specific capacity of the electrode material.

Since the target variable capacity varies rapidly with a slight
change in the electrode material, in order to understand the
distribution of the electrode materials across the capacity we
have plotted the range of % electrodes across per 100 mA h g�1

intervals of capacity, as represented in Fig. 5.
From Fig. 5, we can observe that more than 44% of electro-

des lie in the capacity range 101 to 200 mA h g�1, around 35%
of electrodes lie in the capacity range 1 to 100 mA h g�1 and
15% of electrodes have capacity 200 to 299 mA h g�1. The % of
electrodes having capacity greater than 299 mA h g�1 is very low

compared to the first three groups of capacity ranges. Therefore,
the sampling of the target variable is highly heterogeneous, which
might cause a misinterpretation in the nature of data by the
machine, which may lead to overestimation of capacity data in the
range of 1 to 299. To avoid this overestimation, we fit the ML
models in three different data sets Li, Na + K, and Li + Na + K,
which has been discussed later.

3. Results and discussion

The analysis of our data set begins with fixing the target
variable as capacity. The overall data set has been split into
two sets, training set composed of 80% of data and validation
set composed of 20% data. Here we have compared three
different machine learning algorithms, namely Support Vector
Machine (SVM), ExtraTress Regression (EXR) and Kernel Ridge
Regression (KRR). After analyzing the complexity of the dataset,
we have chosen these non-linear ML algorithms to fit the data.
Different types of non-linear kernels present in each of these
two ML algorithms like Radial basis function (rbf), polynomial,
and Laplacian have been used for the training of the machine.
Since our data set is medium in size, KRR comes in very handy
as it is an advanced ML algorithm compared to SVR having an
additional parameter, namely kernel trick. The KRR fitting is
much faster compared to the fitting of the SVR. Therefore, first

Fig. 4 Distribution of specific capacity across the ionic radius of Li, Na
and K where the Li, Na and K having ionic radius 1.45 Å, 1.8 Å and 2.2 Å,
respectively, are represented by the first, second, and third box of the
boxplot.

Fig. 5 Distribution of capacity range across different electrode materials.

Table 1 10-Fold cross-validation (CVi) score, standard deviation (SD),
Mean absolute percentage error (MAPE) on full data set (Li + Na + K)
having different kernels of Support vector regression (SVR)

CVi Linear RBF Polynomial

CV1 0.62 0.46 0.60
CV2 0.36 0.36 0.39
CV3 0.37 0.32 0.64
CV4 0.49 0.33 0.55
CV5 0.46 0.35 0.46
CV6 0.38 0.40 0.44
CV7 0.32 0.23 0.44
CV8 0.29 0.19 0.31
CV9 0.29 0.20 0.43
CV10 0.36 0.35 0.53
SD 0.10 0.08 0.10
Mean MAPE 0.39 0.32 0.48
MAPEV 0.31 0.24 0.40
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we have fitted our dataset with an SVR algorithm to see the
performance. Furthermore, we have checked using KRR and
our result shows that the KRR fitted well compared to SVR. An
ensemble-based ML algorithm, namely ExtraTrees Regressor,
which takes decisions from the combination of a large number
of decision trees, has also been applied on the training data set.

This algorithm has been chosen as it divides the whole data
into further small datasets and each model predicts some
different value and the result is basically the average result of
each model. These models have been found to be applied on
capacity prediction for a particular cycle life of electrode
materials.80

Since we are predicting continuous values via ML, it there-
fore belongs to a regression problem and hence we have used
Support Vector Regression (SVR), which is a sub part of SVM.
SVR contains two important parameters, C (penalty term) and
gamma, which should be optimized before fitting of our
dataset in the SVR model. We have also tested our training
data considering different kernel functions within SVR, like
linear function, radial basis function (RBF) and polynomial
function to select the most optimized kernel through the
assessment of loss function as mean absolute percentage error
(MAPE). As discussed earlier, the large contribution of LIBs in
the overall dataset might result in mimicking of the Li data,
and the data set has been divided in three sets Li, Na + K, and Li
+ Na + K dataset. The training set is divided into 10 folds so that
for each cross-validation test, 9 folds are used for the training
whereas the remaining 1-fold is used for the assessment of the
model performance in terms of MAPE as loss function. The

Fig. 6 (a) Tuning of the C and gamma parameter for the Li + Na + K data set for the SVR ML model. (b) Tuning of the C and gamma parameter for the Na
+ K data for the SVR ML model. (c) Tuning of the alpha and gamma parameter for the Li + Na + K data set for the KRR ML model.

Table 2 10-Fold cross-validation (CVi), standard deviation (SD), and Mean
absolute percentage error (MAPE) on three different datasets (Li + Na + K,
Na + K, Li) having RBF kernel of Support vector regression (SVR)

CVi

Li (C = 100,
gamma = 0.05)

Na + K (C = 75,
gamma = 0.01)

Li + Na + K (C = 100,
gamma = 0.05)

CV1 0.44 0.54 0.46
CV2 0.36 0.50 0.36
CV3 0.35 0.25 0.32
CV4 0.31 0.38 0.33
CV5 0.40 0.24 0.35
CV6 0.32 0.18 0.40
CV7 0.25 0.12 0.23
CV8 0.21 0.19 0.19
CV9 0.19 0.18 0.20
CV10 0.34 0.23 0.35
SD 0.08 0.14 0.08
Mean MAPE 0.32 0.28 0.32
MAPEV 0.26 0.28 0.23

Fig. 7 Comparison between ML predicted capacity and DFT calculated capacity after fitting the SVR ML model using (a) RBF kernel, C = 100, gamma =
0.05 hyperparameters on Li dataset; (b) RBF kernel, C = 75, gamma = 0.01 hyperparameters on Na + K dataset; (c) RBF kernel, C = 100, gamma= 0.05
hyperparameters on Li + Na + K dataset.
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standard deviation for each 10-fold cross-validation set has also
been calculated. By the cross-validation test, we have tried to
sample our data in such a way so that the machine does not
overfit certain data, which could lead to a good training score
but a very bad test score. The details regarding testing of
different kernels for SVR are shown in Table 1. Among different

kernels, the RBF kernel function is found to fit well with less
error as we have assessed our SVR model performance by
checking the cross-validation score (CVi).

The cross-validation has been also performed for all three
different datasets and shown in Table 1. The Mean MAPE
shows the error on the training set, whereas MAPEV shows
the error on the validation set. For all three datasets a similar
trend has been observed with respect to training error and
validation error. Though less error is expected for the Na + K
data set as it contains the lowest number of data points, the less
error for the Li + Na + K data set compared to the other two
datasets evidences a better sampling of the data. The standard
deviation for the dataset containing Li, Na and K data is lower
compared to the dataset having Na and K data, which indicates
that in the overall dataset the deviation mainly arises from the
Na + K data and not from the Li data. However, this data set can
play an important role in the prediction of the capacity for the
K-ion battery as Na is the closer element of K in the alkali metal
group compared to Li.

The hyperparameter tuning on C and gamma for the SVR
ML model has been illustrated in Fig. 6(a and b). The best
parameters for Li + Na + K and Li data are found to be the same
whereas for Na + K data they are different (Table 2). After finding
out the best hyperparameters for the three different data sets we
have fitted the SVR model on the training set and then validated
the model in terms of MAPE utilizing the validation set.

The comparison between DFT calculated capacity and ML
Predicted capacity has been shown in Fig. 7. We have plotted
the DFT calculated capacity vs ML predicted capacity using the
best hyperparameters of SVR for all three different datasets.

Similarly, we have fitted our dataset in a tree-based ML
model, ExtraTrees Regression (EXR). The cross-validation score
using the EXR algorithm has been presented in Table 3. The
number of trees and other parameters are optimized before
fitting the EXR ML model. However, the optimized parameters
remain the same for all three different datasets. We have found
the same error trend as the SVR model. The Li + Na + K data
have given less error on the validation set compared to the
other two data sets. As we have compared the performance of

Table 3 Cross-validation score (CVi), standard deviation (SD), mean MAPE
on the training set and MAPE on the validation set using the EXR ML model

CVi Li Na + K Li + Na + K

CV1 0.43 0.60 0.47
CV2 0.37 0.31 0.33
CV3 0.32 0.16 0.26
CV4 0.36 0.24 0.32
CV5 0.37 0.17 0.34
CV6 0.31 0.16 0.39
CV7 0.21 0.14 0.23
CV8 0.20 0.16 0.19
CV9 0.23 0.21 0.25
CV10 0.38 0.25 0.33
SD 0.08 0.14 0.08
Mean MAPE 0.32 0.24 0.31
MAPEV 0.26 0.28 0.24

Table 4 MAPE distribution of capacity, standard deviation (SD), Mean
MAPE on the training set and MAPE on the validation set (MAPEV) for 10
folds of training (CVi) in the KRR ML model trained with Na + K, Li, and Li +
Na + K data

CVi Li Na + K Li + Na + K

CV1 0.42 0.50 0.40
CV2 0.33 0.19 0.30
CV3 0.31 0.16 0.22
CV4 0.33 0.19 0.32
CV5 0.36 0.12 0.34
CV6 0.32 0.14 0.40
CV7 0.24 0.19 0.25
CV8 0.20 0.19 0.18
CV9 0.22 0.13 0.23
CV10 0.38 0.24 0.33
SD 0.07 0.11 0.07
Mean MAPE 0.31 0.21 0.30
MAPEV 0.24 0.15 0.21

Fig. 8 Comparison between ML predicted capacity and DFT calculated capacity after fitting the KRR ML model (kernel = Laplacian, alpha = 0.024239,
gamma = 0.047051, degree = 2 hyperparameters) on (a) Li dataset, (b) Na + K dataset and (c) Li + Na + K dataset.
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the SVR model in three different sets, here also we have plotted
the same plot using the EXR ML model after fitting (Fig. S5,
ESI†). Thus, the overall performance of the EXR algorithm is
found to be almost similar to the SVR algorithm.

Furthermore, KRR has been used for the fitting of the data
where we have again checked the 10-fold cross-validation result
after choosing the optimized hyperparameters. The result of
the 10-fold cross-validation test is shown in Table 4. Among all
these three ML algorithms, KRR has fitted the Na + K data well
compared to the others having MAPEV of 0.153%. Gamma and
alpha are two important parameters for the KRR algorithm. The
optimization of these parameters is shown in Fig. 6(c).

The comparison between DFT calculated capacity and
ML predicted capacity for three different datasets has been

displayed in Fig. 8. Though the trend in training error and
validation error in KRR is slightly different from the SVR and
EXR ML model, the overall performance of the KRR ML model
is better than the rest of the two as KRR is able to mimic the
nature of Na + K data better, which is more important than to
mimic Li ion data considering our goal of predicting the
capacity for K ion battery electrode materials. Therefore, from
overall analysis on different datasets, it is evident that KRR
performs better than other considered models.

We have also fitted random forest regression (RFR). The best
hyperparameters of RFR and optimized number of trees are
attached in Text S2 (ESI†) and Fig. S6 (ESI†), respectively, and
the cross-validation score is attached in Table S3 (ESI†). Optimized
hyperparameters and mean absolute percentage error (MAPE) for
decision tree regression are also given in Table S4 (ESI†).

4. DFT validation

To validate our calculated capacity for various electrode materi-
als, we have considered five structurally different sample elec-
trode materials (Mn4NiO8, FeO2, Fe(CoO3)2, V5O12 and CoPO4)
and checked their maximum specific capacity by carrying out
first principles calculations using the projector augmented

Table 5 Details regarding the number of intercalated K ions predicted by
ML and the corresponding values chosen for DFT validation

Electrode
materials

No. of intercalating K
ions predicted by ML

No. of intercalating K ions
considered for DFT

Mn4NiO8 3.1 3
FeO2 0.6 1
Fe(CoO3)2 2.5 2
VFeO4 1.1 1
CoPO4 0.9 1

Fig. 9 DFT optimized structures of K intercalated electrode materials: (a) Mn4NiO8, (b) FeO2, (c) Fe(CoO3)2, (d) VFeO4, and (e) CoPO4.
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wave (PAW) method as implemented in the Vienna Ab initio
Simulation Package.81–86 The selected materials are taken in
such a way that they belong to different crystal lattice structures
and stoichiometry of constituent elements. Moreover, the gen-
eralized gradient approximation of Perdew–Burke–Ernzerhof
(GGA-PBE) has been considered as the exchange correlation
potential and the energy cutoff is set to 470 eV. Furthermore,
the dispersion energy corrections have been considered by
incorporating the DFT-D3 method of Grimme.87,88 All of the
structures are relaxed until the Hellmann–Feynman force cri-
teria of o0.01 eV Å�1 and the total energy convergence criteria
of 10�4 eV is reached. The structures of the system have been
taken from the Materials Project database. Using the value of
specific capacity from the ML results, we obtained the number
of intercalating ions using the equation,

C ¼ zxF

Mf

where z represents the charge on intercalating ions (1 in case of
K), x represents the number of intercalating ions and F is the
Faraday constant (26.8 A h mol�1). Mf represents the molecular
weight of the formula unit of the electrode material. Using the
ML predicted data from the KRR model we have found the
number of intercalated K ions and rounded off to the nearest
whole number for DFT validation, as presented in Table 5. The
rounding off is carried out to decrease the computational cost
as modelling fractional ion intercalation will result in heavier
DFT calculations. The DFT optimized fully intercalated systems
with maximum capacity are represented in Fig. 9. This proves
that the number of K intercalations obtained from ML pre-
dicted data also agrees with the DFT optimized structures.

The gradual intercalation of K has also been shown for a
sample electrode material Mn4NiO8, where the negative bind-
ing energy of K insertion shows the favourability of intercala-
tion in the considered electrode material (Fig. S7 and Table
S5,ESI†). Furthermore, we have intercalated the fourth K-ion
into the Mn4NiO8 in two possible ways to check if further
intercalation is possible. The huge distortion in optimized
structures of K4Mn4NiO8 (Fig. S8, ESI†) as well as the abrupt
increase in RMSD value (Fig. S9, ESI†) of the intercalated
system with respect to the non-intercalated system shows that
intercalation of the fourth K-ion is not suitable. This further
validates that the ML predicted capacity values correspond to
the maximum intercalation of K-ions in the electrode materials.

5. Conclusion

In this work, we have predicted the specific capacity of pro-
spective K-ion battery electrode materials based on the struc-
tural properties (e.g., lattice parameter, lattice angle, void space,
etc.) and choice based feature vectorization generated from
elemental properties (e.g., atomic number, electronegativity,
ionic radius, valence electrons, etc.). We have considered Li,
Na and K-ion electrode materials and their available battery
data from the Materials Project database. The electrode materi-
als extracted from the materials project database can be

considered as stable as their formation energies are negative.
Suitable features have been considered and developed to train
the various machine learning algorithms. The available data
has been divided into training set and validation set. The
training set has been fitted using various ML algorithms like
Support Vector Regression, ExtraTrees Regression and Kernel
Ridge Regression to learn the nature of the data and features.
Some statistical methods of data analysis like box plot and joint
plot to understand the distribution of features and heatmap for
the correlation metrics have been utilized. We have evaluated
the performance of considered machine learning models by
comparing the mean absolute percentage error between the
training set and validation set in each case. Furthermore,
adopting Kernel Ridge Regression we have predicted the capa-
city of unknown electrode materials for K-ion batteries (Table
S6,ESI†). Using the value of specific capacity, the number of
intercalated K ions in the formula unit of the non-intercalated
electrode material compounds has been calculated. DFT calcu-
lations have been performed for sample electrode materials to
verify that our ML model can give similar results. Thus,
implementing the ML approach is much faster compared to
the computationally demanding quantum mechanical methods
for quick screening of electrode materials, which will help to
guide the experiments for developing electrode materials for
metal ion batteries.
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U. Schwingenschlögl, Band gap tunning in BN-doped gra-
phene systems with high carrier mobility, Appl. Phys. Lett.,
2014, 104, 073116.

35 R. Ramprasad, R. Batra, G. Pilania, A. Mannodi-
Kanakkithodi and C. Kim, Machine learning in materials
informatics: recent applications and prospects, Npj. Com-
put. Mater., 2017, 3, 1–13.

36 L. Bassman, P. Rajak, R. K. Kalia, A. Nakano, F. Sha, J. Sun,
D. J. Singh, M. Aykol, P. Huck, K. Persson and P. Vashishta,
Active learning for accelerated design of layered materials,
Npj. Comput. Mater., 2018, 4, 1–9.

37 Y. Zhang and C. Ling, A strategy to apply machine learning
to small datasets in materials science, Npj. Comput. Mater.,
2018, 4, 1–8.

Materials Advances Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

9 
A

ug
us

t 2
02

2.
 D

ow
nl

oa
de

d 
on

 1
0/

19
/2

02
5 

2:
33

:3
9 

PM
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d2ma00746k


7844 |  Mater. Adv., 2022, 3, 7833–7845 © 2022 The Author(s). Published by the Royal Society of Chemistry

38 K. T. Butler, D. W. Davies, H. Cartwright, O. Isayev and
A. Walsh, Machine learning for molecular and materials
science, Nature, 2018, 559, 547–555.

39 G. R. Schleder, A. C. M. Padilha, C. M. Acosta, M. Costa and
A. Fazzio, From DFT to machine learning: recent
approaches to materials science–a review, J. Phys.: Mater.,
2019, 2, 032001.

40 Y. Dong, C. Wu, C. Zhang, Y. Liu, J. Cheng and J. Lin,
Bandgap prediction by deep learning in configurationally
hybridized graphene and boron nitride, Npj. Comput.
Mater., 2019, 5, 1–8.

41 Y. Zhuo, A. Mansouri Tehrani and J. Brgoch, Predicting the
Band Gaps of Inorganic Solids by Machine Learning, J. Phys.
Chem. Lett., 2018, 9, 1668–1673.

42 B. Kolb, L. C. Lentz and A. M. Kolpak, Discovering charge
density functionals and structure–property relationships
with PROPhet: a general framework for coupling machine
learning and first-principles methods, Sci. Rep., 2017, 7, 1–9.

43 G. Pilania, C. Wang, X. Jiang, S. Rajasekaran and
R. Ramprasad, Accelerating materials property predictions
using machine learning, Sci. Rep., 2013, 3, 1–6.

44 G. Pilania, A. Mannodi-Kanakkithodi, B. P. Uberuaga,
R. Ramprasad, J. E. Gubernatis and T. Lookman, Machine
learning bandgaps of double perovskites, Sci. Rep., 2016, 6,
1–10.

45 K. Takahashi, L. Takahashi, I. Miyazato and Y. Tanaka,
Searching for Hidden Perovskite Materials for Photovoltaic
Systems by Combining Data Science and First Principle
Calculations, ACS Photonics, 2018, 5, 771–775.

46 K. Sodeyama, Y. Igarashi, T. Nakayama, Y. Tateyama and
M. Okada, Liquid electrolyte informatics using an exhaus-
tive search with linear regression, Phys. Chem. Chem. Phys.,
2018, 20, 22585–22591.

47 Y. Okamoto and Y. Kubo, Ab Initio Calculations of the
Redox Potentials of Additives for Lithium-Ion Batteries
and Their Prediction through Machine Learning, ACS
Omega, 2018, 3, 7868–7874.

48 R. Jalem, M. Nakayama and T. Kasuga, An efficient rule-
based screening approach for discovering fast lithium ion
conductors using density functional theory and artificial
neural networks, J. Mater. Chem. A, 2013, 2, 720–734.

49 K. Fujimura, A. Seko, Y. Koyama, A. Kuwabara, I. Kishida,
K. Shitara, C. A. J. Fisher, H. Moriwake and I. Tanaka,
Accelerated Materials Design of Lithium Superionic Con-
ductors Based on First-Principles Calculations and Machine
Learning Algorithms, Adv. Energy Mater., 2013, 3, 980–985.

50 N. Kireeva and V. S. Pervov, Materials space of solid-state
electrolytes: unraveling chemical composition–structure–
ionic conductivity relationships in garnet-type metal oxides
using cheminformatics virtual screening approaches, Phys.
Chem. Chem. Phys., 2017, 19, 20904–20918.

51 E. D. Cubuk, A. D. Sendek and E. J. Reed, Screening billions of
candidates for solid lithium-ion conductors: a transfer learning
approach for small data, J. Chem. Phys., 2019, 150, 214701.

52 A. D. Sendek, Q. Yang, E. D. Cubuk, K. A. N. Duerloo, Y. Cui
and E. J. Reed, Holistic computational structure screening

of more than 12 000 candidates for solid lithium-ion con-
ductor materials, Energy Environ. Sci., 2017, 10, 306–320.
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