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ICHOR: a modern pipeline for producing Gaussian
process regression models for atomistic
simulations†

Matthew J. Burn and Paul L. A. Popelier *

Current practical use of machine learning is more involved than model architecture and the optimisation

technique itself. It is very important that the modern machine learning method is supported with a

robust set of tools for the creation and manipulation of data sets. ICHOR is one such tool designed for

the purpose of creating fast and accurate atomistic Gaussian process regression (GPR) models through

the use of active learning. ICHOR operates in the context of FFLUX, a fully polarisable force field based

on the energies and multipole moments of quantum topological atoms. ICHOR interacts with the

in-house GPR program FEREBUS for training, and with DL_FFLUX (derived from DL_POLY) for geometry

optimisation and molecular simulation. ICHOR utilises the latest technologies in HPC cluster

management to produce GPR models reliably at scale.

1. Introduction

Machine learning (ML) has become a vital part of computa-
tional chemistry across a range of disciplines from studying the
properties of materials1–3 to generating new drug candidates.4–6

Throughout the years, ML has increased in popularity and
complexity, and provides a wide range of chemists with a
diverse toolset for tackling some of the most difficult problems
faced today.

One field within computational chemistry in which ML is
becoming ever more commonplace is the design of new force
fields.7–12 Traditionally, force fields have consisted of equations
derived from classical mechanics and parameterised using
empirical or ab initio data.13–21 It is known that the classical
equations used in common classical force fields have common
downfalls when it comes to nuclear quantum effects22,23 as well
as many-body effects.24–28 ML is perfectly suited to combat
these issues by learning such phenomena from the data itself

whilst maintaining the speed we have come to expect from
modern day force fields.

A ML model generally consists of a series of inputs and
outputs known as the training set. The quality of the training
set, combined with the architecture of the ML model, deter-
mines the performance of the model. How these data are
generated and manipulated is a domain-specific problem but
becomes an essential step when dealing with larger and larger
models. A ML pipeline is the name given to the process of
creating a ML model from start to finish. It is generally an
automated process enabling the production of large and
complex ML models.

ML pipelines are a vital stage within the design process of
making models suitable for use in simulations. A pipeline, and
furthermore a pipelining application, enables the production of
reliable models in a reproducible way due to the standardisa-
tion of how each data point is produced and processed. Auto-
mating such an application removes the likelihood of user error
and allows for data acquisition and manipulation at much
greater scales than manual processes would allow. There are
many examples of pipeline automation applications within the
machine learning literature, both within chemistry and
beyond.29–32

Past studies33–36 from our group have used the pipelining
tool called GAIA,12 which is a Perl program written to automate
the generation and manipulation of Quantum Theory of Atoms
in Molecules (QTAIM)37,38 data (i.e. atomic energies and multi-
pole moments) to produce atomistic Gaussian process
regression39 (GPR) models although we initially constructed40

neural net models, now some time ago. GAIA was an essential
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tool for creating such atomistic models enabling pioneering
research within the molecular simulation domain.11,41,42

Whilst GAIA was instrumental in outlining the pipeline for
the creation of atomistic models, the models produced by GAIA
were performed statically. In other words, if the predictive
performance of the model produced was not accurate enough,
there was little that could be done other than regenerating
more data and retrain a new model. For this reason, a new
pipelining application was developed called ICHOR, which was
designed from the ground up with active learning in mind.43

Active learning is a broad term used in ML to describe an
algorithm designed to iteratively improve a training set using
unlabelled data. Active learning44 provides a pathway to
improve a model if the current model does not meet the
expected accuracy. ICHOR implements several active learning
methods alongside its automation tools necessary to generate
such large amounts of data in a time-efficient manner.

This paper outlines the features implemented in ICHOR to
allow for the reliable creation of robust GPR models, validated
for use in atomistic simulations. ICHOR is a comprehensive
toolkit providing interfaces to many external programs
enabling novice users to create models quickly and providing
tools to experienced users to enhance their productivity.

2. Point generation
2.1 Initial point generation

The first step in producing an atomistic GPR model is to
generate a set of points that describes the system to be
modelled. ICHOR implements an interface to several point
generation methods, the three most common being: (i) ab initio
MD (AIMD), (ii) classical MD, or (iii) normal mode sampling.
Each method has benefits and drawbacks: AIMD sampling
produces chemically accurate (given its first principle nature)
geometries but at great computational cost,45–47 classical MD
simulations reduces the chemical accuracy (given its force field
nature) of the geometries produced but decreases the computa-
tional cost allowing for more geometries to be produced, while
normal mode sampling is even faster still.

ICHOR provides interfaces to three external programs
intended for point generation:
� CP2K48 – AIMD Software.
� AMBER49 – Classical Force Field.
� Tyche50 – Normal Mode Sampler.
Full details on the interfaces to each of these programs may

be found in the ESI.† Note that any point generation method
may be used with ICHOR and the programs detailed here are
only those that are included in ICHOR’s automated workflow.

2.2 Training set production

Once the initial set of (input) geometries has been produced it
needs to be split into a training, sample and test set. Creating a
good training set is a difficult task because it is important to
describe the entire space in order to get good predictions from
your model. It is also important to keep the number of training

points to a minimum in order to limit (i) the amount of time
spent calculating the true values for each training point, (ii) the
time spent to train the model, and (iii) the time taken to predict
values using the model in a production setting.

ICHOR allows for several methods of set generation to be
defined and combined. When initialising the training set, a
common method is to combine the so-called min–max–mean
method with a number of random points. The min–max–mean
method takes a set of input geometries and calculates the
features of the training set using the methods described in
Section 3.2. Subsequently the points corresponding to the
minimum, maximum and (closest to the) mean value for each
feature (i.e. in each dimension) are added to the training set.
If the number of features is denoted nf then the resulting
training set will have an initial size of 3nf, which scales linearly
with respect to the number of features. For smaller molecules,
which have relatively few features, the min–max–mean method
alone suffices for training set initialisation. However, when
moving to larger molecules, there is much more space to be
filled in between the minimum and maximum of each feature.
For this reason, for larger systems, random points are added to
partially fill the void producing an improved initial training set
for active learning. After generating the training set, it is
common practice to initialise the sample set and test set from
the remaining points selected at random from the initial set of
geometries.

3. Generating training data
3.1 ALF determination

The geometries in the training set are often represented as a set
of Cartesian coordinates. Cartesian coordinates are a N � 3 set
of points that are described with respect to a global axis system.
This means that translating and rotating the geometry will
affect the coordinates without changing the system’s geometry.
Because this is undesirable for a set of machine learning
features we convert the Cartesian coordinates to a set of
features expressing internal geometry before inputting them
to the GPR model. The features used by the ICHOR pipeline are
calculated using the Atomic Local Frame51 (ALF). The ALF
replaces the global axis system with one that is local to the
atom the features are being calculated for. Given an origin atom A,
the ALF is defined by two atoms, Ax and Axy. Ax is the atom
defining the x-axis for the ALF and Axy is the atom defining the xy-
plane. The z-axis is then defined using a right-handed axis system.

To define Ax and Axy given A, the Cahn–Ingold–Prelog rules
are used, setting Ax to the highest priority atom and Axy to the
atom with the second highest priority. To implement the Cahn–
Ingold–Prelog rules, first the connectivity of the system must be
defined, which is done by ICHOR using an adjacency matrix.
The calculation of the adjacency matrix D is carried out with
eqn (1),

Dij ¼
1 if r A;Bð ÞosstretchrVDW A;Bð Þ

0 otherwise

(
(1)
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where r(A,B) is the distance between atoms A and B, rVDW(A, B)
is the van der Waals (vdW) distance between A and B, and
sstretch is a stretch factor typically set to 1.2 to account for any
bond stretches. The functions r and rVDW are defined as follows,

r A;Bð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX3
i¼1

Ai;Bið Þ2
vuut (2)

rVDW(A, B) = dVDW(A) + dVDW(B) (3)

where dVDW(A) is the vdW radius for atom A and dVDW(B) is the
vdW radius for atom B. The atomic vdW radius is retrieved
from a lookup table that can be found in the ESI.†

The adjacency matrix enables the construction of a molecular
graph and the determination of an ALF. Previous work utilised a
recursive algorithm to determine the ALF for a given atom. An
iterative approach was designed for ICHOR to remove some of
the potential problems with stack overflow errors deriving from
recursive routines. ICHOR’s ALF determination algorithm is an
implementation of the breadth-first search (BFS) algorithm
designed to implement the Cahn–Ingold Prelog rules. Fig. 1
shows an example of the BFS algorithm in practice.

As can be seen from Fig. 1, the BFS algorithm iteratively
increases the depth of the search once all atoms connected to
the previous search level have been investigated and priorities
calculated. The priority of a particular atom is the sum of the
atomic masses for each atom in the molecular graph within a
certain depth assigned by the current iteration of the BFS
algorithm,

Priority Aið Þ ¼
X
Aj

mass Aj

� �
;

where Aj 2 BFS Ai; depthð Þ
(4)

The result of the first search (shown in red in Fig. 1) assigns
the Ax atom. The same BFS algorithm is used to assign the
second highest priority atom (shown in blue) by removing the
highest priority atom from the search and assigning the second
highest priority to the highest priority atom of this second
search. If the origin atom only has a single connected atom
(and is therefore already assigned as the highest priority atom),
the origin of the second BFS is set to the connected atom, and
again the second highest priority atom is set to the highest
priority of this second BFS.

A final point concerns the stability of the adjacency matrix in
response to small perturbations of the atomic positions. In fact,
one test case was encountered, during the development of the
ALF determination algorithm, of a highly branched system
where a small rotation of a methyl group led to a change in
the ALF. However, to protect the user against this scenario they
must specify a reference geometry that will produce the desired
adjacency matrix or explicitly define the ALF directly. The ALF is
then used for every geometry rather than recalculating the ALF
for each geometry, which could lead to issues with inconsistent
adjacency matrices. The ALF that is used for feature calculation
is then written to the model file to be used for future

calculations. The model file contains all hyperparameters and
training data used for prediction. It is important for the current
algorithm to be robust because thousands and thousands of
ALFs typically need to be calculated, and this should be done
correctly.

3.2 ALF feature calculation

Once the ALF for each atom in a system has been determined,
the ALF can be used on any configuration of the same system in
order to calculate the input features for the GPR models. The
features used in the force field FFLUX are geometric features
deriving only from the Cartesian coordinates of the original
system. The first three features correspond to the atoms in the
ALF for a given atom (A, Ax and Axy). The first feature (Ax) is the
distance between the origin atom (A) and the atom defining
the x-axis (Ax). The second feature (Axy) is the distance from the
origin atom and the atom defining the xy-plane (Axy). The third
feature (wA) is the angle subtending the atom defining the x-axis

Fig. 1 Demonstration of the BFS algorithm implemented to find the
highest priority atom connected to the carbon atom shown in black
(denoted A) at the first level (top, zeroth iteration). The BFS algorithm
iteratively increases (going down the figure) the search space calculating
the priority, which is the sum of the atomic masses of the branch. A branch
is a part of a molecular graph, where each atom is a node and each
covalent bond defines an edge. For each branch (highlighted within the
molecular graph) shown, the priority is marked by a number in atomic
mass units (C = 12, H = 1, O = 16; for example, 53 = 3 � 12 + 16 + 1). In the
first iteration of the BFS algorithm, the oxygen atom has the highest priority
and is thus selected as the atom defining the x-axis, Ax. In the second
iteration of the BFS algorithm, the fourth branch (utmost right) contains a
terminal hydrogen, which therefore does not participate in any further
iterations. Furthermore, there is no need to search the third branch any
further because the oxygen has already been selected as the Ax atom. The
second iteration cannot prioritise between the first and second branch
(both at 53). Thus a third iteration is required, which finds that the second
branch (87) has a higher priority than the first branch (83), resulting in
the carbon atom at the bottom of the branch being assigned to the
xy-plane, Axy.
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(Ax), the origin atom (A) and the atom defining the xy-plane
(Axy). The remaining features are calculated as spherical polar
coordinates of every non-ALF atom with respect to the axis
system defined by the ALF. Formally we can express the above
as follows,

Ax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ax � Að Þ2

q
(5)

Axy ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Axy � A
� �2q

(6)

wA ¼ cos�1
Ax � Axy

AxAxy

� �
(7)

An ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
An � Að Þ2

q
(8)

yAn ¼ cos�1
zAn
3

An

 !
(9)

fAn ¼ tan�1
zAn
2

zAn
1

 !
n ¼ ð4; . . .NÞ (10)

where zAn
j is the jth local atomic Cartesian coordinate of atom

An calculated by rotating the global atomic Cartesian coordinate

aAn
j using the rotation matrix C. As mentioned previously, the

ALF spherical features are calculated using the ALF axis system.
Therefore the Cartesian coordinates, ai, must first be rotated
from the global frame to the atomic local frame resulting in the
ALF Cartesian coordinates, zj. The rotation is performed using a
rotation matrix C, the rows of which (Ci) are calculated using

C1k ¼
aAx
k � aAk

� �
RAx

(11)

C2k ¼
ykffiffiffiffiffiffiffiffiffi
y � yp (12)

C3 = C1 � C2 (13)

where k is the column index of row i of the C matrix. The ALF
Cartesian coordinates can then be calculated using

zAn
j ¼ Cj1 aAn

1 � aA1
� �

þ Cj2 aAn
2 � aA2

� �
þ Cj3 aAn

3 � aA3
� �

(14)

Using eqn (5)–(10), ICHOR calculates the ALF features for each
geometry of a training set for input to generate the GPR models.

3.3 Calculating atomic properties

Once a training set has been generated, the true values for each
training point are required to make a GPR model. For atomistic
GPR models, the property we want to use in our models is an
atomic property. These atomic properties can be energy values
or multipole moments and are calculated using quantum
mechanics. The first step in calculating the atomic properties
for a geometry is generating a wavefunction. In ICHOR this is
performed by an external quantum chemistry program such as

GAUSSIAN52 or PySCF.53 ICHOR is required to interface with
these programs to generate a wavefunction for any geometry at
any level of theory and basis set. From the wavefunction for a
given geometry atomic properties can be calculated according
to QTAIM. Much like calculating the wavefunction, ICHOR
interfaces with an external QTAIM program such as AIMAll54 or
MORPHY55 in order to calculate the atomic properties. ICHOR
is then able to use the atomic properties to make a GPR model.

For each atomic property to be learnable by the GPR model,
it must be possible to describe the behaviour of the property by
the input features only. The input features of the GPR model
are in the ALF and therefore the atomic properties must also be
expressed in this ALF. This affects directional properties such
as atomic dipole moments and higher moments. The interact-
ing quantum atoms (IQA)56 energy is an atomic property
defined by only the self-energy (i.e. intra-atomic) of the atom
and the interaction energy between the atom and every other
atom in the system,

EA
IQA ¼ EA

self þ
X
BaA

EAB
int (15)

So long as the input features to the machine learning
method describes each B atom relative to atom A, the IQA
energy of atom A will be a learnable atomic property. For
example, AIMAll outputs the multipole moments in the global
frame as opposed to the atomic local frame. This means that
the multipole moment is not described with respect to the ALF
but instead with respect to the global frame. Therefore, to
transform the multipole moments into a property defined in
the ALF (and hence a learnable property) the moments must
first be rotated.

To rotate the multipole moments into the ALF, the C matrix
from the previous section is used. The C matrix describes the
rotation necessary for a set of Cartesian coordinates to rotate
from the global frame into the ALF. Unfortunately, the multi-
pole moments outputted by AIMAll (i.e. the multipole moments
that will be trained) are in the spherical harmonic representa-
tion. Therefore, to rotate the moments provided by AIMAll, it is
necessary to convert the spherical moments into the Cartesian
format. Subsequently, we rotate these Cartesian moments
using the C matrix before converting the rotated Cartesian
moments back to the spherical representation. The equations
for the conversions and rotations are taken from Stone et al.57

and can be found in the ESI.†

4. Gaussian process regression

ICHOR calculates features and parses data files from quantum
chemistry programs to generate a training set for FEREBUS.58

FEREBUS is an in-house program that has been designed to
work alongside ICHOR and DL_FFLUX to generate models
quickly with a highly detailed model file output. ICHOR has
two roles when interacting with FEREBUS: (i) produce the input
files for FEREBUS and (ii) interpret the model files outputted
from FEREBUS.
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FEREBUS has two input files: a config file and a training set
file. The config file is a TOML file that specifies how to perform
the optimisation of the GPR model. It contains information such
as: system information, the mean function to use, the kernel
function to use and optimiser parameters. ICHOR is responsible
for generating the config file with the parameters specified by
the user, an example of which can be found in the ESI.† The
training set file is simply a comma-separated value (csv) file
containing the inputs and outputs calculated previously, where
the inputs are the ALF features of the training set, and the
outputs are the atomic properties that are to be trained. Full
details on the FEREBUS input files can be found in the ESI.†

The benefit of using an external program to generate the
GPR models, as opposed to producing the models internally in
ICHOR, is that the GPR engine implementation may be chan-
ged without needing any modification to ICHOR. If the new
GPR implementation can parse the standard FEREBUS inputs
and output standard model files then the GPR implementation
may be changed at will.

With the optimised GPR model, ICHOR is required to use
the model for analysis and active learning. ICHOR makes no
assumptions on the GPR model and requires all information to
come from the model file itself. For this reason, ICHOR must
implement the full model file standard including non-standard
ALFs, universal mean functions and composite kernels. Full
details may be found in the ESI.†

To begin with, let us look at making a prediction with an
arbitrary GPR model,

f̂(x*) = m(x*) + r0R�1(y � m(X)) (16)

where f̂(x*) is the model prediction of arbitrary point x*, m is the
mean function, y is the training output, X is the training input,
r is the covariance vector (with the prime representing the
transpose) and R is the covariance matrix given by

Ry ¼ k X ;Xð Þ ¼

k x1; x1ð Þ � � � k x1; xnð Þ

..

. . .
. ..

.

k xn; x1ð Þ � � � k xn; xnð Þ

2
66664

3
77775 (17)

R = Ry + Is (18)

r ¼ k x�;Xð Þ ¼

k x�; x1ð Þ

..

.

k x�; xnð Þ

2
66664

3
77775 (19)

where k is the covariance function, which is also known as the
kernel function, I represents the identity matrix and s is a noise
parameter (often called a nugget). The latter is defined in the model
file, and typically ranges between 10�10 (default unoptimised value)
and 10�6. This parameter can also be optimised. Note that we do
not have much noise in our data because poorly integrated atoms
are discarded prior to the model construction. The covariance
function is responsible for describing the difference between two

points. The difference is then scaled using hyperparameters that
can be optimised to fit the unknown function being modelled.
Different kernel functions can be chosen based upon the shape of
the underlying data. Secondly, composite kernels can be used to
combine features from different kernels to reduce the responsibility
of finding the optimal hyperparameters.

From eqn (16)–(19), ICHOR must implement a variety of
mean (m) and kernel (k) functions as well as enable the
formation of composite kernels to fully satisfy the FEREBUS
model file standard. Currently ICHOR implements the mean
functions listed in Table 1.

The zero mean function is the simplest and merely returns 0
regardless of the input. The constant mean is similar to the
zero mean but instead of returning 0, returns a constant value,
c, defined by the model file. The linear and quadratic mean
functions with coefficients, b, are scaled based upon the values
of xmin while ymin is introduced to remove the requirement of
the function of passing through the origin. It is a trivial task to
implement new mean functions in ICHOR because new mean
functions are supported by GPR engines such as FEREBUS.
Currently ICHOR does not implement composite mean func-
tions as the current FEREBUS model file standard has no
support for this feature although there are no restrictions on
this feature being added within ICHOR’s architecture.

Alongside the standard kernels shown in Table 2, the GPR
engine FEREBUS implements a domain-specific kernel known
as the RBF-cyclic kernel. The standard RBF kernel models the
difference between two points as a Gaussian scaled by the
lengthscale parameter l. For many situations, this kernel func-
tion is suitable except for angular features leading to the RBF-
cyclic kernel. For ALF features, every third feature is an angular
feature with a potential value range of [�p,p]. Importantly, this
range allows for the difference between two features to exceed p
radians leading to the necessity of a cyclic feature correction.
FEREBUS performs this correction using this RBF-cyclic kernel,

krbf-cyclic xi; xj
� �

¼ exp �
Xndim
d¼1

rd xdi ; x
d
j

� �2
2ld2

2
64

3
75 (20)

rd xdi ; x
d
j

� �
¼

xdi � xdj þ p
� �

mod 2p
h i

� p; d mod 3 ¼ 0

xdi � xdj ; otherwise

8><
>:

(21)

As can be seen from eqn (20), the RBF-cyclic kernel is
identical to the RBF kernel (see Table 2) with the modification

Table 1 Table showing the mean functions currently implemented in
ICHOR

Function name Mean function

Zero m(x) = 0
Constant m(x) = c
Linear m(x) = (x � xmin)b + ymin

Quadratic m(x) = (x � xmin)2b + ymin
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of the distance function used every third feature, whereby the
standard distance metric is replaced by a metric modified to
ensure the difference between the two points never exceeds p
radians. Full details can be found in the ESI.†

Note that the kernels in Table 2 do not contain a constant
prefactor in front of the typical exponential function acting as
another hyperparameter. Some texts use this prefactor while
others do not. We have chosen the route of not including the
prefactor as we have not noticed any significant detriment
when not including this parameter. However, the user has the
option to define a constant prefactor using a product of the
constant kernel and the kernel of choice.

Aside from modifying existing kernels, new kernels may be
produced by combining simpler kernels such as the ones
shown in Table 2 to produce a composite kernel. Composite
kernels can be very complex but the most used composite
kernel used by ICHOR is the RBF-periodic kernel because this
kernel solves the same problem as the RBF-cyclic kernel shown
in eqn (20). The RBF-periodic kernel combines the RBF and
periodic kernels by multiplying the output of each kernel on a
subset of the input features, where the RBF uses only non-cyclic
features whilst the periodic kernel uses only cyclic features. The
dimensions used by a kernel function are known as the kernel’s
active dimensions,

krbf-per(x) = krbf(xnon-cyclic) � kper(xcyclic) (22)

where the cyclic dimensions are every third dimension after the
first three dimensions (i.e., each f dimension from eqn (10))
and the non-cyclic dimensions are every other dimension. The
implementation of kernel composition and active dimensions
is discussed in detail in the ESI.†

The optimisation of the hyperparameters of the GPR model
is undertaken by FEREBUS through maximising the marginal
log-likelihood,

LL yjX ; hð Þ ¼ �1
2
y� m Xð Þð Þ

0
R�1 y� m Xð Þð Þ � 1

2
ln Rj j

� n

2
ln 2p (23)

FEREBUS is independent of ICHOR and therefore the method
of optimisation can be changed. FEREBUS has implemented
the differential evolution, particle swarm optimisation and the
gradient descent optimiser BFGS.

5. Active learning

ICHOR was primarily written to implement active learning, which
was deemed infeasible with the preceding program GAIA. Active
learning is the process of iteratively improving a machine learning
model’s training set by adding points that will optimise some
metric. For ICHOR’s and FFLUX’s GPR models, a model describes
the potential energy surface of an atom. Hence, the model’s
success can be defined by minimising the prediction error of
molecular geometries, which may come up while using the model
in a molecular dynamics simulation. A naı̈ve approach would be
to construct a set of points to sample from, calculate the true
atomic property for each point and then calculate the prediction
error of each point using the current model. We can then add the
point with the maximum prediction error to the training set and
retrain to improve the model. Repeating this process would
minimise the prediction error of the model overall.

The issue with the above active learning method is that t requires
the true value of all sample points to be known prior to calculating
the prediction error, which can be very expensive. Active learning
methods are generally designed to also minimise prediction error
without the requirement that the true value for each sample point is
known. GPR models are useful in this regard because a prediction
not only provides a value for the prediction but the prediction also
comes with an uncertainty value because each point is a modelled
Gaussian. This uncertainty in the prediction is an invaluable tool
used by most active learning methods implemented in ICHOR. We
now discuss five active learning methods.

5.1 Random method

The simplest active learning method implemented in ICHOR is
the random active learning method. The random active learn-
ing method acts as a baseline method to compare with other
active learning methods in terms of performance. The random
active learning method simply selects a point at random from
the sample set and adds it to the training set,

xrand = xi AR X* (24)

5.2 Variance method

A more sophisticated active learning method implemented in
ICHOR is the variance method. This method calculates the

Table 2 Standard kernels implemented in ICHOR with the optimisable parameters

Kernel name Kernel function Parameters

RBF

krbf xi;xj
� �

¼ exp �
Pndim
d¼1

xdi � xdj

� �2
2ld2

2
64

3
75; rd xdi ; x

d
j

� �2
¼ xdi � xdj

l

Periodic

kper xi; xj
� �

¼ exp �
Pndim
d¼1

2 sin2
p xdi � xdj

			 			
pd

0
@

1
A

2

ld2

2
66666664

3
77777775

l, p

Constant kconst(xi,xj) = c c
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variance (also called the uncertainty in the prediction) of each
sample point and selects the point with the maximum variance
to add to the training set. The idea is that points with a large
variance are far away from the points in the training set and are
therefore not modelled very well. The variance59 is denoted by
s2(x*) and given by

s2 x�ð Þ ¼ s2 1� r0R�1r0 þ
1� 10R�1r0
� �2

10R�110

" #
(25)

When the arbitrary point x* is close to the training set, the
variance will be close to 0 and then increases, the further the
point is away from the training set. Selecting the sample point
with the largest variance is an explorative form of active
learning whereby the active learning method seeks areas of
the search space that are not yet well sampled by the
training set.

xvar ¼ argmax
xi2X�

s2 xið Þ (26)

As the variance active learning method is explorative, the
method may fail to properly sample space that is close to the
training set, which is known as exploitation. The magnitude of
this downfall depends on the surface being sampled because a
surface that has many small details will likely benefit from an
exploitative active learning method, as opposed to a surface
that varies over large distances where the lack of exploitation is
a non-issue.

5.3 SigMu

At the other end of the exploration versus exploitation scale is
an active learning method known as SigMu. SigMu is an active
learning method designed to place points at the peaks and
troughs of a function by selecting the point with the largest
SigMu value. SigMu is therefore highly exploitative by nature.
The SigMu value is calculated by multiplying the predictive
variance (s2) by the predicted mean60 (f̂),

xsigmu ¼ argmax
xi2X�

s2 xið Þ f̂ xið Þ
			 			 (27)

The SigMu method is designed to find the local optima of a
surface by combining the variance and predicted mean. The
larger the absolute predicted value, the more likely the sample
point, xi, will be chosen. Similarly, the larger the variance of the
parameter, the higher the likelihood of the sample point that is
chosen. By combining the variance and the prediction, the
active learning method will continually sample both optima
that are known and potential unsampled optima. This beha-
viour is most favourable when the objective of the model is to
predict well points around optimum values because the SigMu
active learning method exploits such regions of space.

5.4 Uncertainty query

Another active learning method, alternative to SigMu and the
variance one, is the uncertainty query method. The uncertainty
metric balances exploration and exploitation by dividing the
predictive mean by the predictive variance. This is in contrast to

the SigMu strategy because the goal of balancing exploration
and exploitation is achieved by balancing the exploitative
predictive mean with the explorative predicted variance,61

xunc ¼ argmin
xi2X�

f̂ xið Þ
			 			ffiffiffiffiffiffiffiffiffiffiffiffi
s2 xið Þ

p (28)

5.5 Maximum expected prediction error method

Currently the maximum expected prediction error62 (MEPE)
active learning method is the most sophisticated active learning
method implemented in ICHOR. The MEPE method contains
three terms: (i) an explorative term, (ii) an exploitative term, and
(iii) a term to balance the exploration versus exploitation. As the
name suggests, the MEPE method calculates the expected pre-
diction error (EPE), which approximates the true prediction error
(PE). The objective of an active learning method is to minimise
the PE (maximise accuracy) of the model over an area of space
that the model will be expected to work within. The best method
for achieving this objective would be to use the true PE and select
the sample points with the lowest PE,

PEtrue(x*) = |f (x*) � f̂(x*)| (29)

Calculating the true prediction error requires the computa-
tion of the unknown true value of the objective function for
each sample point. Often the objective function is expensive to
calculate. For this reason, an approximation of the prediction
error is required and the MEPE method solves this problem
using the EPE,

EPE(x*) = aPEcv(x*)2 + (1 � a)s2(x*) (30)

As mentioned previously, EPE is a trade-off between exploration
and exploitation: the variance represents the explorative term while
the cross-validation prediction error, PEcv, represents the exploita-
tive term and both terms are balanced by the balance factor a.
Because the true prediction error is not known, the cross-validation
prediction error is used as an approximation. This is achieved by
calculating the cross-validation error for each training point and
then assigning the cross-validation error of the arbitrary point to
the closest training point. The definition of the approximate cross-
validation error is

PEcv
2 xið Þ �

R�1
� �

i;:
d þH :;i

d i

1�H ii

� �
R�1ð Þii

0
BB@

1
CCA

2

(31)

where xi is training point i and a detailed description of the
approximated cross-validation error may be found in the ESI.† To
assign the cross-validation error of an arbitrary point, x*, the cross-
validation error of the closest training point is approximated to be
the cross-validation of the arbitrary point,

PEcv
2 x�ð Þ ¼ PEcv

2 xið Þ  argmin
xi2X

k xi � x� k (32)

meaning that the PEcv
2 of the training point xi with the smallest

distance to the sample point x* is used as the PEcv
2 of x*. The EPE
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balance factor, a, aims to trade-off between exploration and
exploitation. This is achieved by setting a A [0,0.99]. Hence,
eqn (30) shows that the explorative and exploitative term are scaled
based on the value of a: the larger the balance factor, the more
exploitation is favoured but the smaller the value, the more
exploration is favoured. The balance factor is calculated using

a ¼

0:5; q ¼ 1

0:99�min 0:5�
PEtrue

2 xiþq�1
� �

PEcv
2 xiþq�1
� � ; 1

" #
; q4 1

8>><
>>: (33)

where q is the active learning iteration and xi+q�1 is the point added
to the training set in the previous active learning iteration. For the
first iteration, the balance factor is initialised to 0.5, for each
subsequent iteration, the true prediction error of the point added
is compared to the approximate cross-validation error. Based on
how well the cross-validation prediction error approximated the
true prediction error, balances whether to favour exploitation over
exploration in the subsequent active learning iteration.

6. HPC cluster management

ICHOR is designed for high-throughput data and model gen-
eration on the order of 107 data points. However, IQA data are
too expensive to be scaled at this small. In order to compute the
volume of data required for a high-accuracy, high-dimensional
GPR model, the use of a HPC cluster becomes a necessity.
ICHOR implements several interfaces to such systems, making
full use of batch systems such as Sun Grid Engine (SGE)
and SLURM.

Using the glycine example shown in Table 3, it would take
almost 250 days to perform the active learning run on a single
machine running each calculation in series. ICHOR’s utilisa-
tion of HPC clusters and batch systems reduces this time down

to just 8 days (wall clock time including time to queue each job).
The optimisation achieved through the use of batch systems is
one of ICHOR’s greatest strengths. The cluster interface is
explained in detail in the ESI.†

7. Conclusions

ICHOR has grown to become an invaluable tool, providing the
novice user with the tools necessary to make GPR models
quickly, and the expert user with access to a library of functions
to tackle typical ‘‘computational chemistry tasks’’. ICHOR has
been designed as both an application and a library, allowing
experienced users to take advantage of ICHOR’s file handling,
program interfaces and high-level abstractions. ICHOR is a
feature-rich and easily expandable computational chemistry
suite that has enabled cutting edge research in machine learning,
active learning, quantum chemistry and force field design.

Modern machine learning models have grown to a point that
requires a substantial amount of infrastructure behind them,
providing data in a clean and reliable way in order to produce
accurate models. ICHOR bridges the gap between computa-
tional chemistry and machine learning in an easy-to-use, robust
manner as is required to produce machine learning models in
the present day. The implementation of interfaces, not only to
external programs, but also to HPC clustering systems enable
computation at a scale that otherwise would not be possible
within a reasonable timeframe running on a single node.
ICHOR provides a solid foundation for future work to build
upon, with a design based upon modularity and ease of
expansion. ICHOR thus removes the need to solve already
solved problems, instead allowing solutions to new problems
to be implemented within a production-ready application.

Data-access

Data not included in the ESI† is available from the authors on
reasonable request.
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