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Machine learning of phase diagrams†

J. Lund, a H. Wang, a R. D. Braatz b and R. E. Garcı́a *a

By starting from experimental- and ab initio-determined phase diagrams (PDs) of materials, a machine

learning (ML) method is developed to infer the free energy function for each phase. The ML method is

based on a custom two-step explore-exploit k-nearest neighbor strategy, which samples the

multidimensional space of Gibbs free energy parameters and user-defined physical constraints into a

database of millions of PDs in order to identify the target material properties. The method presented

herein is 1000� to 100 000� faster than currently available approaches, and defines a new paradigm on

the quantification of properties of materials and devices. As an example application, the developed

methodology is combined with the most widely used thermodynamic models – the regular solution,

Redlich–Kister, and sublattice formalisms – to infer the properties of materials for lithium-ion battery

applications in a matter of hours, reconstructing without human bias, well-established CALPHAD

formulations while identifying previously missed stable and metastable phases and associated properties.

For the EC–DMC–PC systems, the ML method allows to distinguish between stable and metastable

phase boundaries, while simultaneously considering the relevant phases. For the high-power density

LiFePO4 chemistry, a room-temperature metastable phase is identified. Its appearance highlights a

previously unreported driving force for the transformation kinetics between lithiated and delithiated

states that serves as a stepping stone to access a high-temperature eutectoid state that can be applied

to engineer solid-state chemistries. For the high-energy density LiCoO2 chemistry, a highly lithiated

electronically insulating phase is thermochemically favorable, particularly at grain corners and

boundaries, greatly improving the description of the experimental voltage profile, irrespective of the

used baseline free energy model to describe the relevant phases.

1 Introduction

A phase diagram (PD) is a graphical construction that sum-
marizes the thermochemical ranges of structural stability of a
material.1 It is the roadmap and the starting point to plan the
processing of existing and advanced materials, and is the most
elusive piece of information when an emerging chemistry is
being considered.

The modern CALculation of PHAse Diagrams (CALPHAD),
pioneered by Meijering and Hillert2–4 and Kaufman and
Cohen,5,6 is a well-established scientific field that enables the
systematic prediction of the temperature vs. composition PDs of
multicomponent chemical solutions. The long historical effort
(50+ years) has resulted in a vibrant and evergrowing community
amassing a wealth of databases that has been traditionally

powered through commercial software, such as Thermo-Calc,7

FACT-SAGE,8 and SOLGASMIX,9 and most recently through public
software libraries such as gibbs,10 pycalphad,11 and OpenCalphad.12

At the heart of a modern PD calculation is the optimization
(fitting) of the parameters associated to the Gibbs free energy
function that describes a material phase. This optimization is one
of the most widely active CALPHAD research areas, as new che-
mistries become the focus of emerging technological applications,
including for high-entropy materials,13–16 and in uncertainty
quantification.17–23 Traditionally, the PD construction process com-
bines experimental (e.g., calorimetric, electrochemical, vapor pres-
sures, and phase boundary measurements) and most recently
atomistic calculations24 to enable the prediction of a PD by starting
from the periodic table, while simultaneously enabling a deeper
understanding of the effect of bonding and solid-state physics on
the properties and coexistence of phases. Conceptually, this infor-
mation is directly fit to Gibbs free energy of mixing state functions
(see Methods) with physically interpretable parameters through
error minimization algorithms that use weighting factors to provide
precedence to the dominant topological feature or material prop-
erty controlling the accuracy of the fit.25 Existing approaches such
as Lukas,25,26 PARROT,7,27 FITBIN,8 and ChemOpt,28 maximize the
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superposition of the Gaussian probability likelihood to a fit of a
multivariable free energy function, in comparison to its experi-
mental or first-principles counterpart.27

Fundamentally, the PD optimization process starts by defining
a set of Gibbs free energy functions {g(a), g(b), g(g),. . ., g(M)} of size M
describing the possible physical phases of a multicomponent
system {c1, c2,. . ., cN} of size N, so that for a fixed absolute
temperature, a two- or P-phase equilibrium is sought, i.e.,

m(a)
i (c(a)

1 , c(a)
2 ,. . ., c(a)

N ,T) = m(b)
i (c(b)

1 , c(b)
2 ,. . ., c(b)

N ,T)

= � � � = m(P)
i (c(P)

1 , c(P)
2 ,. . ., c(P)

N ,T) (1)

Constraints such as mass and charge conservation are incorpo-
rated to reduce the number of degrees of freedom of the
physical system.29 Numerically, the optimization is implemented
by applying (a) steepest descent, as described by Newton–Raphson
and secant methods, e.g., see ref. 9, 28 and 30, until a predefined
error tolerance is reached; and (b) energy-minimizing phase
fraction search strategies, which have proven their robustness
for highly complex models that aim to use a large number of
sublattices and their corresponding variables.31 Other recent
contributions include convex hull solutions, as pioneered by
Carter and Cahn,32 and implemented in gibbs by Cool, Garcı́a,
et al.10 The current speed of these calculations is a direct function
of the analyzed thermochemical system, the specified numerical
tolerance, and the coarseness of the discretization, leading to the
computation of PDs in wall times that range from seconds to
minutes by using commercial software.7,8,12,21,33–35

Currently used approaches deliver a manual trial-and-error
process, take from months to years to carry out, and demand
specialized intuition, experience, and patience, particularly
when experimental data is scarce or partially unavailable.36 In
this context, the possibility of deriving two or more contradictory
free energy models that optimize the same PD is real, costing
invaluable time and effort. Specifically, the application of CAL-
PHAD approaches to engineer materials for lithium-ion batteries
(LIBs) remains anecdotal at best,37 even though relevant
information for important chemistries such as LiFePO4 (LFP)
has been available since the 1990s.38 The first direct CALPHAD
application was only formally reported in the early 2000s,39–43 by
using polynomial and transcendental functions to fit the excess
free energy of mixing models in binary polymer mixtures. Abe
and Koyama in 201144 and Chang, Siefert, and coworkers in
201345 reported CALPHAD analyses for the LiCoO2 (LCO) system,
a cathode material for high energy density applications, each with
significant differences in the equilibrium potential, particularly in
the large lithiation limit. In contrast, ab initio-based PDs have
been proposed since the late 1990s, as pioneered by Van der Ven
and Ceder,46,47 and Marianetti and Ceder.48 The application of
CALPHAD methods to model LFP was not reported until 2011,49

and was further advanced in 2019.50 The thermodynamic descrip-
tion of LFP remains disconnected from very successful and widely
used kinetic and coarse-grained models51–53 which, in spite of
these deficiencies, provide insights into the intercalation kinetics
of LIBs, even though they are based on simple regular solution
descriptions.

In spite of the great progress in the construction of phase
diagrams, the rate of development of physical Gibbs free energy
models remains at a pace of months to years at best, limiting a
deeper understanding of the materials’ thermodynamic and
kinetic properties. In this paper, we propose a physics-based
Machine Learning (ML) approach to describe material properties
of a specified chemistry in a matter of hours, instead of months
or years, as a natural extension to the well-established CALPHAD
foundation. As an example application, the developed methodology
is applied to optimize the properties of LIB-materials, making
direct comparisons against available models and experimental
data. The existence of equilibrium and metastable phases is
inferred from the resulting analysis.

2 Results and discussion

To infer the parameters of the Gibbs free energy state function
for each material phase directly from a PD, a two-step k-nearest
neighbors (knn)54,55 search strategy was developed, see Sec-
tion 5.3. Here, the Q-dimensional space of free energy para-
meters was uniformly discretized into a set of equally spaced
sampling points, which was used to perform a stochastic
optimization step where the distance between a sampled PD
point and a target PD were used to identify the physical
parameters that most closely match the experimental or numer-
ical system of interest (see Fig. 1). This distance defines an error
or loss function between the sampling point and target loca-
tion. Multiple kinds of experimental data, including electro-
chemical data and enthalpies of formation, can be used to
constrain the search and further improve the optimization of
the proposed model. Rather than focus on creating an optimi-
zation routine for a few data points, as is traditionally done by
the CALPHAD community,7,8,12,21,26,56 the proposed ML-
method considers the entire range of physically possible states,
with equal likelihood. The search strategy was implemented in
gibbs.ML, an extension of the open-source software gibbs,10 to
predict the thermodynamic equilibrium of materials. As compared
to traditional CALPHAD methods, which traditionally aim to
sequentially optimize the thermochemical parameters against a
few key experimental data points,25 the proposed approach com-
pares the sought experimental PD against the computer-generated
equivalent, irrespective of the model used to generate the PD.

Fig. 1 shows an example calculation based on 2 � 106 PDs,
spanning the entirety of the space of physically accessible
parameters in under 30 minutes, B670 ms per diagram. The
calculation of distance, data curation, and search process took
on the order B45 min, for a total of 1.1 h of computing time.
In comparison, the currently existing commercial software takes
between 0.2 s and 15 min per diagram,7,8,12,21,33–35 making it
unrealistic to implement ML strategies with the commercial
packages.

Overall, results for the regular solution free energy of mixing
model demonstrate the possibility of PD prediction within
a 3% deviation with respect to the target diagram. In contrast
to the performed calculations, the goodness of the fit has only
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recently been openly reported in CALPHAD-determined PDs,58–62

by formulating a vector of confidences with accuracies of at least
90% for every phase for the W + Pd system (10% normalized
error),63 extending this idea to weigh the prevalence of each
phase, resulting in a measure of deviation in the 1–8% range, as
shown for the Fe + Ti system.64 Bayesian sampling17,18,20 has
resulted in PDs with deviations on the order of 6%, as reported
for the Cu + Mg system.

The application of gibbs.ML to an experimental system is
summarized in Fig. 2, for ten of the most widely used organic
electrolytes used in LIBs,39–43 as reported by Ding,41 i.e., the PC +
DEC, DEC + DMC, DMC + EC, EMC + EC, PC + EC, DEC + EMC,
DEC + EC, PC + DMC, PC + EMC, and EMC + DMC experimental
PDs, which include two stoichiometric solid phases (three if
DMC is present), and a liquid phase.65 The Redlich–Kister
excess free energy model66 was used to optimize a third-order
temperature-independent set of parameters. This calculation
took less than 2.5 min to converge to a set of predicted
parameters for each pair of chemistries. Six of the ten electrolyte
chemistries show an error less than 3%, in excellent agreement
with the experimental data. The DEC + EC system displays the
largest model discrepancy on the liquidus line, as compared to
Ding’s prediction65 which used a nontraditional exponential free
energy of mixing function. As compared to currently used
methodologies,7,8,12,21,56 gibbs.ML explores a larger space of
parameters with no prejudice or bias within minutes, while
the traditional optimization analyses require a sequential search
of parameters that is prone to be dependent on the search path.
The ML-based approach reported herein simultaneously optimizes
all the parameters.

Fig. 2 shows that the ML-method enables distinguishing
between phase boundary data at equilibrium and away from it,
while simultaneously considering all phases present, defining an
iterative technique to predict thermodynamically consistent PDs.

For the PC + DMC and PC + EMC systems, the experiment-
prediction discrepancy highlights that the experimental data
points below the eutectic temperature are metastable, as
gibbs.ML only reports the equilibrium states. Removal of the
metastable data improves the accuracy to 2.82% for PC + DMC
and 2.045% for PC + EMC. Finally, the large discrepancy against
the EMC + DMC system, as predicted by Ding,65 is a result of
gibbs.ML identifying the peritectic solid–solid phase transition,
i.e., a polymorphic transition line, at �53 1C for the DMC side of
the diagram as a consequence of consistently describing the free
energy phases of DMC by the automated knn search.‡

The most widely used Gibbs free energy CALPHAD model, the
sublattice formalism,24 was implemented for the technologically
relevant battery material, LiFePO4 (LFP), a pseudo-binary system.
Two models found in the literature, namely: a short range order
sublattice model (SRO) from Lee49 and a long range order
sublattice model (LRO) from Phan et al.,50 were directly repro-
duced by using the experimental data reported by Dodd et al.,67

see Fig. 3, column O.
Lee49 identified the need to use multiple sublattices to

successfully model LFP, while Phan et al.50 extended this
description to account for the long range ordering of lithium
ions,70 enabling the description of larger solubilities at higher
temperatures. The direct application of the ML-method pre-
sented herein to the LRO model resulted on computation times
t1 h, see Fig. 3, column D, and delivers an improvement on
the eutectoid temperature prediction and room temperature
solubility as a result of the ability to explore the entirety of the

Fig. 1 Graphical depiction of the parameter space for temperature-concentration binary phase diagrams (PDs) describing two phases, a and b, through
two regular solution free energy models. Each inset location shows two PDs where corresponds to those originally reported by Pelton and
Thompson,57 and corresponds to the machine learning (ML)-determined parameters. The background contour plot shows the distance (error)
between a central (target) PD, , and the surrounding (sampling point) locations. Parameter search occurs through a PD space distance metric which
emphasizes differences in solubility, invariant reactions (e.g., eutectic, peritectic), presence of stoichiometric compounds, and other underlying
properties such as measurable equilibrium potentials.

‡ At room temperature, because the excess free energy of mixing is at most half
the contribution of the configurational entropy, the entropy is being maximized
in all the calculations, in agreement with the second law of thermodynamics.
Results show that the PC + EC system displays the most stable liquid phase of the
analyzed polymer chemistries, while the DEC + EC is the least stable, suggesting
that the addition of solute would favor a phase transition.

Materials Advances Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

0 
Se

pt
em

be
r 

20
22

. D
ow

nl
oa

de
d 

on
 1

1/
8/

20
25

 1
1:

25
:3

3 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d2ma00524g


8488 |  Mater. Adv., 2022, 3, 8485–8497 © 2022 The Author(s). Published by the Royal Society of Chemistry

space of all possible PDs without the need for prior, hand-
crafted search strategies. In contrast, the gibbs.ML optimization
on the SRO sublattice formalism took on the order of 55 h and
was unable to optimize the experimentally determined deep
eutectoid, which is a result of the limitations imposed by the
previously reported sublattice model.

Experimental results suggest that the limitations of the LRO
and SRO models are a result of the temperature-dependent
ferromagnetic properties,70–72 which are not captured by these
models. To overcome these limitations, a temperature-dependent
sublattice formalism, a TLRO model, was proposed, see
Section 5,36,73 and optimized in gibbs.ML in 17 h. The T-LRO
model matches the experimental eutectoid temperature and
solubility imposed by the phase boundaries, see Fig. 3, row T-
LRO. The proposed description shows that the configurational
entropy increases the solubility limit,36 suggesting a temperature-
dependence on the phase boundaries. In contrast, the PD reported
by Dodd et al.67 is, for all practical purposes, a temperature-
independent hand-drawn sketch based on the experimental results,
see Fig. 3 (solubility increases less than B0.01% K�1). Column P
shows a proposed improvement, naturally resulting in a deeper
eutectoid while matching the experimental data within 3.68%.67,68

The effect of the different sublattice models against the
room temperature experimental equilibrium potentials, as
reported by Yamada et al.,68 and Tan,69 is shown in Fig. 3,
rightmost column. The upper-right inset highlights that the
T-LRO model delivers a 100 mV improvement on the predicted
equilibrium electrochemical potential; however, the two-phase
region is wider than experiments by 0.05, a small over prediction
that can be attributed to kinetic effects.

Even though all three models reproduce the PD within 6%
uncertainty, see Fig. 3, lower right, results show that the SRO
model will favor traditional spinodal decomposition kinetics,
as assumed by multiple authors.51,52,74,75 In contrast, the LRO
model predicts the formation of a metastable phase at c B 0.6
in agreement with recent experimental observations in single-
crystal particles,76–81 and in grain boundaries.82,83 The analysis
shows that this prediction is a result of a local Gibbs free energy
minima that, at high temperatures, will result on the high
temperature eutectoid phase transformation. The T-LRO model
predicts a larger energy barrier that needs to be overcome to
induce the formation of the metastable phase, but will persist
for long periods of time if locally stabilized. This suggests that
different types of intercalation kinetics have been overlooked, but
are possible, particularly in the presence of chemomechanical
stresses, surfaces, and interfaces.52,74,84 Here, an initially unstable
phase can temporarily segregate into a two-phase microstructure
(coexistence of metastable and stable phases), before transition-
ing into a stable two-phase microstructure, each microstructure
displaying a characteristic segregation wavelength. Specifically,
the results demonstrate that the choice of free energy model
impacts the predicted characteristic, or fastest growing wave-

length for segregations, l ¼ p
2
Dc

ffiffiffiffiffiffiffiffiffi
2k
gmax

r
; in agreement with

Cahn.85 For k = 5 � 10�12 J cm�1, as reported by Tang et al.,74

the SRO sublattice model predicts lSRO = 5.3 nm, whereas the LRO
model defines lLRO = 9 nm and the T-LRO model states lT-LRO =
6 nm. This suggests a faster segregation rate of larger wavelengths
for the SRO model. In particular, the possibility of metastable
characteristic wavelengths, lLRO

xo0.6 = 7.1 nm and lLRO
x40.6 = 7.0 nm for

the LRO model and lT-LRO
xo0.6 = 4.7 nm and lLRO

x40.6 = 4.8 nm for the
T-LRO model, suggest the temporary appearance of one type of

Fig. 2 Thermodynamic model-experiment comparisons for ten polymer
electrolyte chemistries used in LIBs.39–43 � corresponds to calorimetric
measurements,41 corresponds to PDs reported by Ding,65 and corre-
sponds to the ML-determined PDs. Deviations with respect to the literature-
reported two-phase equilibria and the corresponding data are shown as
percentages. Note that the largest deviations correspond to the locus of points
where the equilibrium phase boundary is expected to be (PC + DMC and PC +
EMC), or where newly identified phases have been found (EMC + DMC).
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microstructure with a fine interlayer spacing where one of the
phases displays a low lithium concentration in the lithium-rich
phase for short times, to be replaced with a coarser interlayer
spacing with the traditionally expected lithium-deficient and
lithium-rich phases. The smaller gmax value predicted by the
LRO model indicates the metastable phase is expected to persist
for long times, whereas the T-LRO model predicts that the
eutectoid (chemically disordered) phase would be short lived
because of the large driving force to phase separate into rich
and lithium-deficient phases. The metastable phase description,
naturally captured by gibbs.ML, highlights the accelerated trans-
formation between lithiated and delithiated LFP and, as com-
pared to existing kinetic optimization approaches,86–88 it
demonstrates the importance to simultaneously consider the
effects of the kinetic and equilibrium properties as well as
incorporating high-temperature phases in emerging modeling
formulations.

The application of the ML methodology to complex systems that
include a combination of near room temperature experiments,89–93

ab initio calculations,46,47,94 and low C-rate voltage profiles89,92,95,96

have been compiled to develop CALPHAD-based models for the
LiCoO2 (LCO) system.44,45 Historically, the cobalt oxide (O1),
lithium cobalt oxide (O3), and a half cobalt oxide, half lithium

cobalt oxide (H13) phases were optimized by Abe and
Koyama,44 and later by Chang and coworkers,45 to obtain an
equilibrium electrochemical potential that agrees in the 0 o x
o 0.8 range, see Fig. 4. Here, the ML-method was extended to
directly include the equilibrium voltage profile in the loss
function to avoid overfitting. The performed calculation was
completed in t6 h, see Section 5.3 for details. In addition,
by starting from the original experimental and ab initio
data, as well as the latest developments on the expected
phases,47,48,89,97,98 a PD in the zero to 200 1C temperature range
was proposed, see Fig. 4, green PD. However, while the error for
the PDs is minimal (less than 5%), all three models overpredict
the voltage profile in the 0.3 o x o 0.7 range, and under
predict it for x 4 0.8.

In this context, Reimers and Dahn89 and Ohzuku and
Ueda90 found a lattice mismatch in the 0.75 o x o 0.925
range, while Van der Ven et al.47 speculated on the possibility of a
metal–insulator transition by using first-principles calculations.
The latter was confirmed experimentally by Ménétrier et al.100

Marianetti et al.48 proposed that the insulating phase was a result
of extrinsic impurities that energetically favor a Mott insulator.
Finally, using spectroscopy, Kellerman et al.98 showed that, for
temperatures greater than 150 K, LCO will become insulating for

Fig. 3 Catalog of lithium iron phosphate (LFP) PDs including (1) a proposed short range order, four sublattice model by Lee, SRO, ,49 (2) a long range
order, five sublattice model by Phan et al., LRO (M5L), ,50 and (3) a temperature-dependent, five sublattice model proposed herein, T-LRO, .
corresponds to target PD. Corresponds to the ML-determined PD. Corresponds to experimental data, as reported by Dodd.67 The deviation with
respect to the experimental data is shown as a percentage. Column O shows PDs as published in the literature and reproduced herein. Column D shows a
comparison against the originally reported experimental PD,67 and column P shows a comparison against a PD with thermodynamically consistent
solubility at low temperatures, in agreement with Yamada et al.68 � corresponds to electrostatic potential experimental data as reported by Yamada
et al.68 and , as reported by Tan,69 both at room temperature. The top-right zoomed-in inset highlights the differences on the predicted voltage
profiles, and the bottom-right corresponds to the predicted Gibbs free energy. While each model provides a PD that agrees within nine percent of phase
diagram distance to experiments, the effects on the possible stable and metastable phases, as well as the possible energy density and kinetics of
intercalation, is predicted to vary widely. Results demonstrate that the T-LRO model is quantitatively in better agreement with both PD and
electrochemical data, and suggests a thermally accessible metastable phase, in agreement with Phan et al.50
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x 4 0.85 due to a decrease of lithium vacancies. Thus, by using a
simple regular free energy model, the insulating phase referred
herein as O3(II)89 was determined, see Fig. 4, bottom row. The
results suggest that the proposed insulating phase is thermo-
chemically favorable and in great agreement with the experimental
voltage profile, irrespective of the used baseline free energy
model to describe the rest of the phases. Further, the addition of
an insulating phase results on a shift of the free energies of
mixing parameters for all the existing phases, as the optimization
process includes the entirety of the composition, thermal, and
electrical properties. This indicates that currently available models
compromise the values of the physical parameters across all
phases in an effort to compensate for the effect of an experimen-
tally observable two-phase region, highlighted by the 0.75 o x o
0.925 voltage plateau which was previously not considered. The
predicted insulating phase favors mixing, O(I) B�30 kJ mol�1 o 0,
particularly at grain corners and boundaries. At the closing of the
writing of this paper, Merryweather et al.101 reported the reversible
formation of the insulating phase, further supporting the gibbs.ML
prediction.

3 Conclusion

In conclusion, by extending the open source software, gibbs,10 a
novel machine learning approach is presented to infer the
thermodynamic state functions of a material by starting from
a graphical description, a phase diagram (PD). The method
presented herein is three to five orders of magnitude faster
than any currently available approach, defining a new para-
digm on the quantification of properties of materials and

devices. While it is common to focus on developing automated
methodologies that pull away from using physical intuition, the
presented ML method emphasizes the importance of using
physical principles to guide the rapid development of thermo-
dynamically consistent models that accurately capture the
relevant physical phenomena, thus freeing the researcher to
spend more time on the physical aspects.

As demonstrated in the ten analyzed organic electrolyte
systems, missing phases and metastable experimental data
were readily identified and assessed for stability and potential
use, by exploring the entire space of parameters without any
human bias. Further, the free energy models were reviewed and
updated to identify thermodynamically stable phases. For the
two analyzed cathode materials, LFP and LCO, published
models were compared against their respective PDs and the
electrochemical profile. The performed thermochemical and
electrochemical analysis allowed to identify previously missed
metastable and equilibrium phases that control the power and
energy density response and to rapidly assess the validity,
influence, and quality of the selected thermodynamic free
energy model.

The integration of ab initio-based, thermodynamically con-
sistent free energy models into advanced phase field formula-
tions will allow to identify currently overseen physics-based
microstructural evolution mechanisms, specifically those that
occur in the presence of multiphysical driving forces,102–104

effectively removing the bottlenecks that link single-crystal
phenomena with long term microstructural response. For the
generality of materials, the developed methodology provides
the ideal basis to understand the thermodynamic and kinetic
limitations for a wide variety of applications that go well

Fig. 4 Lithium cobalt oxide (LCO) PDs and equilibrium electrostatic potential (fourth column). � Corresponds to experimental equilibrium electrostatic
potential,45 corresponds to Abe and Koyama,44 corresponds to Chang et al.,45 and corresponds to this work. Corresponds to the target PD for
the ML-determined PD, as shown in . In contrast to traditional CALPHAD approaches, which have reported to have inadequate experimental and
theoretical data,44,45 in spite of the multiple reports and voltage data agreeing on its existence,47,48,89,97,98 the second row considers the incorporation of
an electrically insulating phase and the associated experimental equilibrium voltage to capture the correct physical behavior.89,91,93,99
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beyond energy-related systems, including ternary and higher
order, setting up the stage to dramatically advance the pace of
discovery and material design. Finally, while it is beyond the
scope of this paper, the methodology presented herein can
be readily extended to the multiphysical, multicomponent
CALPHAD description of materials and devices.

4 Methods
4.1 Thermodynamic models

For the ith phase of a binary PD, define the Gibbs free energy of
mixing as36

gðiÞðc;TÞ ¼ g
ðiÞ
formðc;TÞ þ g

ðiÞ
mix;idealðc;TÞ þ g

ðiÞ
mix;xsðc;TÞ (2)

The formation energy for each end member, gðiÞformðTÞ ¼ H
ðiÞ
T0
þ

Ð T
T0
c
ðiÞ
p dT � TS

ðiÞ
T0
� T

Ð T
T0

c
ðiÞ
p

T
dT where c(i)

p is typically approxi-

mated as a power series. If all phases have the same heat

capacity, then DgðiÞformðTÞ ¼ DHðiÞT0
� TDSðiÞT0

¼ DHðiÞ 1� T=T
ðiÞ
m

� �
relative to gð�Þ since DSðiÞT0

¼ DHðiÞT0
=T
ðiÞ
m . The composition-

dependent formation energy for a binary system at a given
concentration is a simple rule of mixing for the two compo-
nents a and b,

DgðiÞformðc;TÞ ¼ DHðiÞa 1� T=T ðiÞm;a

� �
ð1� cÞ

þ DHðiÞb 1� T=T
ðiÞ
m;b

� �
c (3)

The ideal free energy of mixing is given by the configurational
entropy contribution, g(i)

mix,ideal(c,T) = RT(c ln(c) + (1 � c)ln(1 � c)),
where R is the universal gas constant.

The simplest nonideal model, the regular solution model,
assumes that the excess free energy of mixing, the enthalpy of
mixing, to be entirely temperature-independent, and considers
quadratic or binary interactions,

g(i)
mix,xs(c,T) = c(1 � c)O(i), (4)

whereas the Redlich–Kister model66 considers higher order
interactions,

g
ðiÞ
mix;xsðc;TÞ ¼ cð1� cÞ

XL¼3
j¼0

L
ðiÞ
j ðTÞð2c� 1Þj : (5)

The interaction parameters are defined herein as linearly
dependent on temperature, i.e., L(i)

j (T) = a(i)
j + b(i)

j T.
Stoichiometric compounds were modeled in terms of the

stable, equilibrium concentration c(i)
0 with no free energy of

mixing,

gðiÞðc;TÞ ¼ DgðiÞformðTÞ ¼ DHðiÞ 1� T=T ðiÞm

� �
þYðc� c0Þ2 (6)

where Y = 108 J mol�1 is the stability constant.

The sublattice model, as described by Sundman and
Ågren,105 corresponds to

gðiÞ fyðsÞj g;T
� �

¼
X
j2ð1Þ

X
k2ð2Þ
���
X
l2ðSÞ

y
ð1Þ
j y

ð2Þ
k ���y

ðSÞ
l Dgformj:k:���:lðTÞ

þRT
XS
s¼1

X
j2ðsÞ

nðsÞy
ðsÞ
j lny

ðsÞ
j

þ
XS
s¼1

X
j2ðsÞ

X
k2ðsÞ;jak

y
ðsÞ
j y
ðsÞ
k

�
X

lm2ðmÞ;m2f1;2;���;s�1;sþ1;���;Sg
y
ð1Þ
l1
y
ð2Þ
l2
���yðs�1Þls�1

y
ðsþ1Þ
lsþ1
���

0
@ y

ðSÞ
lS

�LðsÞl1 :l2:���:ls�1 :j;k:lsþ1 :���:lS ðTÞ
�
;

(7)

where the sth sublattice of the ith phase corresponds to the y(s)
j

site fraction of the jth species found on the sth sublattice, such

that cj¼
PS
s¼1

nðsÞy
ðsÞ
j . The equilibrium is determined as

gðiÞðc;TÞ¼minfyðsÞ
j
gg
ðiÞ fyðsÞj g;T
� �

. For two sublattices, s and r,

each with two species, y(s)
a and y(s)

b and y(r)
c and y(r)

d , eqn (7)
reduces to36,106–108

gðyðsÞa ;y
ðsÞ
b ;y

ðrÞ
c ;y

ðrÞ
d ;TÞ¼y

ðsÞ
a yðrÞc Dgforma:c ðTÞþyðsÞa y

ðrÞ
d Dgforma:d ðTÞ

þyðsÞb yðrÞc Dgformb:c ðTÞþy
ðsÞ
b y
ðrÞ
d Dgformb:d ðTÞ

þRT nðsÞyðsÞa lnyðsÞa þnðsÞy
ðsÞ
b lny

ðsÞ
b

� �

þRT nðrÞyðrÞc lnyðrÞc þnðrÞy
ðrÞ
d lny

ðrÞ
d

� �

þyðsÞa y
ðsÞ
b yðrÞc L

ðsÞ
a;b:cðTÞþy

ðrÞ
d L

ðsÞ
a;b:dðTÞ

� �

þyðrÞc y
ðrÞ
d yðsÞa L

ðrÞ
a:c;dðTÞþy

ðsÞ
b L

ðrÞ
b:c;dðTÞ

� �

(8)

The equilibrium voltage, F, corresponds to

F ¼ � m
zF ¼ �

1

zF
@gðfpðiÞg; cÞ

@c
(9)

where z is the valence, is Faraday’s constant, and {p(i)} is the set
of the phases.

4.2 Material systems

The regular solution model-based PDs were optimized after those
reported by Pelton and Thomson.36,57,109 The a phase was set as
the reference phase. The melting temperatures Tm,a = 800 K and
Tm,b = 1200 K were read directly from the diagram. Four
parameters were found: DH(b)

a and DH(b)
b , with values in the 0

to 15 kJ mol�1 range, and mixing parameters Oa and Ob in the
�25 to 35 kJ mol�1 range.

The solid phases in the electrolyte systems were modeled as
stoichiometric compounds, and the liquid phase as a Redlich–
Kister model. The melting temperatures and enthalpies of
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transformation for all solid phases were taken directly from
literature values.65 The liquid phase was set as the reference
phase for each material system. L0, L1, and L2 were optimized to
values in the �20 to 20 kJ mol�1 range.

The LFP system was described as a sublattice model. Lee’s
SRO model uses four sublattices, one for each element with no
mixing between the oxygen and phosphate sublattices. The iron
sublattice is populated entirely by Fe2+ and Fe3+ and interacts
with the lithium sublattice containing Li+ and vacancies due to
a speculated short range ordering effect. In order for LixFePO4

to be electrically neutral for 0 r x r 1, cFe2+ = cLi+ = c. Thus,
eqn (7) simplifies to:

gðSROÞðc;TÞ ¼ c2DGform
LiþFe2þðTÞ þ cð1� cÞDGform

Va:Fe2þðTÞ

þ ð1� cÞ2DGform
Va:Fe3þðTÞ þ cð1� cÞDGform

Liþ :Fe3þðTÞ

þ 2RT c ln cð Þ þ ð1� cÞ ln 1� cð Þð Þ

þ cð1� cÞ cLLiþ ;Va:Fe2þ þ ð1� cÞLLiþ ;Va:Fe3þ
� �

þ cð1� cÞ cLLiþ :Fe2þ ;Fe3þ þ ð1� cÞLVa:Fe2þ ;Fe3þ
� �

þ c2ð1� cÞ2
Xn
j¼0
ðaj þ bjTÞ 2c� 1ð Þj

(10)

The last line of eqn (10) includes the interactions between the
lithium and iron sublattices in order to account for short range
ordering effects. The formation energies were defined as
DGform

j = DHform
j � TDSform

j .
Eqn (10) was simplified by using the electrically neutral end

members as reference phases and by assuming the intra-
sublattice energy of mixing to be negligible, in agreement with
Lee et al.49 Four inter-sublattice interaction parameters (n = 2 in
the last line of eqn (10)) were simultaneously optimized.

Phan and coworkers,50 used a five sublattice model (LRO),
where the lithium sublattice is split into two, one holding up to
0.6 molar concentration and the other remaining at 0.4 molar
concentration in order to account for long range ordering and
the eutectoid in the PD. The additional sublattice results in

eight end members: Gform
Liþ :Liþ :Fe2þ , Gform

Liþ :Liþ :Fe3þ , Gform
Liþ :Va:Fe2þ ,

Gform
Liþ :Va:Fe3þ , Gform

Va:Liþ :Fe2þ , Gform
Va:Liþ :Fe3þ , Gform

Va:Va:Fe2þ , and Gform
Va:Va:Fe3þ

that are simplified using the compound energy formalism,110

into four temperature-independent adjustable parameters:

DGform
FePO4

� , DGform
LiFePO4

þ , DGform
adjust1

, DGform
adjust2

, which correspond to

the excess formation energy of non-neutral end members. In
addition, g(LRO)

mix,xs(c,T) = 0. The ML-method converges in less than
one hour.

The T-LRO model proposed in this paper extends Phan’s
LRO model to include entropic effects by introducing tempera-

ture dependence to DGform
FePO4

� ¼ DHform
FePO4

� � TDSform
FePO4

� and

DGform
LiFePO4

þ ¼ DHform
LiFePO4

þ � TDSform
LiFePO4

þ . In total, the six adjus-

table parameters were optimized in 17 h. Implementation
details are included in the ESI.†

The voltage reported in the rightmost column of Fig. 3 was
taken directly from the original paper and was not optimized.

For the LCO system, the cobalt oxide phase (O1) was modeled
as a stoichiometric compound, the lithium cobalt oxide phase
(O3) as a temperature-dependent Redlich–Kister, and the half
cobalt oxide, half lithium cobalt oxide phase (H13) as a sub-
lattice model.44 Similar to the LRO model in LFP, the H13
phase has a sublattice for cobalt, a sublattice for oxygen, and
two sublattices for lithium. While the cobalt sublattice is
populated with two species, Co3+ and Co4+, the energetic effect
is assumed to be negligible. Each lithium sublattice is capable
of holding half of the ions, with one sublattice completely filled
before the other. Thus, in the range where H13 is stable, eqn (7)
simplifies to

gðH13Þð½yLiþ �; ½yVa�;TÞ ¼DGðH13Þ
CoO3
½yVa�þDGðH13Þ

LiCoO3
½yLiþ �

þRT ½yLiþ � lnð½yLiþ �Þþ½yVa� lnð½yVa�Þð Þ

þ½yLiþ �½yVa�
XL¼2
j¼0

L
ðH13Þ
j ðTÞ ½yLiþ ��½yVa�ð Þj

(11)

Since the sublattice only contains half of the possible sites for
lithium, [yLi+] = 2c and [yVa] = 1 � [yLi+] = 1 � 2c.

The voltage profile reported by Chang et al.45 was included
in the ML method to optimize both the predicted PD and
associated voltage profile, to agree with all available experi-
mental evidence and better represent the physics of the system.
The effect of the electrochemical potential was included by
minimizing the error between the predicted and experimental
electrochemical potential.68

4.3 Machine learning architecture

The prediction of the material parameters was performed by
developing a custom two-step explore-exploit machine learning
strategy, based on the knn algorithm.54,55 In the first step, a
dataset of PDs is generated in gibbs.ML by uniformly sampling
the sought Gibbs free energy parameters, five sampling points
for every parameter, which defines a uniform mesh in PD
parameter space that embodies a dataset of almost ten
million PDs for a ten-parameter model. The PDs in the gener-
ated dataset are compared against the target PD, so that
the k-closest PDs are kept. k was set to 0.1% of the size of the
dataset.

The second step uses a stochastic optimization with at
least ten iterations on the result from the first step. Here, for
each central cell location in the generated uniform mesh in
parameter space, a PD was generated by randomly sampling
material parameters from a multivariate normal distribution,
where the mean of the distribution corresponds to the center
of the sampled cell and the standard deviation corresponds
to one fourth of the width of the mesh spacing. 1024
proposed solutions are tested, and the top 100 were kept
for the next iteration. These 100 PDs become sampling points
for the ten iteration steps of optimization. After the final
iteration, all seed points were examined and only the PD
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closest to the target and its corresponding material para-
meters is reported.§

The target and the sampled PDs were evaluated by using a
distance metric, L, i.e., a loss function, independent of the
utilized free energy model,

L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i2PDt

wi min
j2PDp

jci � cj j
Dc

þ jTi � Tj j
DT

� �n
n

s

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i2PDp

min
j2PDt

jci � cj j
Dc

þ jTi � Tj j
DT

� �n
n

vuut þ sproperty

(12)

where PDk corresponds to the set of all the normalized phase
boundary concentration–temperature pairs, (ci,Ti), in the kth
PD. The subscript p denotes the proposed or sampled PD from
the dataset, whereas t denotes the target PD. DT = Tmax � Tmin

corresponds to the temperature range of PD, and Dc = cmax �
cmin to the analyzed composition range. n = 8 was set to
emphasize the difference between diagrams by weighting
outliers higher. The first term in eqn (12) corresponds to the
distance from every point in the target PD to the nearest point
in the sampled PD, and the second term corresponds to the
distance from every point in the sampled PD to the nearest
point in the target PD. sproperty denotes an additional con-
straint, experimental or theoretical, that can be used to further
optimize the description of the sought parameters. The con-
tribution of the phase boundaries of the sampled PD was also
weighted relative to the physical constraint imposed by sproperty.
For example, the LCO system was optimized by comparing the
root mean squared error between the predicted and target
voltage profiles at the experimental room temperature.

4.4 Numerical implementation and data generation

The machine learning architecture and the free energy models
presented herein were numerically implemented in the python-
based open-source framework, gibbs,10 which uses symbolic com-
putation to allow for rapid model development of material systems.
The developed gibbs and gibbs.ML libraries use a combination of
fixed and adjustable model parameters over a user-specified range
of physically possible values. For the sublattice models, the physical
constraint was solved by the Newton–Raphson method.

The equilibrium of each physical system was solved by using
a parallelized implementation of the common tangent con-
struction by determining the intersection of the proposed
common tangent to the overall convex hull. The phase bound-
aries and invariant reactions were identified. gibbs.ML was

implemented in python 3.6.9, c++ 2017, g++ version 7.5, cuda
10.1, swig 3.0.12, and numpy 1.18.1. All calculations were run
on a single Nvidia RTX 2080 Ti GPU. gibbs.ML constructed PDs
with a resolution of 128 � 512, and downsampled to a 64 � 64
grayscale images.
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Q. Chen, J. Àgren and L. Vitos, Critical assessment of Co-
Cu phase diagram from first-principles calculations, Phys.
Rev. B, 2020, 102, 1.

61 A. K. Thakur, V. K. Pandey and V. Jindal, Calculation of
existence domains and optimized phase diagram for the
Nb-Ti binary alloy system using computational methods,
J. Phase Equilib. Diffus., 2020, 41, 846–858.
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