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Improving the luminescence thermal stability of
Ca3Y2Ge3O12:Cr3+ based on cation substitution
and its application in NIR LEDs†

Jia Cui,a Yibo Zheng,*b Zhijun Wang, *a Lingwei Cao,a Xuejiao Wang,a Yao Yao,a

Mengya Zhang,a Mingjie Zheng,a Zhibin Yanga and Panlai Li *a

A near-infrared phosphor Ca3�xSrxY2Ge3O12:Cr3+ was synthesized by the solid-state method. When Sr2+

replaces Ca2+, the thermal stability of the phosphor is obviously improved and the emission intensity at

150 1C can retain 68% of that at room temperature, and its activation energy Ea is 0.331 eV. A novel

near-infrared LED was obtained by packaging Ca3Y2Ge3O12:0.01Cr3+ and a 455 nm blue chip, and the

luminescence intensity increased with increasing working current. The results indicate that this phosphor

may have a potential application in near-infrared LEDs.

1. Introduction

Near-infrared spectroscopy detection can be used in food and
agricultural product detection, pharmacy, biomedicine, and
early cancer diagnosis due to its advantages of being simple,
fast, real-time and nondestructive, which has attracted the
attention of many researchers.1–6 Common near-infrared light
sources are tungsten halide lamps, light-emitting diodes and
supercontinuum lasers.7 Tungsten–halogen lamps suffer from
short lifetimes as well as poor efficiency and heat dissipation.
Light-emitting diodes normally show narrow emission bands
with the largest full width at half maximum (FWHM) of
50 nm.8,9 Supercontinuum lasers can emit light continuously
and are used in spectroscopy; however, their high cost and high
power consumption hinder their practical application.10

At present, an emerging light source that can overcome these
obstacles is the combination of blue chips and near-infrared
phosphors to obtain a broadband near-infrared LED light
source (pc-LED). pc-LED is a promising near-infrared light
source due to its tunable fluorescence spectrum, high radiation

flux, small size, simple manufacturing technology, considerable
durability and low cost.11–14 As an important part of pc-LEDs,
broadband near-infrared phosphors that can be excited by blue
LED chips have become a hot research topic, and their thermal
stability is an important parameter to characterize their perfor-
mance. LaSc2.93B4O12:0.07Cr3+ shows an emission band of 700–
1200 nm, and its emission intensity at 150 1C is about 30.20% of
that at room temperature.15 When increasing the temperature
from 30 to 150 1C, the emission intensity of ScBO3:0.02Cr3+

decreases by approximately 51%.16 The emission intensity
at 150 1C of Ca3Sc2Si3O12:Cr3+ is 54% of that at room
temperature.17 Indeed, in order to meet the application
requirements, the temperature stabilities of these materials are
another key component; hence, near-infrared phosphors with
excellent thermal stability are a problem to be solved.

In a previous work, a series of Ca3Y2Ge3O12:Cr3+ (CYG:Cr3+)
near-infrared phosphors were synthesized by the high temperature
solid-state method, and the site occupation and luminescence
properties of Cr3+ were analyzed in detail. The optimum excitation
wavelength was 475 nm, the emission range was 700–1100 nm, and
the FWHM was about 155 nm. The results showed that Cr3+

replaces Y3+ and Ca2+, and the emission intensity of 0.01 Cr3+

was the highest among the different Cr3+ concentrations.18 Mao
et al. also synthesized CYG:Cr3+ phosphors and studied their
luminescence properties and luminescence thermal stability.19

Zhao et al.20 and Liu et al.21 reported the cation substitution
method to improve the thermal stability of near-infrared lumines-
cence. In order to regulate the luminescence properties of CYG:Cr3+

and improve its luminescence thermal stability, the cationic com-
ponents contained in the Ca3Y2Ge3O12 host were regulated. The
regulation of host cation components is a common method to
realize spectral regulation and optimize performance. The cation
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component may affect the overall crystal field environment. Since
Cr3+ is easily affected by the crystal field environment, the lumines-
cence performance of Cr3+ will change along with the change in the
host cation composition. In this work, Sr2+ in the same host group
was used to control the cation Ca2+ in the host based on CYG:Cr3+

by adjusting the cation composition of the host. The luminescence
thermal stability of the material was improved successfully, and the
activation energy and structural rigidity were analyzed in detail.

2. Experimental section
2.1. Preparation of sample

The CSYG:Cr3+ samples were synthesized by the high temperature
solid-state method. The chemical reagents CaCO3 (99.99%), GeO2

(99.999%), Y2O3 (99.99%), Cr2O3 (99.99%) and SrCO3 (99.99%)
were used as starting materials. The supplier of these compounds
is Zhuzhou Hengma high tech materials Co., Ltd. They were
mixed and ground in an agate mortar for more than 30 min to
ensure a homogeneous state. Then, the mixtures were transferred
to an alumina crucible and heated at 1500 1C for 6 h. Finally, the
samples were cooled to room temperature and ground into
powder for measurements.

2.2. Material characterization

The phase composition of the samples was determined by X-ray
powder diffraction (XRD) analysis, and a Bruker D8 X-ray dif-
fractometer with Ni-filtered Cu Ka radiation (l = 0.15405 nm)

operating at 40 mA, 40 kV was used for the measurements at a
step length of 0.051 and diffraction range of 101–801. The software
Find it, the general structure analysis system (GSAS) program, and
Crystalmaker were used to determine the phase information. The
spectral property and luminescence decay curves of the samples
were determined using a FLS920 (Edinburgh Instruments)
fluorescence spectrometer. To verify the valence state of Cr3+ ions,
the samples were tested using an X-ray photoelectron spectro-
meter with the model AXIS ULTRADLD.

3. Results and discussion
3.1. Phase formation and structural analysis

The crystal structure and the local coordination of the Ca2+, Y3+

and Ge4+ sites are shown in Fig. 1(a). CYG possesses a garnet
structure, with a cubic structure and a space group of Ia%3d.
Since the luminescence intensity of CYG:0.01Cr3+ is the highest
among the different Cr3+ concentrations, the luminescence
thermal stability of CYG:0.01Cr3+ is further studied. The structure
is composed of a calcium–oxygen dodecahedron, an yttrium–
oxygen octahedron and a germanium–oxygen tetrahedron.
Fig. 1(b) depicts the XRD characterization of all the CSYG:001Cr3+

samples and the diffraction peaks are in good agreement with
PDF#040114317. The results show that all the samples are pure
phase. In order to study the changes of the cell volume and cell
parameters of the sample, the Rietveld refinements of the XRD
profile were performed for the CSYG:001Cr3+ samples using the

Fig. 1 (a) The crystal structure of CYG. (b) The XRD patterns of C3�xSxYG:0.01Cr3+(x = 0.05, 0.07, 0.10) and the standard data of the CYG phase
(PDF#040114317). (c and d) The EDS and elemental mapping of C2.93S0.07YG:0.01Cr3+.
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general structure analysis system (GSAS) program, and the results
are given in Fig. S1 (ESI†). According to the refined data, when
the Sr2+ concentration is increased, the cell volume V and cell
parameter a/b/c show a gradual increasing trend, which is due to
the fact that the large radius Sr2+ (r = 1.26 Å, N = 8) replaces the
smaller radius Ca2+ (r = 1.12 Å, N = 8). The results are shown in
Fig. S2(a) (ESI†). Since [CaO8] and [YO6] are connected through a
common edge, the expansion of the [CaO8] lattice squeezes [YO6],
and the volume of [YO6] is thus slightly reduced, as shown in Fig.
S2(b) (ESI†). The EDS spectrum is shown in Fig. 1(c), from which
we can see the types and contents of the elements in the sample.
From the elemental mapping images of the sample in Fig. 1(d), it
can be seen that Ca, Y, Ge, O, Cr and Sr are homogeneously
distributed throughout the particles without any traceable ele-
mental aggregation or phase separation.

3.2. Luminescence properties of C3�xSxYG:0.01Cr3+

The emission spectra of C3�xSxYG:0.01Cr3+ with different concen-
trations of Sr2+ under an excitation of 475 nm are shown in Fig. S3
(ESI†). The emission intensity of Cr3+ increases gradually with the
increase of Sr2+ content. When x = 0.07, the emission intensity is
the strongest, and is about twice the original initial intensity. The
structure rigidity of the host will affect the emission intensity of
the activated ions. With the increase of the rigidity, the emission
intensity will increase.22 The change of structural rigidity with
varying Sr2+ content will be discussed in the present work.

In order to analyze the effect of Sr2+ on the thermal stability
of CYG:Cr3+, the emission spectra of samples with different
temperatures were measured, and the results are shown in
Fig. 2(a–d). The temperature range is 25–150 1C and the
excitation wavelength is 475 nm. It can be seen from the spectra
that the emission intensity of the samples decreases continu-
ously when the temperature rises from room temperature to
150 1C. Fig. 3(a) presents that, at x = 0.07, the emission intensity
of the sample shows the slowest decrease with increasing
temperature. As the temperature increases to 150 1C, the
relative integrated emission intensity remains at about 68%.
The emission intensities of the samples with x = 0.05 and 0.10
are 53% and 31% of the initial intensity at 150 1C, respectively.
For x = 0, the emission intensity of the sample decreases the
most rapidly with increasing temperature. One of the key
parameters to characterize the luminescence thermal stability
of materials is the activation energy Ea. In general, the greater
the value of the activation energy, the better the luminescence
thermal stability of the material, and the value of the activation
energy Ea can be calculated using the Arrhenius equation:23–26

IT ¼
I0

1þ c exp �DE
kT

� � (1)

In this expression, k is the Boltzmann constant, I0 and IT are
the emission intensities of the sample at room temperature and

Fig. 2 (a–d) Temperature spectrum of C3�xSxYG:0.01Cr3+ (x = 0, 0.05, 0.07, and 0.10, respectively) (lex = 475 nm).
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a specific temperature, respectively, DE is the activation energy
of thermal quenching, and T is the specific temperature.

The relationship between 1/KT and ln[(I0/I) � 1] is obtained
by processing the spectral data, and a straight line is obtained

Fig. 3 (a) Temperature-dependent normalized integrated intensities of C3�xSxYG:0.01Cr3+ (x = 0, 0.05, 0.07, 0.10). (b) Fitting curve of the activation
energy of C3�xSxYG:0.01Cr3+(x = 0, 0.05, 0.07, 0.10). (c) The configuration coordinate diagram. (d) Atomic displacement parameter U of
C3�xSxYG:0.01Cr3+(x = 0, 0.05, 0.07, 0.10).

Fig. 4 (a) The half peak width and peak position of C2.93S0.07YG:0.01Cr3+ with temperature. (b) Fluorescence decay curves of C2.93S0.07YG:0.01Cr3+ at
different temperatures.
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by linear fitting. The activation energy Ea is the absolute value
of the slope of the straight line. The activation energies of these
samples are Ea(x = 0.07) = 0.331 eV, Ea(x = 0.05) = 0.309 eV, Ea(x =
0.10) = 0.224 eV, and Ea(x = 0) = 0.213 eV. When x = 0.07, the
sample shows the best luminescence thermal stability and the
maximum activation energy. As the activation energy Ea

increases, it becomes more difficult for the activated electrons
to overcome the energy barrier; hence, the influence of non-
radiative transition is reduced, and the thermal stability is
improved. The enhancement mechanism is shown in the
configuration diagram in Fig. 3(c), and the thermal stability
energy of the material is related not only to the activation
energy but also to the Stokes shift DR, which is usually related
to the degree of lattice structure rigidity.27–30 George et al.31,32

and Brgoch et al.33 took the Debye temperature as a parameter
to characterize the rigidity of the lattice structure. For the
same host, the higher the Debye temperature, the better the
structural rigidity. The formula of the Debye temperature YD is
as follows:

YD;i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3�h2TNA

AikBUiso;i

s
(2)

where i is the type of atom, Ai is the mass of the atom and Uiso is
the displacement parameter of the atom. It can be seen from the
formula that the Debye temperature is inversely proportional to
the atomic displacement parameter. According to the refined
data, the atomic displacement parameters of x = 0.05, 0.07 and
0.10 can be calculated, as shown in Fig. 3(d). When x = 0.07, the
value of Uiso is the lowest, that is, it has a higher Debye
temperature and the highest degree of rigidity, and hence the
sample has better luminescence thermal stability.

The thermal quenching behavior includes not only the
change of emission intensity but also the change of emission
peak position and half peak width with increasing temperature.
The x = 0.07 sample with the best luminescence thermal
stability was selected. With the increase in temperature, the

change of the emission peak position and half peak width of
the sample can be seen in Fig. 4(a). During the transition from
room temperature to high temperature, the emission spectra of
the samples shifted about 10 nm towards the long wave
direction, and the half-peak width widened by about 25 nm.
The red shift of the spectra with increasing temperature can be
explained by the Varshini formula34

E Tð Þ ¼ E0 �
aT2

T þ b
(3)

where E(T) is the energy difference between the ground state
and the excited state at the corresponding temperature, E(0) is
the energy difference at T = 0 K, and a and b are lattice-related
parameters. When the temperature increases, the energy
difference E(T) will decrease, that is, the energy produced by
the photon transition from the excited state to the ground state
will decrease, resulting in a red shift. At the same time, with the
increase in temperature, the lattice expands to a certain extent,
leading to an increase in the bond length and the weakening of
the crystal field strength around Cr3+, which leads to the red
shift of the emission band.35 The relationship between the
FWHM of the emission peak and temperature is as follows:36

FWHM Tð Þ ¼W0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
coth

hw

2kt

� �s
(4)

W0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
8 ln 2
p

hwð Þ
ffiffi
s
p

(5)

where k represents the Boltzmann constant, S is the Huang–
Rhys–Pekar parameter, W0 shows the value of the FWHM at 0 K
and hw represents the energy of the lattice vibration. From the
above formula, it can be seen that the FWHM depends largely
on the lattice vibration (hw). With the increase in temperature,
the crystal structure of the material becomes looser, which will
cause larger lattice vibration and widen the half peak width.
In addition, with the increase in temperature, the electron
phonon interaction will gradually enhance, resulting in the

Fig. 5 (a) Electroluminescence spectrum and photograph of the fabricated NIR LED (CSYG:0.01Cr3+ + 455 nm LED chip; voltage of 3.0 V and current of
11 mA). (b) Luminescence spectra as a function of work current.
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widening of the FWHM.37,38 To further investigate the thermal
quenching behavior, the fluorescence decay curves of the
sample were measured with the increase in temperature, and
the results are shown in Fig. 4(b). The fluorescence decay curves
can be fitted with the second-order exponential function, and
the expression of the second-order exponential function is:39–41

I tð Þ ¼ I0 þ A1e
�t=t1 þ A2e

�t=t2 (6)

In the above expression, I(t) is the luminous intensity, A1 and A2

are constants, t is the decay time, and t1 and t2 are the lifetimes of
fast and slow decay, respectively. The average decay time t* can be
calculated by the formula:

t� ¼ A1t12 þ A2t22
� ��

A1t1 þ A2t2ð Þ (7)

The lifetime of the sample from normal temperature to high
temperature can be obtained using the above formula. With the
increase in temperature, the lifetime of the sample decreased
from 50 ms to 23 ms. The reason for this phenomenon is that the
non-radiative transition increases gradually with the increase in
temperature, which leads to the decrease of the fluorescence
lifetime of the activated ions.

3.3. Applications in NIR LEDs

A NIR LED was fabricated with CYG:0.01Cr3+ on a 455 nm LED
chip under a voltage of 3.0 V and current of 11 mA, whose
electroluminescence (EL) spectrum and photograph are shown
in Fig. 5a. As a comparison, the EL spectra of the NIR LED with
different work currents are depicted in Fig. 5b, and the results
indicate that the luminescence intensity can be enhanced
by increasing the work current. The results show that this
phosphor may be applicable in NIR LEDs.

4. Conclusions

In this work, the emission intensity at 150 1C compared to that at
room temperature increased from 28% to 68% by introducing
larger radius Sr2+ to adjust Ca2+ in the host. The enhancement of
the thermal stability of the material occurs since the activation
energy of the material increases due to the introduction of Sr2+,
which reduces the influence of non-radiative transition. At the
same time, the rigidity of the material structure increases, which
is one of the important factors to enhance the thermal stability.
A NIR LED can be fabricated by combining CYG:0.01Cr3+ and a
455 nm LED chip. The results indicate that this phosphor may
be used in NIR LEDs.
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