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Morphology, the investigation of the form including shape, size,
and structure, is important for materials research and dictates the
physical and chemical properties. In this work, tin monosulfide
(SnS) thin films, a promising thin-film absorber and electrochemical
material candidate, were directly deposited on an FTO substrate via
the spin-coating route with morphology control during the
sequential thermo-reducing process. Careful structural, chemical,
and photoelectrochemical characterizations reveal the relative
influence of various surface morphologies on the photoelectronic
properties of the SnS thin films.
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Deposition and facile control over the
morphology of phase-pure SnS thin films via the
spin-coating routet

* and Song Xue*

Introduction

Among the various semiconducting metal chalcogenides, tin mono-
sulfide (SnS) is a promising candidate for electronic, photoelectro-
nic, and photoelectrochemical applications'® because of its
low-cost, non-toxicity, two-dimensional (2D) structure, narrow band-
gap, high optical absorption coefficient, high electrical con-
ductivity, and superior stability under ambient conditions. The
morphology of semiconductor materials has gained impor-
tance because the electronic and/or photoelectronic properties
can be regulated via shape and size control.” "> With the advent
of nanotechnology, various nanoforms of SnS have been
synthesized, such as nanoboxes, nanobelts, nanoribbons,
nanowires, and nanotubes.”>*” However, most of these
approaches focus on the synthesis of nanocrystal powders,
which require additional processes such as preparing films
on a substrate for further applications.

Deposition methods of SnS thin films include vacuum and
solution phases.’®?” Solution phase methods for the deposition
of SnS thin films are favorable due to their low cost and large-scale
production, and many researchers have reported successful deposi-
tion methods, such as chemical bath deposition (CBD),
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Fig.1 FESEM images of the films after the sequential thermo-reducing
process with reducing agents: (a and d) HH, (b and €) HMC and (c and f) HDC.

electrodeposition, spray deposition, successive ionic layer adsorp-
tion reaction (SILAR) and the spin-coating method.”*”” However,
there are only a few reports on controlling the surface morphology
of Sn$ thin films during direct deposition on the substrate.'**"2¢

Spin-coating deposition of SnS thin films is a facile, simple, and
scalable method for the manufacture of thin-film applications, and
has been reported by many researchers.®*"*>*° The deposition of
phase-pure SnS films with various morphologies using the spin-
coating route is often challenging not only for tuning the physical
and chemical properties but also improving the performance of
electronic and photoelectronic devices. Herein, we report a simple
spin-coating method to deposit phase-pure SnS thin films with
various surface morphologies via facile control over a temperature
ramping rate of the thermo-reducing process. With careful struc-
tural, chemical, and photoelectrochemical characterization, the
morphology-controllable SnS thin films showed promising photo-
electronic properties.

Results and discussion

Investigation of reducing agents

In our previous work, a phase-pure SnS nanoplate film was
successfully deposited by a spin-coating method with a
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sequential thermo-reducing process (detailed method is shown
in the ESI}).>® The reducing agent was hydrazine dihydrochlor-
ide (HDC), which is suitable for reaction with ionic dimer
complexes (e.g. thiostannate(iv), [Sn,Ss]*”) since the ionic
dimer complexes and HDC ions interlace well with each other
due to Coulombic interaction. Based on this, we used various
reducing agents, such as hydrazine hydrate (HH) and hydrazine
monohydrochloride (HMC), which are water soluble and prefer
interlacing with anionic complexes, for further investigation of
the crystal and film growth. As shown in Fig. 1, the films of SnS
deposited with these reducing agents showed distinctly differ-
ent surface morphology. Using the reducing agent HH, it
showed a nanoparticle morphology with serious aggregation
(Fig. 1a and d); using HMC, it showed a surface morphology of
composited nanoparticles and nanoplates with serious aggre-
gation (Fig. 1b and e). The morphology of SnS films using HDC
as a reducing agent showed uniform nanoplate surface mor-
phology (Fig. 1c and f) which was distinctly different from those
that used HH and HMC as reducing agents.

Furthermore, by performing material analysis using energy-
dispersive X-ray spectroscopy (EDS, Table S1, ESIt) and FESEM,
X-ray diffractometry (XRD, Fig. S1a, ESIt), UV-vis spectrometry
(Fig. S1b, ESIt), and Raman shift spectroscopy (Fig. S1c, ESIt)
for further material analysis, we found that: (i) using HH as a
reducing agent, the deposited material was SnS, film; (ii) using
HMC as a reducing agent, the deposited material was a com-
posite film containing SnS, and SnS; and (iii) using HDC as a
reducing agent, the deposited material was SnS. We noted that
the interlacing form between the reducing agents and [Sn,Se]*~
complex ions in the precursor film is the key cause of film
composition and morphology tuning. As HH is a neutral
reducing agent, there is poor interaction between HH and the
[Sn,Se]*~ complex in the precursor film, resulting in a random
interlacing form, which leads to a deficiently reducing process.
As HMC is a reducing agent, there is weak interaction between
half-cationic HMC and the [Sn,Se]*” complex, resulting in a
semi-ordered interlaced form, which leads to a partial
reduction of SnS, to SnS. As HDC is a reducing agent, there is
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a strong interaction between full-cationic HDC and the
[Sn,Se]*~ complex and a regular interlacing form, resulting in
the complete reduction of SnS, to SnS.

Investigation of surface morphology

Moreover, we noted that the ramping rate of the thermo-
reducing process affects the interlacing form between the
reducing agents and [Sn,Se¢]'” complexes, resulting in an
adjustment in the crystal and film growth. Therefore, various
thermal reducing processes with tailored temperature ramping
rates were conducted to modify the morphologies of the SnS
thin films using HDC as a reducing agent. As shown in Fig. 2,
with temperature ramping rates of 5 °C min ' (RRS5),
10 °C min~" (RR10), 30 °C min~' (RR30), and 60 °C min~"
(RR60), the surface morphologies of the SnS films were ser-
iously aggregated with small size nanoplate (Fig. 2a and b),
uniform nanoplate film (Fig. 2c and d), semi-dense film com-
posited with nanoplates (Fig. 2e and f) and dense film (Fig. 2g
and h) morphologies, respectively (cross-sectional views are
shown in Fig. S2, ESIt). For further material analysis, XRD,
diffuse reflectance UV-vis-NIR spectroscopy, EDS, HRTEM, and

Fig. 2 FESEM images of the SnS films with temperature ramping rates of
(@aand ¢) 5 °C min~? (b and d) 10 °C min~?, (e and g) 30 °C min~! and
(f and h) 60 °C min™™.
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Fig. 3 (a) XRD patterns, (b) UV-vis spectra and (c) Raman shift spectra of the

spin-coating deposited SnS films with different temperature ramping rates.

SAED analyses were carried out. As shown in Fig. 3a, the
diffraction patterns of the films (after calcination at 300 °C,
30 min in N,) with different ramping rates exhibited a 100%
intensity peak (26 = 32°), indexed to the (040) reflection of
orthorhombic (OR) Pnma SnS (JCPDS card No. 00-014-0620).>
In the absorption spectrum of each film (shown in Fig. 3b),
absorption peaks under 1000 nm and weaker absorption edges
between 1100 and 1150 nm were obtained, which corresponded
to a direct bandgap of approximately 1.22 eV and an indirect
bandgap of approximately 1.11 eV for the SnS materials.”® The
Raman shift spectrum of each film also certified that the films
deposited with different ramping rates were Sn$ (Fig. 3c).® The
characteristic peaks observed at 95, 161, 183, and 220 cm ™"
were assigned to SnS, and the peak at 313 cm ™" corresponds to
the SnS, phase. The EDS analysis applied using TEM exhibits
an atomic ratio of 1: 1 between Sn and S for the films even with
different surface morphologies (Table S2, ESIT).

The structural details of the SnS thin films with a ramping
rate of 5 °C min™?, 10 °C min~" and 60 °C min~" were further
examined by HRTEM and SAED (Fig. S3, ESIt). SAED patterns
of all the films reveal single-crystallinity due to the well-ordered
dot pattern, which matches the list of reflections of OR-SnS
bulk (JCPDS card No. 00-014-0620). The X-ray diffractogram
(Fig. 1c) of the capillary powder sample is also consistent with
the crystallography for OR-SnS bulk. Based on the above
material and structural characterizations, we noted that the
four kinds of SnS films had the same nanocrystal structures but
different surface morphologies. Further photocurrent response
analyses were carried out to assess the material’s potential for
photoelectronic applications.

Photo responsivity of the SnS films

Morphology-controllable SnS thin films were further prepared
on the FTO surface, and were evaluated in contact with a
solution of 0.1 M Eu(NOs); (Eu®" acts as a sacrificial oxidant),
with a Pt-mesh counter electrode and a Ag/AgCl electrode as a

Mater. Adv,, 2022, 3, 3423-3427 | 3425
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Fig. 4 Photo responsivity of SnS films with different ramping rates:
(@) chronoamperometric experiments vyielded photocurrents and
(b) photo-response /-V measurements (inset is the device structure).

reference electrode under 1 Sun chopped illumination. A
cathodic photocurrent showed that all SnS films exhibited
p-type behavior due to photocurrent increment at negative
potentials of —200 mV vs. Ag/AgCl (Fig. S4, ESIf) under
chopped white-light illumination. Fig. 4a shows the instanta-
neous photocurrent response of the four kinds of SnS thin films
under 1 Sun chopped illumination. Chronoamperometric
experiments yielded photocurrents of the SnS films with ramp-
ing rates; RR5, RR10, RR30 and RR60 corresponded to
82.5 pA cm 3, 2043 pA cm 3, 102.2 pA cm 2 and
70.2 pA em ™2 at an applied bias of —400 mV vs. Ag/AgCl. The
uniform nanoplate film (RR10) showed the best photo respon-
sivity in the test of vertical electron transfer through the SnS
films, and the dense film (RR60) showed the worst photocur-
rent. The seriously aggregated film (RR5) and semi-dense film
(RR30) showed intermediate photocurrent. We note that the
photoactive area and internal resistance were the reasons for
the photo responsivity difference among the four kinds of SnS
films. The uniform nanoplate film has appropriate coverage
and morphology to absorb light, and a good electron transfer
channel (most of the nanoplates were vertically grown on the
substrate), resulting in the highest photocurrent. Although the
dense film has excellent coverage for absorbing light, it is a
multi-layered structure of large SnS plates (Fig. S2d, ESIY),
which is not suitable for vertical electron transfer to the
electrode.

Moreover, the photo-response -V measurements were col-
lected for the four kinds of SnS films to evaluate their potential
in other photoelectronic applications (the device structure is
shown in Fig. 4b inset), such as photodetectors and photo-
transistors. As shown in Fig. 4b, both the dark current (dot line)
and photocurrent (solid line) of the dense film were much
higher than those of the other films (related to 2 V). Surface
morphology is the primary reason for the current difference,
since the dense film provides a continuous channel for electron
transfer.

Conclusions

In summary, morphology-controllable SnS films were deposited
using the spin-coating route by tailoring the ramping rate of the
thermo-reduction process. A fast-ramping rate of the thermo-
reduction process restrains material aggregation and leads to a
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quick reduction reaction resulting in retained morphology of
the precursor films in a dense form. A slow ramping rate brings
about material aggregation due to a sluggish reducing reaction,
resulting in nanostructured morphology. With careful material
analysis, it is found that the deposited films with different
temperature ramping rates have the same crystal structure but
different surface morphology. Further photoresponse chron-
oamperometric experiments and I-V measurements indicate
that the different morphology SnS films have the potential for
multifarious photoelectronic applications, such as photovol-
taics, photodetectors, and photo-transistors, which are the
goals for our future works.
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