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Preparation of heterostructured TiO2/MoS2 for
efficient photocatalytic rhodamine B degradation†

Ping Li,‡a Mengyou Gao,‡ab Lei Sun,a Huizhong Xu,a Xiaochen Dong c and
Jianjian Lin *a

Coating a few layers of MoS2 nanosheets on a substrate is an effective approach to enhance catalytic

activity for photocatalytic degradation. Herein, we fabricated heterostructured TiO2/MoS2 (H-TiO2/MoS2)

with high structural stability via a simple two-step solvothermal approach. H-TiO2/MoS2 was composed

of TiO2 as a hard core and MoS2 nanosheets as a shell, which could increase the electron transfer rate

between TiO2 and MoS2 and enable active edge sites of MoS2 to be maximally exposed. Besides,

H-TiO2/MoS2 indicated enhanced light absorption in the UV to Vis range when compared to TiO2

nanoparticles, and slightly lower than that of MoS2. This is beneficial for the enhancement of the

photocatalytic degradation performance. Therefore, H-TiO2/MoS2 displayed a strong adsorption ability

toward organic dyes and showed excellent performance in the photocatalytic degradation of rhodamine B

with the concentration decreased by 99.4% due to the synergistically stimulative effect. The work will

enlighten the development of highly efficient molybdenum sulfide-based heterostructured photocatalysts.

Introduction

Nowadays, semiconductor photocatalysts are attracting increasing
attention owing to their high efficiency in easing the energy crisis
and reducing environmental pollution. Recently, a large variety of
semiconductor photocatalysts have been explored including
TiO2,1,2 SrTiO3,3 etc., which were mainly active in the ultraviolet
range, and C3N4,4 Cu2O, Co3O4,5 CdS,6 etc. that have high visible
light activity. TiO2, as an n-type photocatalytic semiconductor, is
efficient for the separation of electrons and holes. Furthermore, it
has both good chemical and physical stability, relatively low cost
and nontoxicity, and thus has a wide range of applications in
various fields, such as self-cleaning and removal of hazardous
compounds. However, the large band gap of TiO2 (3.2 eV)
has become the main drawback because limited UV light
could be used, which significantly decreased the photocatalytic
performance. Additionally, pure TiO2 usually did not have a high
charge separation rate, and therefore illustrated relatively low

photocatalytic activity. Thus, many research studies have been
conducted to settle these inadequacies including tuning the
particle size,7 crystallinity and morphologies (nanotubes8 in 1D,
nanosheets9 in 2D and microspheres10 or nanoflowers11 in 3D),
and constructing heterostructured materials,12–14 which have
resulted in the promotion of the photocatalytic performance.
Among these nanostructures, heterostructures like core–shell
structures15 with a large specific surface area and matched energy
levels have attracted great attention.

Moreover, it has been reported that TiO2-based photo-
catalysts doped with cocatalysts like noble metals,10 MoS2,16–18

etc., could broaden the range of light harvesting from the UV to
UV-vis, and improve the charge separation efficiency. Two-
dimensional transition metal sulfides (2D MSx), such as the
typical MoS2, were reported as platinum-like materials, which
were beneficial for improving the photocatalytic performance as
a cocatalyst because of great (photo) electronic and catalytic
traits.19 In addition, a few-layered MoS2 with increased edges was
beneficial for electron acceptance, as well as increased active
sites, illustrating improved photocatalytic performance.
Recently, MoS2 catalysts with a variety of nanostructures have
been prepared using various approaches including chemical
vapour deposition,20 thermolysis21 or hydrothermal and
solvothermal methods.22 Irregular aggregates of nanoparticles
or stacked multilayers of the as-fabricated MoS2, however, largely
limited the photocatalytic performance. Therefore, preparing
heterostructured MoS2-based photocatalysts with enhanced
photocatalytic activity remains challenging. Recently, MoS2-
based photocatalysts such as CdS/MoS2,23,24 graphene/
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MoS2
25,26 and TiO2/MoS2 heterostructures with various structures

including particles27 (0D), belts28 and wires12 (1D), sheets29 (2D)
and flowers30 (3D) have demonstrated enhanced photocatalytic
activities. Meanwhile, constructing novel nanostructures of
core-shelled TiO2/MoS2 is also an effective approach to develop
photocatalysts with large specific surface areas and increased
active sites.

In this work, we prepared H-TiO2/MoS2 through a two-step
solvothermal approach. In the first step, TiO2 nanoparticles
were prepared as an ellipsoidal core through a solvothermal
approach; then MoS2 nanosheets were coated on the surface
of the TiO2 precursor again using a solvothermal method.
The MoS2 nanosheets which were coated on the surface of
TiO2 nanoparticles could allow fast electron transfer between
TiO2 and MoS2. Furthermore, H-TiO2/MoS2 illustrated good
structural stability. MoS2 nanosheets could expose active edge
sites maximally, allowing an enhanced adsorption ability
and improved photocatalytic degradation performance of
rhodamine B (RhB). The synergistic effect of the novel hetero-
structure between MoS2 nanosheets and TiO2 nanoparticles
accounted for the outstanding photocatalytic degradation
performance.

Experimental
Chemicals

Tetrabutyl titanate (TBT, Aladdin Biochemical Technology Co.,
Ltd) and glacial acetic acid (Macklin Co., Ltd) were used without
further purification. Absolute ethanol and Na2MoO4�2H2O were
purchased from Sinopharm Chemical Regent Co., Ltd. Cysteine
was purchased from Beijing Xinjingke Biotechnology Co., Ltd.
Ultrapure H2O was employed in all experiments.

Preparation of TiO2

In a typical synthesis process, the TiO2 precursor was synthesized
by a hydrothermal strategy.7,31 In detail, TBT (1 mL) was dropped
into glacial acetic acid (15 mL) at room temperature, followed by
addition of ultrapure water (0.3 mL) to initiate the hydrolysis of
TBT. The mixture was stirred for B10 minutes at room
temperature, and then transferred into a 50 mL autoclave,
which was heated at 150 1C for 12 h. The as-prepared precursor
was obtained by centrifugation after cooling the autoclave to
room temperature and washed thoroughly with absolute
ethanol and water several times with the assistance of ultra-
sound treatment.

Synthesis of H-TiO2/MoS2

H-TiO2/MoS2 was prepared via a solvothermal method.22 In
detail, 100 mg TiO2 was dissolved into C2H5OH (10 mL) and
H2O (20 mL), then Na2MoO4�2H2O (0.3 g) and cysteine (1.25 g)
were added under vigorous stirring in sequence. Then the
mixed solution was transferred into an autoclave (50 mL) and
heated at 200 1C for 24 h. The resultant sample was obtained by
centrifugation after cooling the autoclave to room temperature.
Finally, the obtained sample was washed thoroughly with

absolute ethanol and water several times with the assistance
of ultrasound treatment. The as-fabricated H-TiO2/MoS2 was
heated at 800 1C (5 1C min�1) under an Ar (5% H2) atmosphere
for 2 h before collection.

Characterization

X-Ray diffraction (Bruker D8 Advance) with Ni-filtered Cu Ka
radiation was used to reveal the crystal structure of the as-
prepared samples at 40 kV and 40 mA with a step size of 0.021
and scan speed of 0.1 s. Transmission electron microscopy
(TEM, FEI Tecnai G2 F20) and scanning electron microscopy
(SEM, Zeiss Merlin compact LE0 1530 VP) were used to explore
the morphologies and elemental compositions of the
as-prepared samples. The Raman spectrum of TiO2/MoS2 was
recorded on an Invia Qontor. Fourier transform-infrared (FT-IR)
spectroscopy was performed to confirm the spectrum of TiO2/
MoS2 in the range of 400–4000 cm�1 using a PerkinElmer
Spectrum One spectrometer. N2 adsorption and desorption
curves were obtained for the analysis of pore structure by ASAP
2460. UV-Vis absorption spectra were recorded on a PerkinElmer
(Lambda 1050 +) for revealing the light absorption of the
as-prepared samples.

Photocatalytic degradation measurement

Photocatalytic activity was studied at room temperature by the
degradation of RhB using a 300 W Xe lamp. For the photocata-
lytic test, 50 mL of an aqueous suspension of RhB (15 mg L�1)
and 5 mg of the samples were placed in a Pyrex glass tube. Before
irradiation, the suspension was sonicated and stirred for 30 min
in the dark. The mixed solution was continuously stirred during
the photocatalytic reaction. During the photocatalytic reaction
process, 3 mL of the suspension were collected after irradiation
for the following analysis after the filtration. The concentration
of RhB was monitored by measuring the absorbance at 554 nm
using a UV-vis spectrometer (Lambda 1050 +). Isopropanol,
DMSO and t-BuOH were used as free radical scavengers for the
scavenging experiments. The pH values of RhB solution were
controlled by 0.1 M HCl and 0.1 M NaOH.

Results and discussion
Morphology and composition

As illustrated in Scheme 1, H-TiO2/MoS2 was fabricated via a
simple two-step method. Initially, the porous TiO2 (rice-like)
precursor was prepared via a facile solvothermal method;7,31

then the TiO2 precursor was seen as a hard core, which loaded
MoS2 as a shell outside, resulting in the successful preparation
of H-TiO2/MoS2. Firstly, the tetrabutyl titanate precursor was
hydrolyzed and nucleated into TiO2 microcrystals, and then the
microcrystals gradually grew as porous TiO2. In detail, the
tetrabutyl titanate precursor was hydrolyzed into numerous
winding chain bundles after 2 h of reaction (Fig. S1a, ESI†).
As the reaction proceeds, some chain bundles are gradually
rotated and twisted into ellipsoidal aggregates which can serve
as crystal nuclei.31 Finally, after 12 h of reaction, all the
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ellipsoidal aggregates grew into ellipsoidal particles (Fig. S1b,
ESI†). The H-TiO2/MoS2 heterostructure was formed by an
L-cysteine-assisted method.22,32 For the self-assembly process
of the H-TiO2/MoS2 heterostructure, the porous TiO2 served as a
precursor core for the adsorption of MoO4

2� anions. When
heated in the solution-phase reaction, L-cysteine can release
H2S, meanwhile acting as a sulfide source and a reducing
agent.32 As the reaction time increased, H2S in situ reacted
with MoO4

2� anions to form a two-dimensional nano-plate-
like structure, which is common in other MoS2-based
composites.33–35 As illustrated in Fig. S2 (ESI†), MoS2 can be
loaded onto the surface of TiO2 in a short time and gradually
crystallize with time.

As shown in X-ray diffraction patterns of Fig. 1, the crystal
structure of the as-prepared precursor can be confirmed as TiO2

(anatase, Fig. S3a, ESI,† JCPDS No. 21-1272).7,31 Besides, the
crystal structure of the resultant sample was confirmed to be
H-TiO2/MoS2, which corresponds to TiO2 and MoS2 (2H,
Fig. S3b, ESI,† JCPDS No. 37-1492)22 phases, indicating that
H-TiO2/MoS2 was fabricated successfully.

To indicate the porous structure of TiO2, the characterization
studies including magnified SEM and TEM images and N2

adsorption and desorption curves of a single TiO2 particle were
performed. As illustrated in Fig. S4a and b (ESI†), the SEM and
TEM images showed that the TiO2 particle had plenty of pores,
and the N2 adsorption and desorption curves demonstrated a
specific surface area of 103.07 m2 g�1 for TiO2 particles (Fig. S4c,
ESI†).

The morphology of H-TiO2/MoS2 (B240 nm) was confirmed
by SEM and TEM. The SEM image in Fig. 2a illustrated that
MoS2 nanosheets (B20 nm thickness) were coated on the
surface of TiO2 nanoparticles successfully, which matched well

with the TEM image in Fig. 2b. Additionally, the single
magnified particle in Fig. 2c clearly showed that a few layer
MoS2 (B10–30 layers) was loaded onto the surface of TiO2. What
is more, as illustrated in the high-resolution TEM (HRTEM)
image of Fig. 2d, the lattice fringe of 0.35 nm corresponded to
the (101) plane of TiO2, and a lattice fringe of 0.6 nm corre-
sponded to the (002) facet of MoS2.36 In order to explore the
element dispersion of H-TiO2/MoS2, scanning transmission
electron microscopy energy dispersive spectroscopy (STEM
EDS) was employed. As shown in Fig. 2e–i, Ti and O were
distributed evenly inside as a core, while Mo and S were located
outside as a shell, demonstrating that MoS2 encapsulated on the
surface of TiO2 successfully, which was consistent with SEM and
TEM results.

Furthermore, the selected area electron diffraction (SAED)
pattern in Fig. 2j pointed to the TiO2 (101) facet and MoS2 (002)
facet, and corresponds well with the HRTEM image in Fig. 2d.

The rice-like morphology of the as-fabricated TiO2 is clearly
shown in Fig. 3a with B200 nm in length and B70 nm in
width. Meanwhile, MoS2 flowers were prepared and are shown
in the SEM image in Fig. 3b.

The Raman scattering spectrum in Fig. 4a illustrated a series
of Raman peaks of the as-prepared H-TiO2/MoS2, which corre-
sponded to the typical peaks of MoS2 and TiO2. The peak
located at 379 cm�1 was attributed to the in-plane E1

2g mode,
while the peak located at 404 cm�1 was ascribed to the out-of-
plane A1g mode of MoS2.37 Meanwhile, the Raman peak located
at 144 cm�1 corresponded to the E1g mode of TiO2. The FT-IR
spectrum of the as-prepared H-TiO2/MoS2 is shown in Fig. 4b.
There are broad bands of H-TiO2/MoS2 at 486 cm�1, 903 cm�1,
1122 cm�1, and 1640 cm�1.38 The band which was located at

Scheme 1 Scheme of the preparation process for as-prepared H-TiO2/
MoS2.

Fig. 1 XRD patterns of as-prepared TiO2 and H-TiO2/MoS2.

Fig. 2 (a) SEM, (b) low- and (c) high-magnification TEM image, (d) HRTEM
image, (e–i) STEM EDS mapping images and (j) SAED image of H-TiO2/
MoS2.

Fig. 3 SEM images of (a) TiO2 nanoparticles and (b) MoS2 flowers.
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486 cm�1 corresponded to the Mo–S bond, while the band
situated at 903 cm�1 was assigned to the S–S bond. The bands
between 1122 cm�1 and 1640 cm�1 were ascribed to the
stretching vibrations of –OH and Mo–O.

Photo absorption and photocatalytic degradation of RhB

UV-Vis absorption spectra were obtained to understand the
optical properties. As illustrated in Fig. S5 (ESI†), H-TiO2/MoS2

showed enhanced light absorption in the UV to Vis range when
compared to TiO2 nanoparticles, which is slightly lower than
that of MoS2. The photocatalytic degradation of RhB for H-TiO2/
MoS2 was evaluated under a 300 W Xe lamp (Fig. 5a). Before
light irradiation, the photocatalyst went through an adsorption
process in RhB solution in the dark for 30 min. Interestingly, it
is found that H-TiO2/MoS2 illustrated a stronger adsorption
ability towards RhB than TiO2 nanoparticles and MoS2 flowers,
which was reported have an efficient photocatalytic performance.
In addition, the RhB photodegradation efficiency of H-TiO2/MoS2

was greater than that of TiO2 nanoparticles and slightly higher
than that of MoS2 flowers, suggesting the advantages of H-TiO2/
MoS2 nanostructures. Specifically, the concentrations of RhB were
decreased by 32.6%, 36.2%, and 29.6% after irradiation with
catalyst of H-TiO2/MoS2, TiO2 nanoparticles, and MoS2 flowers,
respectively. It is remarkable that the concentration of RhB
decreased by 99.4% using H-TiO2/MoS2, which was beneficial
for RhB adsorption and degradation. As shown in Fig. 5b, the
recycling stability of H-TiO2/MoS2 was tested for 5 cycles, and
illustrated no evident decay, which demonstrated a good stability.

Additionally, as illustrated in Fig. S6 (ESI†), the consumed
time for degradation decreased as the pH value increased.
Specifically, it only took 20 min for RhB degradation at pH =
3, while it took B50 min for RhB degradation at pH = 6.9 and
8.9. This indicated that the degradation of RhB was easier in
acid solution.

The schematic diagram (Fig. 5c) illustrates the energy band
structure of H-TiO2/MoS2 and the process of electron transfer
and the formation process of reactive oxygen species. Generally,
the band gap of TiO2 (anatase) was relatively wide (B3.2 eV),
while the band gap of MoS2 was narrower (B1.8 eV).39 Upon
light illumination, electrons could be excited from the valence
band (VB) of MoS2 to the conduction band (CB), leaving holes
in the VB. Compared with TiO2, it was easy to induce photo-
generated electrons in MoS2 with a relatively lower CB, and the
photo-induced electrons (CB, MoS2) could rapidly transport
to TiO2 nanoparticles (CB). The Mott–Schottky test was carried
out to determine the flat-band potential of H-TiO2/MoS2.40

As illustrated in Fig. S7 (ESI†), the potential can be confirmed
to be B�0.47 V (vs. SCE). The corresponding potential
was converted to 0.18 V (vs. RHE) according to the equation
E (vs. RHE) = E (vs. SCE) + 0.0591 pH + 0.244 V. Owing to
dissolved oxygen in solution, photo-induced electrons could
form superoxide radical anions from trapped O2 (O2 + e� -

O2��), O2��, as a high activity intermediate, usually used to
degrade organic pollutants. On the valence band, the leaving
holes were transferred from TiO2 to MoS2 due to the higher VB,
H2O was oxidized into hydroxyl radicals by holes with strong
reduction (H2O + h+ - �OH), which could oxidize organic dye
into CO2 and H2O, etc.41 The active species generated in the
process of photodegradation were h+, radical O2

� and radical
�OH.42 In order to reveal the main active species that played the
significant role in the photodegradation of RhB, the free radical
scavenging experiments were conducted. In detail, free radical
scavengers of isopropanol, dimethylsulfoxide (DMSO) and
t-BuOH were added to the photodegradation system as a h+

trapping agent, a radical O2
�� trapping agent and a radical OH�

trapping agent, respectively. As illustrated in Fig. S8 (ESI†), the
photodegradation efficiency of RhB without adding a trapping
agent was 94.7%, and the degradation efficiencies after adding
isopropanol, t-BuOH and DMSO were 97.0%, 78.5% and 25.4%,
respectively. The photodegradation performance of RhB was
inhibited notably after adding DMSO, which confirmed that
radical O2

�� was the main active species used for oxidation and
h+ played a synergistic role in the photocatalytic reaction,43 and
radical �OH indicated no evident effect.44 H-TiO2/MoS2 was just
tapping into its strong charge separation ability and weak
charge–hole recombination ability for enhancing the photo-
catalytic degradation performance.

Conclusions

H-TiO2/MoS2 consisting of TiO2 as a hard core and MoS2 as a
shell was prepared through a facile two-step solvothermal
approach. H-TiO2/MoS2 was beneficial for fast electron transfer
between TiO2 and MoS2 due to maximally exposed active edge
sites of MoS2 and illustrated high structural stability. Moreover,
H-TiO2/MoS2 indicated enhanced light absorption and improved
performance in the photocatalytic degradation of RhB (99.4%).
The synergistic effect between MoS2 nanosheets and TiO2

nanoparticles accounted for the outstanding photocatalytic

Fig. 4 Raman and FTIR spectra of as-prepared H-TiO2/MoS2.

Fig. 5 (a) Adsorption of RhB in dark (30 min) and photocatalytic degrada-
tion of RhB under the light irradiation (40 min) with TiO2 nanoparticles, H-
TiO2/MoS2 and MoS2 flowers. (b) The recycling stability and (c) schematic
photocatalytic degradation principle of H-TiO2/MoS2.
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degradation performance. Therefore, this novel photocatalyst
is promising for preparing elaborate heterostructures and
applications in various fields, such as sewage-treatment, dye
degradation, etc.
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