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Tailoring the molecular weight of polymer
additives for organic semiconductors

Zhengran He, *a Ziyang Zhangb and Sheng Bi *c

A binary system comprising both an organic semiconductor and a polymer additive has attracted

extensive research interests due to its great potential for use in high-performance, solution-processable

electronic devices on flexible substrates. The molecular weight of polymer additives plays a critical role

in modulating the crystal growth, enabling phase segregation, optimizing thin film morphology, and

improving the charge transport of organic semiconductors. Here, we provide an in-depth review of the

recent progress in studying amorphous and semicrystalline polymeric additives, including polystyrene,

poly(a-methylstyrene), polymethyl methacrylate, and polyethylene oxide, and fully discuss the effect of

the different polymer molecular weights on semiconductor crystallization, active layer composition, and

the electrical performance of miscellaneous organic semiconductors. Using the representative examples

of 6,13-bis(triisopropylsilylethynyl)pentacene (TIPS pentacene), 2,7-dioctyl[1]benzothieno[3,2-b][1]benzo-

thiophene (C8-BTBT), and 2,8-difluoro-5,11-bis(triethylsilylethynyl)anthradithiophene (diF-TES-ADT), this

work sheds light on utilizing these universal polymers with varying molecular weights to powerfully

manipulate the charge transport of other high-mobility, solution-processable organic semiconductors.

1. Introduction and background
1.1 Recent progress in flexible electronics

In recent years, research on flexible electronics has witnessed
rapid progress.1–11 Great efforts have been made to study solvent

choices, controllable crystallization, charge carrier mobilities, and
organic electronic device applications of solution-processed small-
molecular organic semiconductors, such as 6,13-bis(triiso-
propylsilylethynyl)pentacene (TIPS pentacene),12–17 2,7-dioctyl-
[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT),18–21 2,5-di-
(2-ethylhexyl)-3,6-bis(500-n-hexyl-2,20,50,200]terthiophen-5-yl)-pyrrolo-
[3,4-c]pyrrole-1,4-dione (SMDPPEH)22–24 and 2,8-difluoro-5,11-
bis(triethylsilylethynyl)anthradithiophene (diF-TES-ADT).25–28 For
instance, based on the structural engineering of the organic
semiconductor pentacene, the herringbone packing patterns in
TIPS pentacene are interrupted by the attachment of the bulky
side chains, which improves the solubility of TIPS pentacene in
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organic solvents.29,30 The enhanced p–p stacking in TIPS penta-
cene is attributed to higher charge transport.31 These research
endeavors have opened up vast opportunities for organic semi-
conductors to be applied in high performance organic electronic
devices such as organic thin film transistors,32–35 organic gas
sensors,36–38 photovoltaic devices39–41 and logic circuits.42–44

In this section, we will review the important studies that investi-
gated the solution processability and charge carrier mobility of
organic semiconductor based thin film transistors, as well as their
application in fabricating organic gas sensors.

First, research studies have been devoted to exploring the
solvent possibilities of organic semiconductors, allowing the
modulation of semiconductor morphology and charge
transport.45–47 For instance, Kim et al. investigated the effect
of different solvents on the thin film morphology and crystal-
linity of TIPS pentacene.48 Solvents with high boiling points
such as chlorobenzene and xylene resulted in dendritic mor-
phology with higher crystallinity, whereas solvents with low
boiling points such as chloroform led to an amorphous
film with low crystallinity. Choi et al. studied the correlation
between the solvent boiling point, grain size and charge
transport.29 Spin coating TIPS pentacene from chlorobenzene
with a high boiling point produced crystals with a large grain
size and high crystallinity, yielding a mobility that is 5 orders of
magnitude higher than that from a low boiling point solvent
such as chloroform. Hwang et al. reported the effect of different
solvents including chlorobenzene and tetralin on the vertical
phase segregation and compositional structure of TIPS pentacene/
polymer blends.49 Distinct phase segregation and enhanced
crystallization were observed based on the solvent tetralin,
attributed to higher mobility values. Ozorio et al. discovered
how the different solvent choices impacted the vertical phase
segregation and charge transport in the TIPS pentacene/poly(3-
hexylthiophene) (P3HT) blends.50 Solvent trichlorobenzene
caused a moderate vertical phase segregation between TIPS
pentacene and P3HT and gave rise to optimized TIPS pentacene
film morphology and enhanced P3HT ordering, which yielded
an output current that is 39 times larger as compared to the

counterpart based on other solvents such as chloroform and
toluene.

Besides, highly effective alignment methods have been
shown to enhance the charge carrier mobilities of the organic
semiconductors close to or over 10 cm2 V�1 s�1. While mis-
cellaneous alignment methods have been reported, they can be
mainly summarized into the categories of blading coating,
substrate patterning, slot-die coating and controlled evapora-
tion based methods. First, blade coating based methods involve
either a running blade over a stationary substrate or a station-
ary blade over a moving substrate.51–54 The resultant film
thickness is determined by the gap between the blade and
substrate, the coating speed and the viscoelastic properties of
the solution. Solution shearing, as an enhanced version of the
blade coating method, involves the use of a tilted blade to
deposit the organic semiconductor solutions.55–59 Solution
shearing has been reported to effectively tune the molecular
packing, manipulate the crystal alignment and control the thin
film morphology of organic semiconductors.60,61 Peng et al.
demonstrated a ‘‘dual solution-shearing’’ method and reported
a mobility of 10 cm2 V�1 s�1 using the organic crystals of 2,7-
didecyl[1]benzothieno[3,2-b][1]benzothiophene (C10-BTBT).62

Bilgaiyan et al. reported the solution shearing of a 6,6 bis-
(trans-4-butylcyclohexyl)-dinaphtho[2,1-b:2,1-f]thieno[3,2-b]thio-
phene (4H-21DNTT) organic semiconductor based thin film
transistor and obtained a mobility of 10.5 cm2 V�1 s�1.63 The
4H-21DNTT based CMOS inverter circuit showed sharp switch-
ing behaviors with a 31.5 signal gain. Second, substrate pattern-
ing based methods involve the tuning of substrate wettability by
using surfactant treatment and/or photolithography patterning,
which can effectively confine the deposition of organic semi-
conductor solutions as well as the subsequent crystal growth
and alignment. Zhao et al. demonstrated an ‘‘asymmetric-
wettability topographical template’’ to control the ordered
crystallization of 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothio-
phene (C8-BTBT), giving rise to a mobility of 8.7 cm2 V�1 s�1.64

Shen et al. reported the controlled crystallization and morphol-
ogies of the C8-BTBT organic semiconductor via tuning sub-
strate wettability with soluble polymer films as a modification
layer.65 The resultant C8-BTBT film with optimized grain
boundary and domain size exhibited a mobility higher than
7 cm2 V�1 s�1. Deng et al. reported a ‘‘channel-restricted
meniscus self-assembly (CRMS)’’ method, which combined
photolithography patterning and dip coating, to grow uniform
2,6-diphenylanthracene (DPA) single crystal arrays.66 The
photoresist patterning confined the lateral growth of DPA
single crystals, leading to a mobility of 30.3 cm2 V�1 s�1. Third,
slot die coating based methods deposit the organic semicon-
ductor solution onto a moving substrate directly through a
coating head at a tunable rate.67–70 Lin et al. demonstrated
highly ordered single crystalline TIPS pentacene films by using
a roll-to-roll slot die coating method, and reported a mobility of
4.2 cm2 V�1 s�1 for pristine TIPS pentacene.71 Xie et al. reported
a roll-to-roll slot die coating method to fabricate thin film
transistors.72 With Ag nanowires deposited by using the R2R
coating method as the gate electrode, the C8-BTBT/polystyrene
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(PS) based transistor showed a mobility of 18.3 cm2 V�1 s�1.
Fourth, controlled evaporation based methods involve the
tuning and control of the solution flow behavior and evapora-
tion rate in order to modulate the deposition and growth of
organic semiconductors.73–75 Wang et al. reported a ‘‘Marangoni
effect-controlled growth’’ method to grow a highly oriented
C8-BTBT film with a herringbone stacking structure.76 A high
mobility of 25 cm2 V�1 s�1 was obtained from the C8-BTBT based
transistors incorporating a long channel length. Soeda et al.
reported the growth of an aligned organic semiconductor 3,11-
didecyldinaphtho[2,3-d:2 0,3 0-d 0]benzo[1,2-b:4,5-b0]dithiophene
(C10-DNBDT) with controlled solvent evaporation.77 By holding
the C10-DNBDT solution at a moving blade edge, continuous
solvent evaporation and supply at the same rate gave rise to aligned
crystals extending in inches and a mobility of 10 cm2 V�1 s�1.

The exceptional high mobilities present great opportunities
for the organic semiconductors to be implemented in high
performance organic electronic devices such as gas sensors.
Manoli et al. demonstrated a P3HT thin film transistor based
gas sensor for detecting acetone, ethanol and n-butanol
vapors.78 When exposed to the vapors, the P3HT thin film
transistors showed a decreased drain current as a result of
the enlarged potential barrier at the P3HT grain boundaries as
charge trapping. Seo et al. reported a 5,11-bis(triethylsilyl-
ethynyl)anthradithiophene (TES-ADT) thin film transistor
based gas sensor for detecting NO2 gas.79 Exposure to 0 ppm
to 100 ppm NO2 gas caused accumulation of charge carriers
and thereby led to an increase in the on-current. Hou et al.
studied the effect of grain boundaries on the sensing
performance of TIPS pentacene transistor based gas
sensors.80 Solvent vapor annealing with toluene gave rise to a
large density of grain boundaries and thereby higher sensitivity
when NO2 gas diffused into the grain boundaries and caused a
more pronounced current increase. Shao et al. compared the
effect of different solvents on the performance of TIPS penta-
cene transistor based gas sensors.81 Spin coating TIPS penta-
cene in solvent o-xylene was observed to yield abundant grain
boundaries and thereby enhanced gas sensing performance
of NO2.

1.2 Challenges in controlling organic semiconductor
crystallization

Despite the major advantages of organic semiconductors such
as high mobility and solution processability, the crystallization
of organic semiconductors based on solution processing can
still be difficult to maneuver.82–86 In this section, we employ
TIPS pentacene as a benchmark semiconductor to discuss
the main challenges that can limit the implementation of
organic semiconductors in organic electronic applications.
These challenges include crystal misorientation, thermal cracks
and grain boundaries, which will be discussed in greater
detail below.

First, when drop cast in solution, TIPS pentacene forms
dendritic patterns of crystal ribbons, which can be character-
ized by considerable crystal misorientation and film gaps.87–98

In a pivotal study conducted by Chen and coworkers,99 the

misorientation angle y was measured between the TIPS penta-
cene crystal long axis and the direction from source to drain
contact electrodes in the transistor device. This angle was used
as the baseline to evaluate the crystal misorientation induced
mobility variations. When the smallest angle y corresponded to
the crystal orientation being parallel with the source/drain
electrode direction, the largest hole mobility of 0.04 cm2 V�1 s�1

was measured from the TIPS pentacene based transistors. When
the crystal orientation bridged the source/drain electrode direction
at the largest angle y, the smallest mobility of 0.004 cm2 V�1 s�1

was obtained, which showed that the mobility dropped by 10
fold. Similarly, such crystal misorientation has been reported
in two other p-type organic semiconductors, i.e. 5,6,11,12-
tetrachlorotetracene100 and 2,5-di-(2-ethylhexyl)-3,6-bis(500-n-
hexyl-2,20,50,200] terthiophen-5-yl)-pyrrolo[3,4-c]pyrrole-1,4-dione
(SMDPPEH),101 when grown from a single chloroform solvent
via the drop casting method.

Besides, the charge transport in the organic semiconductors
may be impeded by large-scale thermal cracks, which occur
after the semiconductors are exposed to elevated temperature.
Chen et al. reported that when TIPS pentacene was heated at
150 1C, the organic semiconductors started to show thermal
cracks,102 which was linked to the lower surface energy in
various planes of the semiconductor. While pristine TIPS
pentacene based transistors exhibited a hole mobility of up to
1 cm2 V�1 s�1 in this study, the counterpart with the occurrence
of thermal cracks showed a much lower hole mobility of up to
0.2 cm2 V�1 s�1, which counts for a significant reduction in
mobility by 80%. The generation of thermal cracks in TIPS
pentacene was also reported in a later study by Asaree-Yeboah
et al. who applied a temperature gradient technique in order to
align the crystal growth direction of TIPS pentacene.103 These
thermal cracks extended to a few hundred micrometers, posing
a barrier for efficient charge transport in TIPS pentacene.
Despite exerting a blocking effect on charge transport, thermal
cracks at the domain boundaries have been reported to gen-
erate deep electron traps and enhance the stability of TIPS
pentacene based thin film transistor photo responsivity. Cho
et al. reported that thermal annealing induced cracks at the
domain boundary of TIPS pentacene films and related both the
stable photoresponsive characteristics and lower charge carrier
mobility to the corresponding deep electron traps.104

Moreover, the crystal growth of organic semiconductors can
result in small grain widths.105–109 Because crystalline defects
and charge trap sites are prevalent at the grain boundaries,
small grain widths can be generally associated with a greater
amount of defects and traps, which charge carriers must
circumvent along the charge transport pathway.110–120 If we
assume that the channel length L is equal to the length of
crystals, or LG, plus the length of crystal boundary, or LGB, then
we have:

L = (n � 1)LGB + nLG (1)

where n is the total number of crystals in the channel. If we
denote the effective total hole mobility as mg and the mobility at
the grain boundaries as mGB, mg can be correlated to mGB based
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on the following equation:121–123

L

mE
¼ L� ðn� 1ÞLGB

mG
þ ðn� 1ÞLGB

mGB

(2)

1

mE
¼ 1

mG
þ n

LGB

LmGB

� LGB

LmG

� �
(3)

The length of crystals can be correlated with the width of
grains, or WG, via the following equation:

sin y ¼WG

LG
¼ nWG

L
(4)

n ¼ L sin y
WG

(5)

By assigning A ¼ 1

mG
and B ¼ sin yLGB

1

mGB

� 1

mG

� �
, we have:

1

mE
¼ Aþ B

WG
(6)

Eqn (6) shows a clear correlation between the width of grains
and the effective mobility, which states that a small grain width
from the solution-processed organic semiconductors can result
in lower effective mobility.

2. Benefits of polymer-modulated
crystallization

Miscellaneous polymer additives have been extensively studied
for mixing with solution processable, small molecular organic
semiconductors.124–129 When the polymer additives are mixed
with semiconducting small molecules, the resultant binary
system can benefit from improved semiconductor morphology
uniformity,130–134 phase segregation-enhanced charge
transport135–139 and operational device stability.140–147 In this
section, we will briefly discuss the benefits of mixing organic
semiconductors with different categories of polymer additives,
including amorphous polymers, conjugated polymers and
semicrystalline polymers.

2.1. Amorphous polymers

Mixing organic semiconductors with amorphous polymers can
help improve the thin film morphology uniformity and, more
importantly, can promote the formation of orientated crystals
and reduce crystal misorientations.148,149 For example, pristine
TIPS pentacene has been reported to form random crystal
ribbons or dendritic patterns of crystals by multiple
groups.150–152 The mixing of TIPS pentacene with amorphous
polymer, such as poly(a-methylstyrene) (PaMS), can signifi-
cantly reduce crystal misorientation.153 He et al. reported that
when drop cast in the solvent of toluene, the TIPS pentacene
pristine film exhibited a large misorientation angle of 43.91 �
27.81, whereas the addition of PaMS with TIPS pentacene
strongly prevented such random crystal morphology and
reduced the misorientation angle to 2.21 � 11.30

Another major benefit that rises from blending organic
semiconductors with amorphous polymers is the occurrence

of phase segregation between the organic semiconductor and
polymer additive.154–160 This phase segregation can include
lateral phase segregation, vertical phase segregation, or a
mixture of both. In particular, vertical phase segregation
between the organic semiconductor and amorphous polymer
can facilitate the formation of a more concentrated semicon-
ductor layer at the interface between the active layer and the
dielectric layer, expediting charge transport of the organic
semiconductor. Also, a polymeric encapsulation layer that
forms as a result of the vertical phase segregation can protect
the semiconductor active layer from being exposed to the
ambient environment, enhancing the operational stability of
the thin film transistors.161,162

2.2 Conjugated polymers

When organic semiconductors are blended with conjugated
polymers, the binary system can give rise to intermolecular
interactions between these two components.163–168 For example,
Chen et al. reported that when two different types of conjugated
polymers, including P3HT and regiorandom pentacene–bithio-
phene polymer (PnBT–RRa), were mixed with TIPS pentacene,
the resultant binary system exhibited tunable intermolecular
interactions that arise from both p–p interactions and hydro-
phobic interactions. The different extent of molecular structural
similarity between TIPS pentacene and the conjugated polymer
additives determines the intensity of intermolecular inter-
actions. A small structural similarity between TIPS pentacene
and P3HT yielded less intimate mixing and intermolecular
interactions, leading to a polymorph with greater changes in
the cell parameters. A higher similarity between TIPS pentacene
and PnBT–RRa resulted in more intimate mixing, stronger
interactions, and a polymorph with smaller changes in the cell
parameters. Such differences further modulate the thin film
morphology and confine charge transport in the organic
semiconductor.89 Depending on the different types of conju-
gated polymers and extent of intermolecular interactions, the
TIPS pentacene crystalline morphology can range from straight
crystal needles to grass-like ribbons. Simultaneously, the con-
jugated polymer may exhibit cocrystallization along with the
organic semiconductor. Thereby, each conjugated polymer
yielded distinct modes of crystallization behavior and charge
transport.

2.3 Semicrystalline polymers

When compared to the amorphous and conjugated counter-
parts, semicrystalline polymers169–175 can preserve their own
nucleation and crystallization events, which are independent of
and also competing with the nuclei formation and crystal
growth of the organic semiconductors. In the meanwhile,
semicrystalline polymers are still partially amorphous, allowing
the modification of diffusivity and surface energies of the
organic semiconductor facets similar to amorphous polymers.
Unlike conjugated polymers, semicrystalline polymers elimi-
nate the polymer-caused p–p interactions as described above,
which may be a complicated process unwanted in some organic
semiconductor applications. Thereby, semicrystalline polymers
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provide a novel pathway to guide organic semiconductor
crystallization and tune its morphology from an unexplored
perspective.

3. Overview of polymers with varying
molecular weights

In this section, we will provide an overview of the important
studies that report mixing organic semiconductors with poly-
meric additives with different molecular weights, in order to
tune the crystal growth, thin film morphology, phase segrega-
tion, and charge transport. These polymer additives will be
discussed in the following category: PaMS, PS, polymethyl
methacrylate (PMMA) and polyethylene oxide (PEO); their
molecular structures are shown in Fig. 1(a–d). Fig. 1(e–h) show
the molecular structures of the various organic semiconductors
mixed with the polymer additives in this section.

3.1 Polystyrene with varying molecular weights

PS is an amorphous and thermoplastic polymer that finds
extensive applications in miscellaneous semi-finished products
such as plastic films and foams. PS has excellent electrical
insulation properties and outstanding optical clarity as a result
of its lack of crystallinity. Besides, PS is chemically resistant to
diluted bases and acids, but can be attacked by hydrocarbon
solvents and UV exposure. The stiffness of the PS polymer
backbone results in brittle nature and low impact strength.

Furthermore, PS has a low limit of upper temperature for
continuous processing. When mixed with organic semiconductors,
PS typically causes pronounced vertical phase segregation,129,176

enhances semiconductor wettability,177 modulates active layer
structure and polymorph,178 reduces charge interfacial traps,179

and improves charge transport reproducibility.180

Leonardi et al. reported the effect of PS additive with
different molecular weights, including 3 K and 100 K, on the
vertical phase segregation, thin film morphology and stability
of a donor–acceptor random copolymer, i.e. PDPP-TT(1)-
SVS(9).137 AFM images in Fig. 2 show a vertical phase segrega-
tion with a bottom PDPP-TT(1)-SVS(9) layer beneath a top PS
layer, which could serve as an encapsulation layer and improve
the stability of the transistor device. In particular, the PDPP-
TT(1)-SVS(9)/PS blend film with the 3 K molecular weight
exhibited a non-homogeneous surface, whereas the counterpart
with the 100 K molecular weight showed a thicker PS layer with
the existence of holes, which resulted from the increased
viscosity of the blend solution. PDPP-TT(1)-SVS(9) based tran-
sistors with the addition of PS with 3K and 100K molecular
weights demonstrated average mobilities of 0.22 cm2 V�1 s�1

and 0.10 cm2 V�1 s�1, respectively. The enhanced charge
transport was a direct benefit from the passivation of surface
hydroxyl groups by the vertically-segregated PS polymer additive.

Niazi et al. studied the impact of PS additives with different
molecular weights on the phase separation, composition and
domain size of the organic semiconductor diF-TES-ADT.182 PS
with different molecular weights including 2.2 K and 900 K was
mixed with diF-TES-ADT. The mixture was deposited by using
the blade coating method with a direction parallel with the
source-to-drain electrodes. The thin film morphology of neat
diF-TES-ADT and the diF-TES-ADT/PS mixture film is shown in
the polarized optical images and AFM images in Fig. 3. It can be
inferred that the film morphology and domain size depend on
the molecular weight of PS. Besides, both phase segregation
and active layer compositions were found to correlate to the
molecular weight of PS. In particular, PS with a high molecular
weight of 900 K caused the formation of a vertically-segregated
bilayer structure: a top diF-TES-ADT layer and a bottom PS
layer. Conversely, PS with a low molecular weight of 2.2K led to
a mixture of diF-TES-ADT and PS in the top section. A thin film
transistor incorporating the diF-TES-ADT/PS mixture as the
active layer showed a mobility of up to 6.7 cm2 V�1 s�1 based
on the high molecular weight PS, which is 50-times higher than
that based on the low molecular weight counterpart. The high
performance of the transistor devices was attributed to the
single crystalline diF-TES-ADT layer with large domains as a
result of vertical phase segregation.

Haase et al. reported the addition of PS with different
molecular weights in order to reduce the device-to-device
mobility variation of the organic semiconductor C8-BTBT.183

Different molecular weights of the PS polymer including 2 K,
20 K, 200 K and 2000 K were tested on the thin film morphology
of the organic semiconductor. PS with a low molecular weight
resulted in a spherulitic growth of solution-sheared C8-BTBT
films, whereas PS with a larger molecular weight yielded

Fig. 1 Molecular structures of the various polymer additives and small-
molecular organic semiconductors discussed in this work, including (a)
polystyrene (PS), (b) poly(a-methylstyrene) PaMS, (c) polymethyl metha-
crylate (PMMA), (d) polyethylene oxide (PEO), (e) poly(3-hexylthiophene)
(P3HT), (f) 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT),
(g) 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS pentacene), and (h)
2,8-difluoro-5,11-bis(triethylsilylethynyl)anthradithiophene (diF-TES-ADT).
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C8-BTBT ribbons with enhanced film coverage, as shown in the
microscopic optical images in Fig. 4. Accordingly, the highest
mobility of 14.4 cm2 V�1 s�1 was observed with PS with a
molecular weight of 200 K, at an optimized blending ratio of
1 : 1. Finally, distribution of saturation mobility was studied for
thin film transistors based on neat C8-BTBT and the C8-BTBT/
PS mixture in a 1 : 1 ratio. The addition of the PS polymer
resulted in a much narrower distribution of mobility as well as
reduced standard deviation.

Singsumphan et al. studied the effect of PS molecular weight
on the polymer viscosity and drop-cast thin film morphology of
organic semiconductor 9,10-bis-2-[tris(1-methylethyl)silyl]-
ethynyl anthracene (TIPS-anthracene).184 Fig. 5 shows the

optical images and fluorescence images of drop cast TIPS-
anthracene based on mixing with PS of different molecular
weights including 13 K, 35 K and 280 K, respectively. For PS
with a low molecular weight of 13 K, the mixed TIPS–anthra-
cene exhibited a crystalline morphology of elongated needles.
For PS with an intermediate molecular weight of 35 K, the
needle shaped TIPS–anthracene crystals adopted alignment in
different directions, indicating greater randomness of the thin
film morphology. For PS with a high molecular weight of 280 K,
the needle-like TIPS–anthracene crystals further suffered from
reduced substrate coverage, which was caused by the high
viscosity of PS and poor processability. This study indicated
that tuning the polymer viscosity by employing polymer

Fig. 2 AFM images showing the topography of the PDPP-TT(1)-SVS(9)/PS mixture film, with different molecular weights of PS including (a) 3 K and (b)
100 K. Reproduced from ref. 181, with permission from Elsevier.

Fig. 3 Polarized optical images and corresponding AFM images of (a) neat diF-TES-ADT, (b) diF-TES-ADT blended with PS with a low molecular weight
of 2.2 K, and (c) diF-TES-ADT blended with PS with a high molecular weight of 900 K. The direction of blade coating was parallel with the direction from
the source to drain contact electrodes. Reproduced from ref. 182, with permission from Springer Nature.
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additives with different molecular weights can be a pathway to
regulate the thin film morphology of organic semiconductors.

Rocha et al. studied the mixing of TIPS pentacene with PS
with different molecular weights, including 2 K, 20 K, 200 K and
2000 K, to improve the binary system’s miscibility and charge
transport.185 At a mixing ratio of 1 : 1, the TIPS pentacene/PS
mixture was deposited by using a solution shearing method.
The resultant crystalline film exhibited different morphologies,
dependent on different molecular weights of the PS polymer
additive and different solution shearing speed. In particular,
highly anisotropic crystalline ribbons and more isotropic
spherulitic crystals were obtained based on low and high
solution shearing speed, respectively. Electrical characteriza-
tion results indicated that PS with a higher molecular weight
yielded a higher charge carrier mobility as compared to the
counterpart with 2 K molecular weight. The low mobility from
low molecular weight PS can be attributed to the higher
miscibility between PS and TIPS pentacene, preventing the
phase segregation and the growth of highly crystalline TIPS
pentacene ribbons. On the other hand, PS with a molecular

weight larger than 20 K was observed to induce a phase
segregation between TIPS pentacene and PS. The highest
mobility of 12.3 cm2 V�1 s�1 was demonstrated based on the
TIPS pentacene/PS mixture with a 20K molecular weight.

Han et al. reported the effect of different PS molecular
weights on the response of P3HT based gas sensors.186 Two
types of PS, including isotactic semicrystalline PS with mole-
cular weights of 1.3 K, 250 K, 280 K and 290 K and amorphous
PS with a molecular weight between 130 K and 290 K, were
mixed with P3HT at a 4 : 1 ratio to form an active layer of the
thin film transistors. When the P3HT based transistor devices
were exposed to 10 ppm NH3 gas, the gas sensing response
increased as the molecular weight of isotactic semicrystalline
PS increased. In contrast, a much lower sensing response was
observed for the counterpart based on the amorphous PS
polymer additive. The enhanced sensing performance by the
isotactic semicrystalline PS with a larger molecular weight was
attributed to the formation of vertically-segregated, more con-
tinuous P3HT microstructures, which provide an undisrupted
pathway for the transport of charge carriers in the transistor

Fig. 4 Microscopic images of solution-sheared C8-BTBT films from blends based on different PS molecular weights, including 2 K, 20 K, 200 K and
2000 K. Reproduced from ref. 183, with permission from Wiley.
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device. A mobility of 0.03 cm2 V�1 s�1 was reported from the
P3HT/PS based transistors.

3.2 Poly(a-methylstyrene) with varying molecular weights

PaMS is an amorphous polymer with outstanding hardness,
heat resistance and solvent resistance properties.187 While
PaMS in general finds good solubility in both aromatic and
halogenated solvents, only PaMS with a low molecular weight
can be soluble in methyl ethyl ketone. The physical properties
of PaMS such as solvent resistance depend on the amount of
monomer and low molecular weight polymer in the composi-
tions. Due to its relative brittleness and lower thermal stability
(as compared to PS), the molecular weight of PaMS should be
kept at a minimum value to enable any molding and extrusion
processes to occur. As a result, it is desirable to set the
molecular weight of PaMS at a lower limit, in order to render
the polymer more useful physical properties. In the field of
organic electronics, PaMS has been extensively studied for
mixing with various organic semiconductors in order to
improve the uniformity of thin film morphology,188 modulate
semiconductor wettability,189 reduce crystal misorientation,30,190

control the formation of thermal cracks,191 enhance charge carrier
mobilities,192,193 recover electrical performance,194 and improve
the thin film transistor device stability.195

Ohe et al. reported the impact of different molecular weights
of the polymeric additive PaMS on phase segregation, thin film
morphology and charge carrier mobility of the organic semi-
conductor TIPS pentacene.196 The different molecular weights
of the polymeric additive PaMS included 2 K, 20 K, 60 K, 100 K
and 800 K. Source and drain contact electrodes were prepat-
terned on the substrate covered with a cross-linked poly(vinyl
phenol) gate dielectric layer. Then PaMS was mixed with TIPS
pentacene at a 1 : 1 weight ratio in solution before being spin
coated onto the source and drain electrodes. Electrical char-
acterization results showed while the addition of PaMS with a
low molecular weight of 2 K resulted in a low mobility, PaMS

with a molecular weight above 20 K yielded a much higher
mobility of 0.1 cm2 V�1 s�1. To study the composition in the
vertical profile of the organic semiconductor film, time-of-flight
secondary ion mass spectrometry was conducted on the TIPS
pentacene/PaMS blends. The secondary Si� ions and SiH� ions
were used to mark the existence of TIPS pentacene. The
addition of a PaMS additive with a molecular weight of 2 K
led to a homogeneous distribution of TIPS pentacene, whereas
PaMS with a high molecular weight of 100 K promoted a
vertical phase segregation between the polymer additive and
TIPS pentacene. Furthermore, the polarized optical microscope
images showed that the PaMS additive with a high molecular
weight of 100 K enlarged the crystalline region on the surface.
Flory–Huggins theory, which is indicative of the Gibbs free
energy change upon mixing, was applied to understand phase
segregation between TIPS pentacene and PaMS. Negative Gibbs
free energy of mixing implies homogeneous mixing, whereas
positive Gibbs free energy of mixing indicates that phase
segregation can more easily occur. The low molecular weight
PaMS resulted in a negative value of DGm, indicating it is more
likely for the blend film to undergo a homogeneous mixing.
In contrast, as the high molecular weight PaMS yielded a
positive value of DGm, the vertical phase segregation between the
polymer additive and organic semiconductor was promoted.

Kang et al. reported the impact of PaMS with different
molecular weights on the TIPS pentacene phase segregation
behavior and compositional structure by employing the neu-
tron reflectivity method.197 Two types of PaMS with different
molecular weights at 1.3 K and 575 K were blended with TIPS
pentacene at a 1 : 1 weight ratio before being spin coated on the
substrate to form an active layer. After this, thermal annealing
at 90 1C was conducted on the active layer. Neutron reflectivity
profiles of TIPS pentacene/PaMS blend film are presented in
Fig. 6(a and b) based on the different PaMS molecular weights.
The addition of PaMS with a lower molecular weight of 1.3 K
was observed to induce a vertically segregated film structure,

Fig. 5 (a–c) Optical images and (d–f) fluorescence images of TIPS–anthracene/PS blend films based on different PS molecular weights including 13 K,
35 K and 280 K. The scale bar is 200 mm. Reproduced from ref. 184, with permission from Elsevier.
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which is composed of an almost pure TIPS pentacene top layer
at the air surface, a PaMS rich layer in the middle section, and a
TIPS pentacene rich bottom layer at the substrate interface. The
thicknesses from top to bottom layer corresponding to the
lower molecular weight PaMS were 177 Å, 326 Å and 70 Å,
respectively. In contrast, the mixing of PaMS with a higher
molecular weight of 575 K induced a similar vertically segre-
gated film but with different compositions. The thicknesses of
the top and bottom TIPS pentacene rich layer based on the
higher molecular weight PaMS changed to 134 Å and 117 Å,
respectively. To understand the effect of thermal annealing on
the crystallinity of the film, grazing-incidence X-ray diffraction
(GIXD) was conducted based on PaMS with a molecular weight
of 575 K. The GIXD spectra presented in Fig. 6(c and d) showed
that thermal annealing resulted in a highly crystalline film with
desired crystal orientations, giving rise to a saturation mobility
of 0.54 cm2 V�1 s�1.

3.3 Poly(methyl methacrylate) with varying molecular weights

PMMA is a thermoplastic polymer with optical transparency.
PMMA shows outstanding properties such as high impact
strength, scratch resistance, and lightweight. The incorporation
of an adjacent methyl group in the PMMA structure inhibits
close packing and free rotation, which results in an amorphous
nature of PMMA.198 PMMA has extensive applications such
as in optics, polymer viscosity and biomedical engineering,
and also finds important implementation in nanotechnology

because of its easy processing and good compatibility with
inorganic materials such as carbon nanotubes.199 As one of the
most studied polymers for blending with organic semiconduc-
tors, PMMA demonstrates exceptional capability for enhancing
semiconductor growth,200 film crystallinity,201 grain size,202

phase segregation,203 device air stability195 and charge
transport.204 Besides, PMMA also shows excellent gate dielec-
tric properties when employed as the polymer gate insulator
material for thin film transistors205,206 and gas sensors.207

Kim et al. studied how different molecular weights of PMMA
impacted the polymorphism and charge transport of a C8-BTBT
organic semiconductor.208 PMMA with different molecular
weights including 15 K, 120 K, 350 K, and 996 K were mixed
with C8-BTBT before spin coating the blends for crystal growth
using a solvent vapor annealing method. As shown in the
polarized optical microscopic images in Fig. 7, the crystal-
lization and resultant dimensions of the C8-BTBT rods, in terms
of rod height, width and length, were observed to be dependent
on the molecular weight of PMMA. In particular, the rod
dimension becomes larger as the PMMA molecular weight
increases. This was attributed to the reduced polarity of higher
molecular weight PMMA, which allowed the free migration of
C8-BTBT on the PMMA surface to form enlarged dimensions.
Electrical characterization results of C8-BTBT/PMMA (molecular
weight 120K) based thin film transistors indicated that the
source-drain currents exhibited a tremendous increase by
3–4 orders of magnitude as the device was applied to thermal

Fig. 6 Neutron reflectivity profiles of the TIPS pentacene/PaMS blend film with different PaMS molecular weights of (a) 1.3 K and (b) 575 K, before and
after thermal annealing at 100 1C. The insets show the fitted concentration profiles. GIXD patterns of the TIPS pentacene/PaMS blend film with a
molecular weight of 575 K, measured (c) after spin coating and (d) after thermal annealing at 90 1C. Reproduced from ref. 197, with permission from
American Chemical Society.
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cycling. This was due to the increased resistivity of C8-BTBT
induced by the varying temperatures, at which point the
C8-BTBT molecules become oriented downward the substrate.
A mobility of 15.6 cm2 V�1 s�1 was obtained when heating was
applied to the C8-BTBT/PMMA blend based thin film transistors.

3.4 Polyethylene oxide with varying molecular weights

Polyethylene oxide (PEO) finds important applications in phar-
maceutics and is compatible with pharmaceutical dosage due
to its thermoplastic behavior. When combined with other
polymers, PEO can be utilized to realize controllable drug
release.209 In particular, PEO with a high molecular weight is
suitable for designing melt-extruded matrices with extended
release. On the other hand, PEO is a semicrystalline polymer
exhibiting unique crystallization behavior in stark contrast to
the conjugated and amorphous counterparts. PEO can elimi-
nate the potential impact of conjugated polymer induced p–p
interactions and cocrystallization on the target organic
semiconductor,38 which is not a feasible process to optimize
for simplified device fabrication procedures. With that said,
PEO retains the amorphous nature which helps improve the
semiconductor diffusivity and surface energies. The semi-
crystalline PEO is known for its own crystallization, which is
independent of but competing with the crystal growth of the
organic semiconductor. These traits of PEO uniquely offer a
pathway to modulate solution-based organic semiconductor
crystallization from a whole new perspective.

He et al. studied the effect of semicrystalline polymer
additive PEO with different molecular weights including 8 K
and 100 K on the crystallization and charge transport of organic
semiconductor TIPS pentacene.210 With the selection of 8K and
100K molecular weights, the PEO polymer with both light and
heavy chain entanglements and its impact on modulating
semiconductor crystallization can be compared. PEO was
mixed with TIPS pentacene at a 1 : 1 weight ratio before the
mixture was deposited to form the active layer via drop casting.

Fig. 8(a–d) show the morphology of the TIPS pentacene/PEO
(molecular weight of 8 K) crystals based on different sections
of the same substrate. The charge transport direction in the
organic crystals is highlighted by red arrows. The dark regions
observed in Fig. 8 are the formation of PEO crystals, as a result
of its own nucleation and crystallization process. The crystal
dimensions of PEO crystals are typically under 20 microns,
which is consistent with the observation in Fig. 8. In compar-
ison, TIPS pentacene crystals exhibit clear longitudinal dimen-
sion extending to a few hundred of microns and also crystal
orientation-induced color variations in the crystalline domains
under a polarized light microscope. It can be referred that the
TIPS pentacene crystals were aligned by the addition of the PEO
polymer with a lower molecular weight of 8 K. The effects on
modulating the TIPS pentacene crystallization can be attri-
buted to the partially amorphous nature of PEO, which tunes
the semiconductor diffusivity and surface energy of faceted
evolution.

In contrast, blending TIPS pentacene with a PEO polymer
with a higher molecular weight of 100 K resulted in a distinc-
tively different thin film morphology as shown in the optical
images in Fig. 9(a–d). A PEO polymer with a 100 K molecular
weight did not benefit TIPS pentacene from reducing random
crystal orientations, as indicated by the misoriented red arrows
in various directions. Additionally, the film was composed of a
top TIPS pentacene/PEO crystal layer as well as a bottom base
layer, suggesting strong vertical phase segregation. The blend-
ing of PEO with a higher molecular weight likely enhances the
interaction between the polymer hydroxyl groups and the
silicon dioxide layer on the substrate, further attributing to
the phase segregation as observed in the optical images in
Fig. 9. Although no obvious crystal alignment was observed, the
PEO additive with a molecular weight of 100K showed a more
pronounced effect on promoting film formation and increasing

Fig. 7 Polarized optical microscopic images of the crystallization of
C8-BTBT rods on PMMA with various molecular weights including
(a) 15 K, (b) 120 K, (c) 350 K, and (d) 996 K. Reproduced from ref. 208,
with permission from Wiley.

Fig. 8 (a–d) Four polarized microscope images of TIPS pentacene crys-
tals with the PEO polymer additive (molecular weight of 8 K). The charge
transport direction in the TIPS pentacene/PEO crystals is highlighted by
the red arrows. The substrate uncovered by TIPS pentacene/PEO crystals
is marked by the yellow triangles. The scale bar shown in (a) applies to all
images. Reproduced from ref. 210, with permission from Springer Nature.
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coverage. TIPS pentacene/PEO mixture film was further used as
the active layer for fabricating bottom-gate, top-contact thin
film transistors. The addition of PEO with a lower molecular
weight of 8 K resulted in a mobility of 0.017 cm2 V�1 s�1, which
is 5-fold larger as compared to that based on PEO with a
molecular weight of 100 K.

The different studies reviewed in this section are summarized
in Table 1, which lists the authors, polymer (with its molecular
weight), semiconductor, result and mobility.

4. Conclusions and outlook

In this article, we have reviewed the influence of polymer
additives with different molecular weights on the crystal-
lization, vertical phase separation, compositional structure,
thin film morphology and charge carrier mobility of solution-
processed organic semiconductors. We first discussed the
general benefits of mixing organic semiconductors with amor-
phous polymers, conjugated polymers, and semicrystalline
polymers, respectively. Then, we reviewed several extensively
studied amorphous polymers PS, PaMS and PMMA, as well as
semicrystalline polymer PEO, in the context of small-molecular
organic semiconductors such as TIPS pentacene, C8-BTBT and
diF-TES-ADT. In particular, PS with different molecular weights
impacted solution viscosity, processability, solute intermixing,
phase segregation, crystal morphology and active layer compo-
sitions. PaMS with different molecular weights influenced
Gibbs free energy upon intermixing, phase segregation, semi-
conductor layer thickness and charge transport. PMMA with
different molecular weights led to different film interconnec-
tion, grain boundary, crystal dimension and charge transport.
PEO with different molecular weights affected crystal alignment,
film coverage, and charge carrier mobility. Using these represen-
tative organic semiconductor and polymer additive examples, we
demonstrate in this work an easy and useful pathway to manip-
ulate the charge transport of solution-processable organic semi-
conductors more effectively by tuning the molecular weight of the
polymer additive component.

While current research is underway in many aspects of
organic electronics, we believe future endeavors that focus on

Fig. 9 (a-d) Four polarized optical microscope images of TIPS pentacene
crystals with the PEO polymer additive (molecular weight of 100 K). The
charge transport direction in the TIPS pentacene/PEO crystals is high-
lighted by the red arrows. The uncovered substrate is marked by the yellow
triangle. The scale bar shown in (a) applies to all images. Reproduced from
ref. 210, with permission from Springer Nature.

Table 1 Summary of the reviewed studies, including the authors, polymer (with its molecular weight), semiconductor, result and mobility

Authors Polymer Semiconductor Result Mobility

Leonardia et al. PS (3 K, 100 K) PDPP-TT(1)-SVS(9) PS resulted in vertical phase segregation and
formed a top encapsulation layer; thickness of the
top layer depended on PS molecular weight

0.22 cm2 V�1 s�1

Niazi et al. PS (2.2 K, 900 K) diF-TES-ADT PS molecular weight impacted film morphology,
phase segregation and compositions

6.7 cm2 V�1 s�1

Haase et al. PS (2 K, 20 K, 200 K, 2000 K) C8-BTBT Increase in molecular weight of PS resulted in
spherulitic to ribbon-like morphology

14.4 cm2 V�1 s�1

Singsumphan
et al.

PS (13 K, 35 K, 280 K) TIPS-anthracene PS of different molecular weights induced different
thin film morphologies due to difference in
viscosity and processability

Not reported

Rocha et al. PS (2 K, 20 K, 200 K, 2000 K) TIPS pentacene Different PS molecular weights impacted inter-
mixing, phase segregation, morphology and charge
transport

12.3 cm2 V�1 s�1

Han et al. PS (1.3 K, 250 K, 280 K
and 290 K)

P3HT PS with a high molecular weight resulted in a more
continuous P3HT microstructure, enhancing gas
sensor response

0.03 cm2 V�1 s�1

Ohe et al. PaMS (2 K, 20 K, 60 K,
100 K, 800 K)

TIPS pentacene PaMS with a high molecular weight resulted in a
positive Gibbs free energy upon mixing and vertical
phase segregation

0.1 cm2 V�1 s�1

Kang et al. PaMS (1.3 K and 575 K) TIPS pentacene PaMS with a high molecular weight enhanced
vertical phase segregation and induced a thicker
TIPS pentacene at the charge transport interface

0.54 cm2 V�1 s�1

Kim et al. PMMA (15 K, 120 K,
350 K, and 996 K)

C8-BTBT Crystal dimensions of C8-BTBT increased with
molecular weight of PMMA; thermal cycling tunes
resistivity and thereby charge transport of C8-BTBT

15.6 cm2 V�1 s�1

He et al. PEO (8 K, 100 K) TIPS pentacene PEO with 8 K molecular weight improved crystal
alignment, whereas PEO with 100 K increased film
coverage

0.017 cm2 V�1 s�1
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these following topics will likely yield exciting discoveries. First,
chemical engineering of the polymeric structures is a useful
way to tune the molecular weight but at the same time add new
properties to the polymers. For instance, side chain engineer-
ing can bestow solubility in organic solvents,211,212 regulate
molecular packing,213,214 and modulate intermolecular
interactions.215,216 Second, polymers with both a similar mole-
cular weight and a similar molecular structure, but with
different side chain lengths, present another way to tune
molecular stacking,217,218 thin film morphology,219,220 and
charge transport.221,222 Third, polymers can be deposited as
an additional dielectric layer which helps tune the dielectric
properties,223,224 eliminate substrate hydroxyl groups,225

reduce surface roughness,226 enable low-voltage operation,227

enhance film topography,228 control polarizability,229 and
improve charge carrier mobility.230,231 Fourth, while current
polymer mixing studies are predominately carried out on p-type
organic semiconductors, the n-type counterparts are equally
important to realize the fabrication of electronic devices such
as complementary inverts and logic circuits.232,233 Mixing these
polymer additives with n-type organic semiconductors can
provide a more effective approach to control semiconductor
crystallization, improve electron charge transport, and modulate
surface passivation.234,235 Future research in these aforemen-
tioned areas may shed light on further improving the overall
electronic device performance.
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