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Molecular dynamics (MD) simulations have emerged to be a vital tool for the analysis of nanoscale
materials like graphene. However, the reliability of the results derived from MD simulations depends on
the adopted inter-atomic potential (IP), which is mathematically fitted to the data obtained from first
principles approaches or experiments. There exists a significant scope of uncertainty associated with the
IP parameters. Such internal uncertainties, together with the effect of stochastic external parameters like
temperature and strain rate can trigger an augmented random deviation in the output mechanical
responses. With the aim of developing an inclusive analysis and design paradigm, we have systematically
quantified the effect of the uncertainties associated with the internal parameters (Tersoff IP parameters)
and external parameters (temperature and strain rate) individually, and their compound effect on the
mechanical properties of graphene. In establishing the complete probabilistic descriptions of the
response quantities corresponding to different levels of source uncertainties, we show that a coupled
machine learning-based Monte Carlo simulation approach could lead to significant computational
efficiency without compromising the accuracy of the results. The study reveals that, in general, the
internal parameters are more sensitive than the external parameters. Among the inter-atomic
parameters, A, and Z, are found to be the most sensitive, while the temperature is found to be more

Received 24th September 2021, sensitive than the strain rate among the external parameters. The cohesive energy is noted to be

Accepted 25th November 2021 dependent only on the inter-atomic potential parameters, while the fracture strength depends on both
the internal and external input parameters. The numerically quantifiable outcomes of this study will
improve and bring new perspectives in the inclusive analysis and design of various graphene-based

devices and systems, including the effect of inherent uncertainties and their relative sensitivity.
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modulus of 1 TPa. Over the past decade, besides experimental
analyses, researchers have investigated various physical and

1. Introduction

The successful extraction of the 2D carbon allotrope graphene
from graphite has attracted researchers to this exceptional
material with unprecedented multi-physical properties for
exploring its wide range of applicability. In the past few years,
the 2D graphene monolayer has been used to develop resonators,’
sensing devices,” composites’® and other nano-electrochemical
systems®®. Following the discovery of graphene, the very first
efforts in physical experimentation were conducted by Lee et al.'
to report its mechanical properties. Graphene has been found
to be the lightest and strongest material known, with an
astonishing fracture strength of 130 + 10 GPa and a Young’s
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chemical aspects of graphene using computational methods for
developing a deeper understanding.

A vast amount of research has been conducted so far,
reporting the nanoscale simulation of graphene using the
molecular dynamics (MD) simulation method."*™"” MD simula-
tions are considered as a computational experimentation pro-
cedure that is used to understand the behavior of nano-
materials in the desired physical conditions. The Tersoff
potential, developed by Tersoff,'® has been extensively utilized
to perform MD simulations on graphene. The results of MD
simulations depend significantly on the inter-atomic potential
(IP) used for the specific analysis (such as Tersoff, REBO, etc.).
These IP values are calibrated with the experimental data or the
data received from ab initio methods to mimic certain proper-
ties of the system under consideration. When simulations are
conducted for observations beyond the calibrated envelope of

© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Machine-learning-assisted uncertainty quantification of graphene. (A) Sobol sequence-based optimal sample generation concerning the internal,
external and compound sources of uncertainty. (B) Molecular dynamics simulation to obtain the response quantities of interest corresponding to the
optimal sample points. (C) Machine-learning-based computational mapping between the input (internal, external and compound sources) and output
parameters (fracture strength and cohesive energy). The machine-learning model is used for carrying out an efficient Monte Carlo simulation involving
thousands of realizations of the random combinations of different input parameters. (D—F) Typical representation of the probabilistic characterization of
the output quantities of interest that correspond to various sources of uncertainty (detailed results are presented later in this paper).

these IP values, the validity of the predicted results is question-
able. The huge variation in the MD-based prediction of fracture
properties of graphene, such as the fracture strength, can be
noted in the available literature'”*°~*?, In general, the literature
suggest that the Tersoff force field is one of the most commonly
used empirical interatomic potentials to capture the interac-
tions between C-C atoms in MD simulations. However, it has
been reported by Lindsay and Broido®* that the original para-
meters of the Tersoff IP have scope for optimizing certain
parameters to exactly produce the phonon dispersion of gra-
phene. Furthermore, Mortazavi et al."” reported that the exact
experimental results of the fracture strength of graphene can
be produced by modifying the cutoff distance from 1.95 to
2.0 &ngstrém. Rajasekaran et al.>' reproduced the exact experi-
mental results of the fracture characteristics of graphene by
utilizing changes suggested by Lindsay and Broido**> and
Mortazavi et al'’ This indicates that the values of the

© 2022 The Author(s). Published by the Royal Society of Chemistry

Table 1 Internal (Tersoff IP) and external parameters (temperature and
strain rate) of MD simulations considered as sources of uncertainty

Type of uncertainty source Parameter Deterministic value
Internal parameters (Tersoff) 7y 1.0

A (eV) 1393.6

B (eV) 346.74

Iy (ATY 3.4879

do ATY) 2.2119

n 0.72751

C 38049

B(x1077) 1.5724

D 4.3484

H —0.57058

R (A) 1.8

D (A) 0.15
External parameters Temperature (K) 300

Strain rate (ps) 0.001
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parameter sets of the Tersoff force field are not constant and
their random perturbation can significantly influence the MD
simulation results. Thus, it is imperative to quantify the effect
of such internal uncertainty on the mechanical quantities of
interest. In the past, it has been established by many research-
ers that the prime source of uncertainty lies with the inter-
atomic potential used in MD simulation methods.*>**

View Article Online

Paper
Similarly, Zhou et al.>® reported in their study that the results
of MD simulations contain error as compared with experi-
mental observations due to the uncertainties in inter-atomic
potentials, small time and length scales, and the statistical
uncertainties of the MD simulation itself.
In recent years, a few groups have started investigating
the aspects of uncertainty associated with MD simulations.
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of graphene.
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Table 2 Cases of stochastic perturbation in the considered external
parameters

Case Temperature [T (K)] Strain rate [SR (ps)]
Case-1 300 £ 50 0.001 £ 0.0001
Case-2 300 £+ 100 0.001 £ 0.00025
Case-3 300 £ 150 0.001 £ 0.0005
Case-4 300 +£ 200 0.001 £ 0.00075

Table 3 Comparison of deterministic mechanical properties of pristine
graphene obtained in the present study with the reported literature

Fracture Cohesive
strength  energy
Reference (GPa) (eV per atom)
Lee et al. (AFM)"° 130 £10 —
Mortazavi et al. (MD, modified Tersoff)"” 132 —
Rajasekaran et al. (MD, optimized Tersoff)*' 124 —
Gupta et al. (MD, Original Tersoff)"’ 195.9 —
Shin et al. (Quasi Monte Carlo)*? — —7.906
Dhaliwal et al. (MD, AIREBO)*” — —7.427
Present study (MD, Tersoff) 195.9 —7.2452

For instance, Wang et al.>® conducted a study to quantify the

uncertainty of thermal conductivity using the equilibrium
molecular dynamics of three different material systems. To
capture the parametric uncertainties of the Lennard-Jones (LJ)
inter-atomic potential, Angelikopoulos et al.>” implemented the
Bayesian probabilistic framework in the parameters of the L]
potential and proposed an adaptive surrogate model to demon-
strate less computationally expensive MD simulations of liquid
and gaseous argon. Zimon et al.>® adopted a polynomial chaos
expansion to depict the influence of variation in the L] potential
parameters on the molecular simulations of the shear viscosity
of water. Similarly, Messerly et al.?° quantified and propagated
the uncertainties associated with the L] potential parameters
for the prediction of critical constants of n-alkanes. Mukho-
padhyay et al®°® studied the effect of internal system-
uncertainty on the elastic properties of 2D materials and their
heterostructures. Dhaliwal et al.** conducted the uncertainty and
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sensitivity analysis of MD predictions based on the embedded
atom method (EAM) potential and predicted the robust posterior
probability distribution of the EAM parameters. It was revealed
that the MD predictions of FCC aluminum are sensitive to a
1% perturbation in the EAM parameters. In another study,
Dhaliwal et al.>> implemented the uncertainty principles in the
AIREBO potential parameters to determine the sensitivity of the
corresponding predicted properties of graphene.

Besides the uncertainties associated with IP parameters,
there are several other external factors that can affect the
predicted MD response of graphene. A few groups have probed
the effect of the variation in external factors such as tempera-
ture, strain rate, structural irregularity, inclusion, etc., on the
mechanical and structural properties of graphene. Anastasi
et al.®® investigated the effect of graphene sheet orientation,
size of the sheet, temperature and the concentration of nano-
pores on the mechanical properties of graphene. Zhang and
Gu*” conducted a set of molecular simulations for graphene to
determine its mechanical properties, with varying the number
of layers, temperature and isotope concentrations. Dewapriya
et al.*® characterized the temperature-dependent fracture beha-
viour of graphene with nanocracks and compared the strength
of graphene predicted via MD simulation with Griffith’s criteria
and quantized fracture mechanics (QFM). In another study,
Dewapriya and Rajapakse® claimed that the strength of graphene
greatly depends on the vacancy concentration, temperature
and strain rate. Gupta et al.*® reported the effect of different
concentrations of inherent structural defects and dopants on
the mechanical properties of monolayer graphene. It has been
observed that variation in the strain rate has very little influence on
graphene’s mechanical behavior,***"*> while a combination of
the strain rate and temperature significantly influences the frac-
ture and elastic behaviour of graphene.*” However, most of these
studies were not conducted following a comprehensive prob-
abilistic framework, primarily due to the high computational
demand of such analyses. Trinh and Mukhopadhyay® have
recently proposed a semi-analytical atomic-level uncertainty quan-
tification approach for the elastic properties of 2D materials.
Mukhopadhyay et al.*' and Mahata et al.** presented one of the
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Fig. 3 Variation in output quantities of responses subjected to the different perturbation percentages in the Tersoff IP parameters: (A) fracture strength

of graphene and (B) cohesive energy of graphene.
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early works on the exploitation of machine learning for MD
simulation-based studies on the temperature, strain rate and
nano-structural parameters like the twin-boundaries of nanoscale
systems. In this context, it may be noted that a significant number
of investigations have been reported in the past couple of years on
machine learning-based analyses of nanoscale systems,**™*” a very
limited proportion of which deals with the inevitable effect of
system-uncertainties.

From the above discussions along with a concise review
of the literature, it has become evident that quantification of
the effect of uncertainty considering the compound effect of
internal parameters (such as IP values) and external parameters
(such as temperature and strain rate) of graphene is crucial for
accurate mechanical characterization. The fracture strength of
graphene or its derivatives is mostly assessed using the Tersoff
force field in the MD environment. The literature review
suggests that the utilization of the original Tersoff force field
to simulate the uniaxial tensile deformation of graphene leads
to an overestimation of the fracture strength and induces
unphysical strain hardening in the graphene structure. Hence,
this leads to a strong rationale for performing the uncertainty
analysis for the fracture strength of graphene that is subjected
to uncertainty in the internal and external variables of MD
simulations. A careful study of the concerned literature has
further revealed that most of the investigations address
either the individual effect of internal or external parameters
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following a deterministic framework. The compound effect of
internal and external parameters along with system uncertainty
could have a pronounced influence on the mechanical behavior
of graphene, which is well beyond the scope of a traditional
deterministic investigation. In the present study, we aim to
systematically explore the effect of uncertainty in the internal
parameters, the external parameters, and their compound
influences to quantify the probabilistic mechanical responses
of graphene (refer to Fig. 1). The tensile strength and cohesive
energy of monolayer graphene are taken as the output quan-
tities of interest (QOIs) in the present analysis. The tensile
strength is an important mechanical property of graphene,
which determines the nano-structural applicability of this 2D
material in various multi-physical systems.**>° The cohesive
energy is a structural property of any solid-state material that
determines the energy required to break all the bonds asso-
ciated with the nano-material. As it is known that a range of
critical material properties depend on the nano-structure of a
substance, the cohesive energy of the substance helps us to
understand the fundamental physics of the material.>** Apart
from the fracture strength, we also analyze the variation of
the cohesive energy of graphene in light of the stochastic
parametric variation in the Tersoff force field parameter.
As cohesive energy is a fundamental structural property of
any material system, which is influenced by the IP parameters,
and most importantly the cohesive energy is linked with the
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Fig. 4 Scatter plots between the MD response and PCK metamodel with different training sample sizes (N) for the fracture strength of graphene: (A)
0.5% variation in Tersoff IP parameters, (B) 1% variation in Tersoff IP parameters, (C) 1.5% variation in Tersoff IP parameters, and (D) 2% variation in Tersoff
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failure of a material system (the breaking of bonds leads to
fracture of the material), we aim to investigate both the fracture
strength and the cohesive energy of graphene.

It is important to note in this context that a comprehensive
Monte Carlo simulation-based probabilistic analysis is compu-
tationally exorbitant due to the involvement of thousands of
MD simulations. To mitigate this problem, we exploit the
emerging capabilities of machine learning, wherein the expen-
sive MD simulations can effectively be replaced by an efficient
mathematical model. In the subsequent sections, we present a
concise overview of the computational methods that involve
molecular dynamics simulations, machine learning algo-
rithms, and uncertainty quantification, followed by a numerical
exploration of the effects of uncertainty on the internal and
external parameters of graphene along with further discussions
and concluding remarks.

2. Methodology

2.1 Molecular dynamics simulations

A set of molecular dynamics simulations for the uniaxial
deformation of monolayer graphene are carried out to determine
the mechanical and structural characteristics of graphene. In the
current analysis, we concentrate on the ultimate tensile strength
and cohesive energy, as discussed in the preceding section. Here,
we have elaborated the methodology for the MD simulation of
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pristine graphene, followed by the machine-learning-assisted
uncertainty quantification in the following subsections.

For any MD simulation, implementing the proper IP plays a
vital role in the prediction of mechanical responses. In the
present study, MD simulations have been carried out based on
the Tersoff IP. The Tersoff is a three-body potential, which
refers to the potential energy between the individual atoms.
The energy E between the atoms is described as

1
EZEZZ Vij 1)

i j#i
where

Vi = felrp)lfw(ry) + by falry)]- 2

Here, V;;is the potential energy of the system, while fg and f, are
the repulsive and attractive pair potentials and f¢ refers to the
cut-off function. The formula extends the potential energy of all
the neighboring atoms (j and k) of atom i within the cut-off
radius. The parameter r; refers to the separation of the adjacent
atoms i and j. The parameter b; is an empirical bond-order
coefficient, where fz and f, can be described as

fr=Aeh ()
and
fa=Be ™. (4)
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Fig. 5 Probability density function plots for percentage error of machine-learning models formed using different training sample sizes concerning the fracture
strength of graphene: (A) 0.5% variation in Tersoff IP parameters (for N = 24, RMSE: 1.165), (B) 1% variation in Tersoff IP parameters (for N = 24, RMSE: 1.9932),
(C) 1.5% variation in Tersoff IP parameters (for N = 24, RMSE: 4.2360), and (D) 2% variation in Tersoff IP parameters (for N = 24, RMSE: 2.5228).
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Here, A, B, 4, and A, are the parameters used for two-body
interactions.’® Table 1 presents the deterministic values of the
twelve parameters of the Tersoff IP that are utilized for the
current MD simulations. It can be noted that the random
variation in these twelve parameters is considered as the
internal sources of uncertainty in the current analysis, which
will become clear at a later stage in this article.

The molecular structure of pristine graphene is developed
here by utilizing an open-source platform, visual molecular
dynamics (VMD).>* Pristine graphene, of dimensions 7.2 nm
(nanometers), with 2040 carbon atoms arranged in a hexagonal
lattice, is considered in the present study. The data-files used
for MD simulations, which contain the xyz coordinates of each
atom, were generated using the topotool plugin of VMD. The
MD simulations were conducted using LAMMPS,>® an open-
source code for molecular dynamics simulations. The structure
of modelled graphene was subjected to periodic boundary
conditions (PBCs) in each direction to eliminate the finite size
effect. Prior to running the desired simulation, the structure is
relaxed by minimizing the energy. We utilized a conjugate
gradient method for the energy minimization, followed by a
Nosé-Hoover barostat to maintain the pressure in all direc-
tions. For energy minimization and running the simulations,
an integration time-step of 1 fs (femtoseconds) is used. The
uniaxial tensile deformation of monolayer graphene was con-
ducted at room temperature (~300 K) and with a strain rate of
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0.001 ps~ " (per picosecond). As stated earlier, the temperature
(7) and strain rate (SR) are considered as the external sources of
uncertainty (refer to Table 1), which are expected to vary
randomly within certain bounds in practical scenarios.
The atomistic stresses in the current study are interpreted as
the virial tensor. The formulation to determine the virial stress
in the LAMMPS environment is given by

1 1
0y S (8- m)et -]
o —

The former term in the above equation consists of the virial
tensor component, while the latter term consists of the kinetic
energy tensor component. The superscripts o and f define the
nomenclature assigned to two individual atoms in the neigh-
borhood, while i and j provide the directional indices, m* and v{
refer to the mass and velocity of the atom o, respectively. R is
the location of atom f in the i direction. F}?‘ﬁ is the force due to
an atom f on atom « along the j direction. V refers to the total
volume of the material system.’® The stress outputs obtained
from LAMMPS are the product of the pressure in the consi-
dered direction and the volume of the system. To obtain the
directional stress components, it is essential to divide the
LAMMPS derived stress values by the volume of the system.
In the present study, we used the instantaneous volume to
determine the directional stress component, which is given by
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Fig. 6 Scatter plots between the MD response and PCK metamodel with different training sample sizes (N) for the cohesive energy of graphene: (A) 0.5%
variation in Tersoff IP parameters, (B) 1% variation in Tersoff IP parameters, (C) 1.5% variation in Tersoff IP parameters, and (D) 2% variation in Tersoff IP

parameters.
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Vo(1 + ¢), where V, and ¢ stand for the original volume of the
material system and the strain, respectively.”® The stress deli-
verables from the LAMMPS were divided by the instantaneous
volume to determine the averaged stress in the desired
directions. The cohesive energy of pristine graphene, after the
relaxation stage, was determined as

U
Ecoh = N (6)
where E.on, U, and N refer to the cohesive energy, the total
energy of the relaxed system, and the total number of atoms in
the considered system, respectively.

In this context, the importance of the time-step in general
molecular dynamics simulations can be noted. However, the
objective of the present study is to mainly identify the influence
of parametric uncertainty (the internal and external para-
meters) on the fracture properties of graphene. The fracture
properties of any material system are the final outcome of a
continuous deformation of the structure over time. We have
restricted the study to a certain timestep (1 fs) to avoid the
excessive computational expense of the series of molecular
dynamics simulations without affecting the output quantity of
interest. A decrease in the timestep increases the number of
iterations for failure of the graphene layer and makes the
simulation computationally expensive.
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2.2 Machine-learning model based on polynomial chaos
Kriging (PCK)

Machine-learning models can form computationally efficient
surrogates of expensive simulation models (such as MD simu-
lations) for carrying out intensive iterative analyses like optimi-
zation, sensitivity analysis and uncertainty quantification.>”®
Polynomial chaos Kriging (PCK) is a hybrid non-intrusive meta-
model which combines polynomial chaos expansion (PCE) and
Kriging approaches. The PCE approximates the global behavior
of the computational model and Kriging manages the local
variability of the responses, resulting in a better prediction
capability. The mathematical form of PCK is as follows>®

M(x) ~ MPR) = Zaxl//“(x) + 6% Z(x,w). (7)

acAd

Here, Y a,,(x) represents the weighted sum of the ortho-
€A

normal polynomials, ¢* denotes the variance, and Z(x,w) con-
tributes the zero mean. The orthonormal polynomials are given
by {¥,(x),0 € A}. AcN™ is the set of selected multi indices of
multivariate polynomials.

The PCK algorithm initiates with finding the optimal poly-
nomial set of predictors utilizing the PCE framework, which
ensures the polynomial set with the smallest leave-one-out
(LOO) error. The universal Kriging algorithm is used once the
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Fig. 7 Probability density function plots for percentage error of machine-learning models formed using different training sample sizes concerning the
cohesive energy of graphene: (A) 0.5% variation in Tersoff IP parameters (for N = 24, RMSE: 0.0308), (B) 1% variation in Tersoff IP parameters (for N = 24,
RMSE: 0.0583), (C) 1.5% variation in Tersoff IP parameters (for N = 24, RMSE: 0.0713), and (D) 2% variation in Tersoff IP parameters (for N = 24, RMSE:

0.1213).

© 2022 The Author(s). Published by the Royal Society of Chemistry

Mater. Adv., 2022, 3, 1160-1181 | 1167


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d1ma00880c

Open Access Article. Published on 26 November 2021. Downloaded on 11/2/2025 1:28:30 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Materials Advances

sparse PC basis is set. At the end of the algorithm, the error is
estimated using the LOO approach. The estimation of error
based on LOO has the advantage over an empirical error in the
sense that empirical error generally under-predicts the general-
ization error due to overfitting. By contrast, the error estimated
using the LOO approach takes global error into account.®®
We have adopted the PCK-based hybrid machine-learning
algorithm on the basis of the recent results presented in the
literature, revealing the superior performance of hybrid
machine-learning algorithms.®*

2.3 Machine-learning-assisted Monte Carlo simulation

2.3.1 Overview of the adopted algorithm. Monte Carlo
simulation (MCS) is used in the present study to perform a
comprehensive probabilistic analysis for the mechanical
responses of interest, wherein machine learning (ML) is inte-
grated explicitly with the MD simulation framework for achiev-
ing computational efficiency. First, the internal and external
factors that influence the desired mechanical responses of
interest (fracture strength and cohesive energy in the current
analysis) are recognized with the help of a set of pilot MD
simulations. To this end, we integrated the PCK-based
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machine-learning approach with computational analysis for
carrying out Monte Carlo simulations.”®

In the MkL-assisted MCS approach, first the machine-
learning model is formed based on an optimal set of MD
simulation data, drawn from the quasi-random Sobol sequence.
Subsequently, the machine- learning model is used instead
of direct MD simulations for efficient prediction to obtain
thousands of realizations of the Monte Carlo simulation. Before
carrying out the Monte Carlo simulation, for each case (internal,
external, and combined), the PCK model is formed and tested
for accuracy using cross-validation based on evaluating the
percentage error:

YiMD simulation — Vi, PCK

error(%) = x 100. (8)

JYi,MD simulation

The flowchart of PCK-based machine-learning-model formation
and uncertainty analysis is illustrated in Fig. 2.

2.3.2 Quasi-random Sobol sequence sampling. In this sub-
section, we provide further details of the sampling algorithm,
as mentioned in the preceding subsection. The quasi-random
Sobol sequence is a pseudo-random sampling technique that
perturbs the considered stochastic input parameters in the
desired parametric range for obtaining a predefined number

(B
0.4

0.35f

-
w

0.25f

Sensitivity index
=
]

0.15f
0.1f
0.05f
0 1
yedhnp i,BRD A
D)
12
22
2
10 !
—B
8 —A
== Compound 1
<3
2 6 1
&
4
2
0
-7.8 -7.6 -74 -72 -7 -6.8 -6.6
Cohesive energy (eV)

Fig. 8 Sensitivity analysis and probabilistic characterization of the response quantities of interest using PCK-based machine-learning models
considering the sample space within +0.5% variation of the Tersoff IP parameters: (A) sensitivity analysis of the Tersoff IP parameters for the fracture
strength of graphene, (B) sensitivity analysis of the Tersoff IP parameters for the cohesive energy of graphene, (C) PDF plots of the fracture strength for
the individual variation in the most significant parameters of the Tersoff IP and compound variation of all the internal input parameters, and (D) PDF plots
of cohesive energy for the individual variation in the most significant parameters of the Tersoff IP and compound variation of all the internal input
parameters.
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of samples algorithmically. The advantage of using Sobol
sequence sampling is that it captures the distribution of para-
meters with algorithmically generated sample points, leading to
faster convergence compared with other sampling techniques.®®
In the present study, Sobol sequence sampling is utilized to
create the sample space to perform the MD simulation and
construct the hybrid machine-learning model for further uncer-
tainty analysis.

A systematic stochastic investigation is presented here that
considers the individual and compound effects of the internal
and external sources of uncertainty (refer to Fig. 1 and 2).
We started the investigation with a small perturbation of the
IP parameters in the range of 0.5% and then increased the
variation to 1%, 1.5% and 2%. Here, if 0 is considered as the
deterministic value of a stochastic parameter, then we define

Omin = 0(1 — A)

©)
Omax = 0(1 + 4)

where

4 € {0.5%,1%,1.5%,2%}
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0; = Ommin + SP{(Omax — Omin), i € {1,2,3,...N} (10)

Here, 4 is the percentage variation with which the original
parameters are perturbed. The range of the stochastic input
parameters is defined by the difference in 6y, and 0y,in. The
ith realization of the perturbed parameter of the Monte Carlo
simulation is determined based on eqn (10), wherein SP;
represents the Sobol parameter that lies in the random num-
bers drawn from the probabilistic distribution of the stochastic
input parameter. In the next stage, the external parameters
were perturbed within specified ranges of variabilities using
different cases as shown in Table 2. It may be noted that the
external parameters do not have any influence on the cohesive
energy of the material. Thus, only the ultimate tensile strength
is investigated for the cases involving uncertainty in the exter-
nal parameters. Subsequently, the compound effect of the
internal and external parameters is investigated only for the
ultimate tensile strength (since the cohesive energy is not
dependent on the external parameters), wherein a total of
fourteen sources of uncertainties is accounted. Note that dif-
ferent cases arise in the compound uncertainty analysis due to
the consideration of different degrees of stochasticity in the
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Fig. 9 Sensitivity analysis and probabilistic characterization of the response quantities of interest using PCK-based machine-learning models
considering the sample space within +£1% variation of the Tersoff IP parameters: (A) sensitivity analysis of the Tersoff IP parameters for the fracture
strength of graphene, (B) sensitivity analysis of the Tersoff IP parameters for the cohesive energy of graphene, (C) PDF plots of the fracture strength for
the individual variation in the most significant parameters of the Tersoff IP and compound variation of all the internal input parameters, and (D) PDF plots
of cohesive energy for the individual variation in the most significant parameters of the Tersoff IP and compound variation of all the internal input
parameters.
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internal and external parameters, which are systematically
explored in the following section.

3. Results and discussion

In the present study, the MD simulation-based deterministic
analysis of graphene has been extended to the stochastic
regime for carrying out a comprehensive analysis pertaining
to variations in the internal parameters, external parameters
and the compound effects therein. Prior to applying prob-
abilistic methods, the output quantities of interest resulting
from the MD simulation have been validated with the earlier
reported results from the literature. To this end, the uniaxial
deformation of monolayer graphene (7.2 x 7.2 nm?®) has been
conducted with a strain rate of 0.001 ps~' at a temperature of
300 K. The uniaxial deformation of graphene in its armchair
direction is carried out. The fracture strength and cohesive
energy of graphene are determined as a result of this determi-
nistic simulation. Good agreement is found with the reported
values published in the literature (refer to Table 3), essentially
instilling the confidence required for extending the MD simu-
lation framework to the stochastic domain. Also, four different
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models with dimensions of 5.2 x 5.2 nm? 7.2 x 7.2 nm?
9.2 x 9.2 nm?, and 11.2 x 11.2 nm? are modeled to check the
convergence of the responses as a function of the size of the
graphene monolayer. The outcome of the convergence study
revealed that the fracture strength of graphene has a standard
deviation of 4.22 GPa, whereas the cohesive energy has the
standard deviation of 0.0449 eV per atom. The results obtained
by Zhang et al.*® are in good agreement with the negligible
differences in the responses obtained in the convergence study.
In further analyses, a moderately sized graphene monolayer
with dimensions of 7.2 x 7.2 nm? is used to keep the computa-
tional costs within acceptable bounds. In the subsequent
sections involving uncertainty quantification, we will first dis-
cuss the construction and validation of the respective machine-
learning models, followed by Monte Carlo simulation-based
probabilistic uncertainty quantification of the response quan-
tities of interest.

3.1 Uncertainty quantification of the internal parameters

In this section, we embark on establishing machine-learning-
assisted computational mapping between the wuncertain-
ties associated with the internal parameters and the level of
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Fig. 10 Sensitivity analysis and probabilistic characterization of the response quantities of interest using PCK-based machine-learning models
considering the sample space within £1.5% variation of the Tersoff IP parameters: (A) sensitivity analysis of the Tersoff IP parameters for the fracture
strength of graphene, (B) sensitivity analysis of the Tersoff IP parameters for the cohesive energy of graphene, (C) PDF plots of the fracture strength for
the individual variation in the most significant parameters of the Tersoff IP and compound variation of all the internal input parameters, and (D) PDF plots
of cohesive energy for the individual variation in most the significant parameters of the Tersoff IP and compound variation of all the internal input
parameters.
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uncertainty caused by the same in the response quantities of
interest. To form the machine-learning models, Sobol sequence
sampling of the parameters of the Tersoff IP (refer to Table 1) is
carried out with different levels of stochastic variation (0.5%,
1%, 1.5%, and 2%) to create the design space of N = 32 samples
for each case of variation. Throughout this study, the rationale
for selecting the number of samples is to use as few samples as
possible in order to construct a machine-learning model with
an adequate performance (i.e., the prediction accuracy). Subse-
quently, a set of molecular simulations (in total 32 x 4 = 128
simulations) are conducted to obtain the respective fracture
strength and cohesive energy for each sample. At this level,
based on these 32 individual samples corresponding to each
degree of stochastic variation, we obtain the bounds of the two
response quantities. As a primary outcome, it is revealed from
Fig. 3 that the variation in the range of fracture strength and
cohesive energy gradually increases as the variation in the
Tersoff IP parameters is increased.

In order to form the PCK-based machine-learning models,
the MD simulation is treated as the learning source where the
Tersoff IP parameters are considered as the input parameters
and the responses of the MD simulations (fracture strength and
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cohesive energy) are considered as the output quantities. Once
the PCK model is formed, it can be used to efficiently predict
the output quantities of interest that correspond to any random
combination of the input parameters. The available input-
output dataset obtained based on MD simulations is split into
training and testing sets. In general, the leave-one-out (LOO)
approach can be used to test the accuracy of the machine-
learning model under consideration for providing a general
intuition about its performance. However, LOO is not an
optimal method to validate the model as the prediction
error determined using this approach tends to vary a lot in
comparison with other methods. In the present study, we
utilized the leave-p-out (LpO) cross-validation method, where
p training points are left out at each iteration to create test data
and check the performance of the machine-learning model.
This validation approach has the advantage of the most optimal
utilization of the set of MD simulation data. For uncertainty
quantification of the internal parameters, we checked the
accuracy of PCK-based metamodels by utilizing the number N
of sample data (N = 8, 16, 24) as a training data set and leaving
p (=32 — N) samples for the cross-validation. Fig. 4-7 illustrate
the performance and validation of PCK metamodels based on
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Fig. 11 Sensitivity analysis and probabilistic characterization of the response quantities of interest using PCK-based machine-learning models
considering the sample space within +2% variation of the Tersoff IP parameters: (A) sensitivity analysis of the Tersoff IP parameters for the fracture
strength of graphene, (B) sensitivity analysis of the Tersoff IP parameters for the cohesive energy of graphene, (C) PDF plots of the fracture strength for
the individual variation in the most significant parameters of the Tersoff IP and compound variation of all the internal input parameters, and (D) PDF plots
of cohesive energy for the individual variation in most the significant parameters of the Tersoff IP and compound variation of all the internal input
parameters.
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Fig. 12 Bounds of stochastic variation in the fracture strength. The range
of fracture strength values under different degrees of stochastic variation
in the external parameters (temperature and strain rate) is plotted. Here,
the degrees of stochastic variation are presented as different cases, as
defined in Table 2. It may be noted in this context that the other response
quantity of interest, the cohesive energy, is independent of the stochastic
external parameters. The red dots in the plot refer to the outliers available
in the deterministic results. It can be noticed here that with the increase in
the range of temperature and strain rate the number of outliers in the
results increases.

the scatter plots and error plots (using the probability density
function (PDF)) for both of the considered response quantities
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of graphene (the fracture strength and cohesive energy),
wherein different cases of variations in the Tersoff IP para-
meters are considered. It is noted from the figures that N = 24
training samples provide a sufficient level of accuracy in pre-
diction for each case of stochastic variation. Moreover, the PDF
(i.e., the probability distribution) for the percentage errors
reveals that the probability of having a lesser error is significantly
more than having a high value of error even within the bounds of
the errors presented. Thus, having the required level of con-
fidence in the prediction capability of the machine-learning
models, we further investigate the probabilistic characteristics
and sensitivity of the internal input parameters based on large-
scale datasets, as presented in the following paragraphs.

To assess the relative importance of individual Tersoff IP
parameters on the response quantities, a data-driven sensitivity
analysis is carried out, where 10000 samples are generated
using MCS sampling with the same range of variation as the
training dataset (£0.5%, £1%, +1.5%, and £2%). The relative
variance of an individual input parameter is used to determine
the sensitivity indices.®” The data-driven sensitivity analysis for all
four cases of variation in Tersoff IP (refer to Fig. 8-11(A and B))
reveals that there are certain set of parameters that have a more
prominent influence on the critical response variables (i.e., the
fracture strength and cohesive energy). For instance, in each case
of variation, the Tersoff IP parameters /,, 4, B and R were found to
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Fig. 13 Scatter plots between the MD response and the PCK metamodel with different training sample sizes (N) for the fracture strength of graphene: (A)
300 4 50 K, 0.001 + 0.0001 ps~* variation in temperature and strain rate, (B) 300 & 100 K, 0.001 - 0.00025 ps ™! variation in temperature and strain rate,
(C) 300 + 150 K, 0.001 = 0.0005 ps~* variation in temperature and strain rate, and (D) 300 + 200 K, 0.001 + 0.00075 ps~* variation in temperature and
strain rate (refer to Table 2 for further details regarding the considered stochastic input bounds for the external parameters).
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have more significance on the fracture strength of graphene.
Similarly, the parameters 44, 4,, B and A have more sensitivity on
the cohesive energy of graphene.

After assessing the relative sensitivity of the Tersoff IP para-
meters, we exploit the machine-learning models to characterize
the individual and compound probabilistic uncertainty effects of
the internal input parameters (refer to Fig. 8-11(C and D)). In the
case of the individual effects, we focus on the most sensitive
Tersoff IP parameters for probabilistic characterization. It is noted
that the response bounds corresponding to different individual
stochastic effects follow the respective sensitivities, while response
bounds corresponding to the compound effect of all the Tersoff IP
parameters are the highest for all the considered cases. In this
context, it may be noted that the probabilistic descriptions are
plotted corresponding to 10 000 realizations of (machine-learning-
assisted-) Monte Carlo simulation in each case, while only 24
actual MD simulations are required to perform this data-intensive
analysis. Thus, we achieve a computational efficiency of more than
400 times in terms of MD simulation.

3.2 Uncertainty quantification of the external parameters

In this subsection, we focus on the effect of uncertainty con-
cerning the external parameters such as the temperature and
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strain rate. Since cohesive energy is an inherent property of the
material, it is not affected by the external parameters. As a
consequence, this subsection is restricted to the investigation
of stochastic fracture strength only. To assess the uncertainty
associated with the external parameters, the parameters are
perturbed with different levels of stochastic variation within the
bounds indicated in Table 2. Similar to the cases of variation in
the internal parameters as explained in Subsection 3.1, four
different datasets (with N = 64 samples in each case) are
constructed via Sobol sequence sampling considering the sto-
chastic variations illustrated in Table 2. The MD simulations
(64 x 4 =256) are performed to determine the output quantities
of interest for each instance of the sample space. A preliminary
analysis concerning the range of variation in the fracture
strength corresponding to different cases of variations in the
external parameters is presented in Fig. 12. It can be noticed
that the variation in the response quantities increases with
the increasing perturbation bound of the external input para-
meters. However, we note that there are more outliers in the
response dataset, indicating a more complex and nonlinear
nature of the input-output relationship.

Machine-learning models are formed similar to the case of
internal parameters, as presented in the preceding section.
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Fig. 14 Probability density function plots for the percentage error of machine-learning models formed using different training sample sizes concerning
the fracture strength of graphene: (A) Case-1: 300 + 50 K and 0.001 4 0.0001 ps~* variation in temperature and strain rate (for N = 48, RMSE: 1.5198),
(B) Case-2: 300 + 100 K and 0.001 + 0.00025 ps~? variation in temperature and strain rate (for N = 48, RMSE: 1.5417), (C) Case-3: 300 + 150 K and
0.001 + 0.0005 ps~* variation in temperature and strain rate (for N = 48, RMSE: 2.215), and (D) Case-4: 300 4 200 K and 0.001 - 0.00075 ps~* variation
in temperature and strain rate (for N = 48, RMSE: 3.3227) (refer to Table 2 for further details of the considered stochastic input bounds for the external
parameters).
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However, for the case of uncertainty in the external parameters,
despite having only two input variables (strain rate and tem-
perature), it is found that more MD simulations are required to
achieve an adequate level of accuracy due to the more complex
and nonlinear nature of the input-output relationship. Results
concerning the prediction accuracy are presented in Fig. 13 and
14 using scatter plots and probability density function plots of
error. Different sample sizes (N = 16, 32, and 48) are utilized to
train the model, and the rest of the samples (p = 64 — N =48, 32,
and 16) are used for cross-validation following the LpO
approach. It is noted from the figures that N = 48 training
samples provide a sufficient level of accuracy in prediction.
Moreover, the probability density function for the percentage
errors reveals that the probability of having a lesser error is
significantly more than having a high value of error even within
the bounds of errors presented. Thus, having the required level
of confidence in the prediction capability of the machine-
learning models, we further investigate the probabilistic char-
acteristics and sensitivity of the external input parameters
based on large-scale datasets, as presented in the following
paragraphs.

To assess the relative importance of individual external
parameters on the fracture strength, a data-driven sensitivity
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analysis is carried out, where 10000 samples are generated
using SOBOL sequence sampling with the same range of
variation as the training dataset as given in Table 2. The relative
variance of an individual input parameter is used to determine
the sensitivity indices. The data-driven sensitivity analysis for
all four cases of variation (refer to Fig. 15) reveals that tem-
perature is more sensitive than strain rate. After assessing the
relative sensitivity of strain rate and temperature, we exploit the
machine-learning models to characterize the individual and
compound probabilistic uncertainty effects of the external
input parameters (refer to Fig. 16). It is noted that the response
bounds corresponding to different individual stochastic effects
follow the respective sensitivities, while response bounds
corresponding to the compound effect are the highest for all
the considered cases. Similar to the case of uncertainty in the
internal parameters, it may be noted that the probabilistic
descriptions are plotted corresponding to 10000 realiza-
tions of (machine-learning-assisted-) Monte Carlo simula-
tion in each case, while only 48 actual MD simulations are
required to perform this data-intensive analysis. Thus, for the
case of external uncertainty quantification, we achieve a com-
putational efficiency of more than 200 times in terms of MD
simulation.

(B)

=
a~

Sensitivity index
)
N

-
S

=
)

=
'S

Sensitivity index

*
9

T SR

Fig. 15 Data-driven sensitivity analysis of external parameters corresponding to the fracture strength of graphene using PCK-based machine-learning
models (refer to Table 2 for cases of variation in the external parameters): (A) Case-1: 300 & 50 K and 0.001 = 0.0001 ps~* variation in temperature and
strain rate, (B) Case-2: 300 + 100 K and 0.001 - 0.00025 ps~* variation in temperature and strain rate, (C) Case-3: 300 + 150 K and 0.001 + 0.0005 ps~*
variation in temperature and strain rate, and (D) Case-4: 300 + 200 K and 0.001 4+ 0.00075 ps~! variation in temperature and strain rate.
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Table 4 Compound cases of stochastic perturbation (Case-A to Case-D) 180 -
considering the internal parameters (IPs) and external parameters (EPs). |
Different individual cases (Case-1 to Case-4) of the EP are depicted in = |
Table 2 & 1601 o
Case Compound effect of stochastic Perturbation a 1

5 140 - 1
Case-A IP@ £0.5% EP@Case-1 &
Case-B IP@ +1% EP@Case-2 @ é
Case-C IP@ +1.5% EP@Case-3 S120f
Case-D IP@ +2% EP@Case-4 3 L

g L 1

= 100} L !

L

3.3 Uncertainty quantification of the compound effect of
internal and external parameters

We have investigated the effect of uncertainty in the internal
and external parameters separately in the two preceding sub-
sections. However, to quantify the effect of uncertainty in a
more realistic and practically relevant framework, it is essential
to account for the effect of uncertainty in the internal and
external parameters simultaneously. Keeping in mind that the
cohesive energy is not influenced by external uncertainty, we
focus on the fracture strength while quantifying the compound
effect of internal and external uncertainty. An analysis space of

© 2022 The Author(s). Published by the Royal Society of Chemistry

Case-A Case-B Case-C Case-D

Fig. 17 Bounds of stochastic variation in the fracture strength under the
influence of compound uncertainty. The range of fracture strength under
different degrees of stochastic variation in the internal and external
parameters (refer to Table 4) is plotted.

the fourteen input parameters (twelve Tersoff IP parameters
and two external parameters) is considered with different
degrees of uncertainty in the internal and external parameters
as shown in Table 4. At this level, based on 64 samples
corresponding to each degree of stochastic variation, we obtain
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the bounds of the fracture strength. As a primary outcome, it is
revealed from Fig. 17 that the variation in the range of fracture
strength gradually increases as the variation in the internal and
external parameters is increased.

Machine-learning models are formed for the fracture
strength, similar to the earlier cases, as presented in Subsec-
tions 3.1 and 3.2. Results concerning the prediction accuracy
are presented in Fig. 18 and 19 using scatter plots and prob-
ability density function plots of error, respectively. Different
sample sizes (N) are utilized to train the model, and the rest of
the samples are used for cross-validation following the LpO
approach. It is noted from the figures that N = 48 training
samples provide a sufficient level of accuracy in prediction for
cases A and B (refer to Table 4). However, 48 samples were not
found sufficient to construct the model with an acceptable
predictive accuracy (% error &~ +£20%) for case C and case D. To
this end, we gradually increased the sample size up to 96
samples until the errors were minimized to acceptable limits
(refer to Fig. 19(C) and (D)). Similar to the earlier cases, the
probability density function for the percentage errors reveals
that the probability of having a lesser error is significantly more
than having a high value of error, even within the bounds of
the errors presented. Thus, having the required level of con-
fidence in the prediction capability of the machine-learning
models, we further investigate the probabilistic characteristics
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and sensitivity of the compound effect of the internal and
external input parameters based on large-scale datasets, as
presented in the following paragraphs.

To assess the relative importance of individual internal and
external parameters on the fracture strength, a data-driven
sensitivity analysis is carried out, where the 10000 samples
are generated using Sobol sequence sampling with the same
range of variation as for the training dataset as given in Table 4.
The relative variance of an individual input parameter is used
to determine the sensitivity indices. The data-driven sensitivity
analysis for all four cases of variation (refer to Fig. 20) reveals
that 4, and 4, are the most sensitive parameters among all the
internal and external input parameters. It can also be noticed
that the compound sensitivity of all the internal parameters is
significantly higher than the compound sensitivity of all the
external parameters. After assessing the relative sensitivity of
the internal and external input parameters, we exploit the
machine-learning models to characterize the individual
(for the most sensitive parameters) and compound probabil-
istic uncertainty effects (refer to Fig. 21). It is noted that the
response bounds corresponding to the different individual
stochastic effects follow the respective sensitivities, while
response bounds corresponding to the compound effect are
the highest for all the considered cases. It may be noted in
this context that the probabilistic descriptions are plotted

(B)
*N=16
140f o N =32 o ° .
Z *N=48 = ;:.
e o
2130 ° o %,
3 .o‘ )/ e
~ ° ° :
= L] P L]
2120 o S
2 ° °°
ol oo
S10p A
L]
100
100 110 120 130 140 150
True Response
(D)
160 -
e N=16 o0 :
150} * N=32 !
Q eN=64 o $e°
g 140 e N=80 ® ° ° °
& fengose. | B
130 e * oer L
o ° °q : 3
Sl et SR
hal CREY A
.- L]
Sk a*"
= L 1Y
[ oQ ®
100f o . o
° Peo
90 —
100 120 140 160

True Response

Fig. 18 Scatter plots between the MD response and the PCK metamodel with different training sample sizes (N) for the fracture strength of graphene:
(A) compound variation of Case- A, (B) compound variation of Case-B, (C) compound variation of Case-C, and (D) compound variation of Case-D
(refer to Table 4 for further details regarding the considered stochastic input bounds for the compound variation cases).
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corresponding to 10000 realizations of (machine-learning-
assisted-) Monte Carlo simulation in each case, while only 48
(or 96) actual MD simulations are required to perform this data-
intensive analysis. Thus, we achieve a computational efficiency
of more than 200 (100 for case C and case D) times here in
terms of the expensive MD simulations.

To summarize the numerical results presented in this sec-
tion, we would like to highlight to the readers that we have
addressed the effects of both internal and external uncertainty.
Moreover, as a machine-learning-based approach is adopted, it is
crucially important to validate the prediction capability of the
machine-learning models for both internal and external uncertain-
ties. Subsequently, results on uncertainty quantification and sen-
sitivity analysis are presented in this article. Thus, we would like to
emphasize the vast scope of this paper that warrants plotting
multiple numerical results (as presented in this section).

1. Three forms of analyses are presented considering inter-
nal uncertainty, external uncertainty and the compound effect
of these uncertainties. Along with these, an in-depth determi-
nistic analysis is presented to portray the fundamental physics
of the problem.

2. For each of the above three cases, two different response
quantities of interest (the fracture strength and cohesive
energy) are investigated.
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3. We have adopted a machine-learning-assisted molecular
dynamics simulation approach in this investigation. Validation
and convergence studies of output parameters of interest are
critically important before exploiting the machine-learning
models for further predictions and analyses. Unless all the
considered cases are validated, enough confidence in the
subsequent uncertainty quantification cannot be obtained.
Interestingly, all these results differ significantly from each
other depending on the number of input parameters and
degree of complexity in the input-output mapping. The plots
shown in Fig. 4-7 are associated with the four different ML
models trained with the four different sample spaces (N = 32
samples for each), which are constructed by perturbing the
Tersoff IP parameters with 0.5%, 1%, 1.5% and 2% variation.
Similarly, Fig. 13 and 14 are associated with the four different ML
models trained with the four different sample spaces (N = 64
samples for each), which are constructed by perturbing the external
parameters (the temperature and strain rate) with the variations
shown in Table 2. Lastly, for the cases of compound variation, four
different ML models are trained with the four different sample
spaces, which are constructed by implementing variations in both
the internal and external parameters as shown in Table 4.

4. After validating the machine-learning-based framework
extensively, we present uncertainty quantification and sensitivity
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Fig. 19 Probability density function plots for the percentage error of machine-learning models formed using different training sample sizes concerning
the fracture strength of graphene: (A) compound variation of Case-A (for N = 48, RMSE: 1.055), (B) compound variation of Case-B (for N = 48, RMSE:
0.00075), (C) compound variation of Case-C (for N = 48, RMSE: 0.6745), and (D) compound variation of Case-D (for N = 48, RMSE: 1.9588) (refer to
Table 4 for further details regarding the considered stochastic input bounds for the compound variation cases).
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Fig. 20 Data-driven sensitivity analysis of internal and external parameters corresponding to the fracture strength of graphene using PCK-based
machine-learning models: (A) Case-A, (B) Case-B, (C) Case-C, and (D) Case-D (refer to Table 4 for detailed information regarding the cases of variation).

analyses for internal uncertainty, external uncertainty and the
compound effect of these uncertainties. In this context, we have
considered different degrees of uncertainty for a comprehensive
understanding. In total, 712 MD simulations are performed in the
present study. The simulations are performed in three batches
(variation in the internal parameters (128 simulations), variation
in the external parameters (256 simulations), and combined
variation (328 simulations)). The wall time of one simulation in
one batch is 24 minutes, and the wall time for individual simula-
tions in the second batch varies from 24 minutes to 55 minutes
(as the strain rate is varying and time of fracture of graphene
varies accordingly), and wall time of individual simulations in the
third batch varies similarly as for the second batch. Note that we
have carried out the Monte Carlo simulations based on tens of
thousands of simulations depending on these MD simulations by
adopting the ML-assisted approach.

Conclusions and perspective

In this article, we have systematically investigated the effect
of uncertainties associated with the internal parameters (the
Tersoff IP parameters) and external parameters (the tempera-
ture and strain rate), both individually and via their compound
effect on the mechanical properties of graphene. The Tersoff
potential is extensively utilized to perform MD simulations
of graphene, where the results significantly depend on the

178 | Mater. Adv., 2022, 3, 1160-1181

inter-atomic potential (IP) used for the specific analysis. These
IP values are calibrated using the experimental data or the data
received from ab initio methods to mimic certain properties of
the system under consideration. When the simulations are
conducted for the observations beyond the calibrated envelope
of these IPs, the validity of the predicted results is questionable.
In general, there is always a degree of uncertainty associated
with the values of inter-atomic potentials, which could signifi-
cantly influence the outcome of the MD simulations. Moreover,
there are several other stochastic external factors, like the
temperature and strain rate, that affect the predicted MD
responses of graphene. Here we have quantified the effect of
such internal and external uncertainties following a Monte
Carlo simulation-based probabilistic study. In establishing
the complete probabilistic descriptions of the response quan-
tities that correspond to the different levels of source uncer-
tainties, we show that a coupled machine-learning-based
approach could lead to a significant level of computational
efficiency (~200 to 400 times). In this context, it may be noted
that the input-output mapping in the case of the external
parameters is more complex compared with that of the internal
parameters.

The study reveals that internal parameters are more sensi-
tive compared with the external parameters in general. Among
the inter-atomic parameters, 4, and /, are found to be the most
sensitive, while temperature is more sensitive than the strain
rate among the external parameters. Among the output system

© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 21 Probability density function (PDF) plots for the fracture strength of graphene with respect to the variation in individual parameters (for the five
most sensitive parameters) and compound variation: (A) Case-A, (B) Case-B, (C) Case-C, and (D) Case-D (refer to Table 4 for descriptions of all the cases).
The influence of the individual stochastic variation in the parameters R, B, and T on the fracture strength of graphene is illustrated in the insets provided in

(A), (C), and (D).

responses, the cohesive energy is noted to be dependent only
on the inter-atomic potential parameters, while the fracture
strength depends on both the internal and external input
parameters. The stochastic bounds that correspond to the
effect of individual uncertainties of the input parameters follow
the respective sensitivities. Stochastic bounds for the com-
pound cases are found to be significantly higher compared
with the individual effects. The results show that the probabilistic
descriptions are significantly more skewed towards the mean
values, leading to a generalized Gaussian nature.

The novelty and scientific contributions of this article lie in
developing a machine-learning-assisted molecular dynamics
approach that leads to deep computational insight into the
mechanical behaviour of graphene using large-scale, yet effi-
cient, simulations that involve the individual and compound
effects of the critical internal and external factors. The results of
this investigation reveal that the mechanical properties of
graphene can significantly deviate under the compound effect
of source-uncertainties. The numerically quantifiable outcomes
of this study will improve and bring new perspectives to the
inclusive mechanical design of various graphene-based devices
and systems. Moreover, the proposed simulation approaches
can be extended further to other 2D materials for efficient,

© 2022 The Author(s). Published by the Royal Society of Chemistry

large-scale, computational characterization including the effect
of inherent uncertainties.
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