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Ensemble latent assimilation with deep learning
surrogate model: application to drop interaction
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A major challenge in the field of microfluidics is to predict and control drop interactions. This work

develops an image-based data-driven model to forecast drop dynamics based on experiments performed

on a microfluidics device. Reduced-order modelling techniques are applied to compress the recorded

images into low-dimensional spaces and alleviate the computational cost. Recurrent neural networks are

then employed to build a surrogate model of drop interactions by learning the dynamics of compressed

variables in the reduced-order space. The surrogate model is integrated with real-time observations using

data assimilation. In this paper we developed an ensemble-based latent assimilation algorithm scheme

which shows an improvement in terms of accuracy with respect to the previous approaches. This work

demonstrates the possibility to create a reliable data-driven model enabling a high fidelity prediction of

drop interactions in microfluidics device. The performance of the developed system is evaluated against

experimental data (i.e., recorded videos), which are excluded from the training of the surrogate model. The

developed scheme is general and can be applied to other dynamical systems.

1 Introduction

Drop microfluidics1–3 is a quickly developing field in science
and engineering with multiple applications including foam
and emulsion stability,4 processes in colloidal systems and
chemical reactions for food5 and biomedical applications,6

enzyme studies,7 cell screening8 and interactions,9 synthesis
of catalysts10 and other micro11,12 and nanoparticles.13,14

Drop coalescence is one of the main operations in drop
microfluidics. It is widely used to bring reagents together and
trigger or quench a reaction or to add additional chemicals/
drugs of interest during the cell screening. In these processes,
coalescence is a desirable event and 100% coalescence is the
aim to be reached. On the other hand, if drops are used as a
template for particle formation using various solidification
protocols, drop coalescence must be avoided because it
results in particle polydispersity. The same is true for foams
and emulsions where drop/drop coalescence results in
coarsening and ultimate phase separation. These examples
show that prediction of drop coalescence in microfluidics and
in broader context foam/emulsion stability is of great

importance. An additional complexity arises from the
presence of reagents inside the drops modifying their
viscosity, interfacial tension, and interfacial dynamics. Some
surface-active additives can be included in the continuous
phase as well. All this together with variability in flow fields
and angles at which drops are approaching each other affect
coalescence probability.

High-fidelity computational fluid mechanics (CFD) models
are frequently used for simulations of micro-scale multi-
phase flows. Such interface capture methods as volume of
fluid,15 front tracking,16 and level set17 are used for obtaining
a sharp interface between phases. However, these methods
can incur high computational cost using refined mesh.18 The
modelling is especially difficult for the prediction of drop
coalescence because of the multiscale character of the
problem. This has to be resolved on macroscopic,
mesoscopic, and molecular levels taking into account the
stochastic character of drop interactions.19 In particular,
simulations have to be resolved on a sub-micron length scale
accounting for disjoining pressure within the thin liquid film
separating drops before coalescence, which is a function of
local surfactant concentration, film elasticity due to
surfactant redistribution, and thermal fluctuation giving rise
to film instability.

In microfluidics, drop coalescence is initiated in different
ways: using active methods, such as applied electrical field20

or using passive methods using device geometry, such as
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coalescence chambers.4,21,22 In the present study, a
symmetrical coalescence chamber with two input and two
output channels shown in Fig. 1 was used. The flow pattern
in this geometry is similar to the compression/extension flow
pattern of classical Taylor four-roll mill flow.23 The geometry
was successfully used recently for experimental study of drop
coalescence in microfluidics.24 In practice, the coalescing
drops have different characteristics (e.g. shape, velocity, and
relative positions) and it is computationally expensive to use
numerical simulation to obtain results for different initial
and boundary conditions of interest. Thus, data-driven
models based on results of thorough experimental studies
with varied flow parameters, drop encounter angles, and
chemistry of dispersed and continuous phases are a very
promising approach for better understanding and prediction
of drop coalescence. Moreover, these models can be further
improved by assimilation of numerical data from high-
fidelity simulations.

In this work, we aim to predict the dynamics of the
microfluidics drop interactions via a data-driven model built
from video recordings, combining (ROM) and (DA)
approaches. The prediction made by the data-driven model is
updated by observed images, which is drawn from the
original video with a constant time interval to increase the
accuracy of the model output. The process of determining
the optimal integration is often referred as DA.25 The
assimilation in this study is performed on the latent space
(i.e., low-dimensional space), and the approach is named as
(LA). In addition, an ensemble-based LA algorithm is
proposed in this work to quantify the covariance of prior
(prediction) error and determine the optimal assimilation
frequency. In this manuscript we show the possibility to
create a reliable data-driven model enabling a high fidelity
prediction of drop coalescence with the help of some real-
time observations. The proposed algorithm scheme consists
of two main parts: offline training and online evaluation. The
offline part includes the training of ROM and (RNN) while
the online part includes the evaluation of surrogate model
and real-time DA. The offline part will be of great importance
for optimization of microfluidic devices for study of multiple

chemical and biochemical reactions, drug, nutrients, flavors
and cell encapsulation, and cell screening, including
processes where fast precipitation or cross-linking can result
in device fouling. In this paper, online DA is used mainly to
compensate for the accuracy (which is mainly caused by
insufficient training data) of the RNN to further improve the
forecasting accuracy.

The rest of the paper is organised as follows, section 2
introduces the related work of machine learning surrogate
models for high dimensional dynamical systems. In
section 3, the experimental procedures and the
backgrounds on the video recorded are covered. The
formulation of the data-driven surrogate model and the
ensemble-based latent assimilation is presented in section
4. The results of the surrogate model are demonstrated
and discussed in section 5. We finish the paper with the
conclusion in section 6.

2 Related work and our contributions

Predicting high-dimensional systems in the full physical
space can be computationally expensive, if not infeasible.26

To reduce the computational burden, reduced surrogate
modelling has been applied on a wide range of dynamical
problems, including (CFD),27,28 air pollution modelling29,30

and wildfire prediction.31 It has shown promising results by
achieving comparable performance with the high-fidelity
models. In the field of ROM, (POD)32 is a well developed
concept. It aims to project the full data space to a set of
principal directions defined via the empirical covariance
matrix. Recent works on fluid mechanics-related problems
have been focusing on techniques such as balanced
truncation33 and dynamic mode decomposition34,35 to
improve the performance of POD approaches. Much effort
has also been devoted to determining the optimal truncation
parameter of POD-type approaches.36–38 However, the
performance of the POD approach can be undermined when
building modes from experimental data with incomplete
knowledge of the governing equations.39 Extensive research
has been done recently to apply (DL) methods in ROM for

Fig. 1 Scheme of the microfluidics device (right): 1 – inlets for dispersed phase, 2 – inlets for continuous phase, 3 – outlet, 4 – X-junctions for drop
formation, 5 – coalescence chamber; event of drop coalescence in the coalescence chamber: the processed image and the original image (left).

Lab on a ChipPaper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

5 
Ju

ly
 2

02
2.

 D
ow

nl
oa

de
d 

on
 1

/2
4/

20
26

 8
:1

3:
22

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d2lc00303a


Lab Chip, 2022, 22, 3187–3202 | 3189This journal is © The Royal Society of Chemistry 2022

video anomaly detection, object detection and action
recognition.40,41 In these works, the ROM is carried out
through DL-based, unsupervised (AE). (CA), a variant of AE
with convolutional layers, is extensively employed for
compressing image data. Compared to POD, the strength of
(ML)-based AEs when dealing with chaotic dynamics has
been numerically demonstrated in many engineering
problems.42,43 More precisely, CAE have shown its strength in
model reduction of laminar flows44 and recently a CAE
encoded data-driven model is developed for estimating
indoor airflow and ventilation from the numerical simulation
results, using DA technique to perform corrections with
sensor data.30

Much research effort29,30,45,46 has been given to learn the
underlying dynamics in the reduced-order space (also known
as the latent space). Among them, the RNNs47 take a
sequence of inputs and are generally used to handle time-
series prediction. Instead of treating each neuron in parallel
as in a traditional (NN) structure. Connections between
nodes along temporal sequences can be found in a RNN.
When learning long-term dependencies, standard RNN will
suffer from problems related to gradients vanishing or
exploding48 and it was found that a gated structure can
overcome these issues.49 A popular variation, (LSTM),50

contains gated paths that allow the gradients to
backpropagate through LSTM units and to avoid gradients
vanishing or exploding. There have also been recent reports
on applying LSTM-based models to evolve the encoded latent
space elements.51,52

Once the prediction using surrogate ML models has been
performed, latent data assimilation (also known as latent
assimilation (LA))30,53 is employed to adjust the model output
on the latent space via real-time observations. DA is widely
employed for analyzing model predictions, (also known as
background states or a priori estimates) and observations to
determine the most probable state (a posteriori estimate). The
applications of DA in dynamical systems include field
reconstruction and parameters estimation.25 The accuracy of
the assimilated results is affected by the modelling of
background and observation error covariance matrices.54,55

In theory, the two covariance matrices can be computed by
comparing the background state (i.e., model prediction) and
the observation to the true state. However, in real DA
applications the true state is out of reach, and thus the
covariance matrices can only be approximated.56,57 Time-
dependent error covariance specification is difficult when
applying DA to dynamical systems55 and it impacts crucially
the accuracy of DA algorithms.58

Past research on geophysical models has shown that DA
frequency has a significant impact on the accuracy of the
model59,60 and increasing the DA frequency will not always
be beneficial to the prediction accuracy. Too frequent DA
increases the computational cost, and it can introduce
insertion noise to the model since each DA performed
updates the latent variables. Ensemble methods can provide
the output distribution and the single-mean prediction. The

necessity for correction can be determined by monitoring the
Gaussianity of trajectories in the ensemble. Gaussian noises
are introduced separately at the start of each trajectory, and
an undisturbed trajectory runs in parallel with the ensemble.
When the Gaussianity falls below a threshold value, the alert
for correction will be raised. The undisturbed trajectory will
be corrected with the next observation, and the ensemble will
be re-initialized.

In this study, we make use of the National
Meteorological Center (NMC)61 method and the ensemble
DA approach62 to perform real-time estimation of
background covariance inside the latent space where LSTM
predictions are performed. The NMC approach, which can
also be considered as a variant of ensemble-based DA, was
first introduced in meteorological science for efficient
background covariance estimation.61 Ensemble-based DA
methods such as the ensemble Kalman filter62 or ensemble
variational approaches,63 have been widely applied in
engineering problems to deal with non-linear dynamical
systems. The performances of NMC and ensemble methods
are compared with the DA scheme using identity covariance
matrices, where the background state and observation
contribute equally to the final result. Furthermore, an
ensemble-based correction determination algorithm is
proposed in this study to investigate the optimum
frequency of performing LA.

In general, error covariance specification and correction
frequency determination are cumbersome in the reduced
space due to the high non-linearity of machine learning
functions and the uncertainties generated by the ROM. To
overcome these limitations, in the present paper we proposed
to integrate ensemble-type methods in the latent assimilation
scheme. Numerical results demonstrated that the prediction
accuracy can be significantly improved by the proposed
approach regarding standard latent assimilation. The
adopted method can be applied to various dynamical
systems, and we demonstrate its application to drop
coalescence in a microfluidics device. In summary, we make
the following contributions in this study:

• A (CNN)-LSTM based surrogate model is built with LA
for predicting dynamics of a drop pair in a chamber based
on microscopic image sequences.

• We propose a novel algorithm that combines the ROM,
RNN surrogate models, and ensemble-type assimilation
approaches to improve the monitoring of the microfluidic
drops in the latent space with real-time observation data. The
ensemble methods contribute to both the error covariance
specification and the DA frequency determination.

• We compare different ROM approaches, namely POD
and CAE in terms of reconstruction accuracy, model
prediction performance, and computational time with
numerical experiments. The new approach proposed in this
work is data-agnostic and can be easily applied to other
dynamical systems. The repository of the python code scripts
can be found at https://github.com/DL-WG/drop-coalescence-
surrogate-model-and-LA.
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3 Experiments

The microfluidics device (Fig. 1) used in this study was made
of polydimethylsiloxane, PDMS, (SYLGARD 184, Dow
Corning) using standard soft lithography technique64 on SU-8
mould. The device was sealed by a glass slide with a spin-
coated PDMS layer, using corona discharge treatment and
hydrophobized by Aquapel. All channels have a width of 370
μm and a height of 190 μm. The drop diameter in the field of
observation was always larger than the channel height, i.e.
the drops have a 3D shape of pancakes. The size of the
coalescence chamber (distance between the opposite walls)
was 862 μm.

The dispersed phase used in this study was an
aqueous solution of dodecyl trimethylammonium bromide,
C12TAB, (99%, Acros Organics) at concentration 10 mM
and continuous phase was silicone oil of viscosity 96
mPa·s (Aldrich). The interfacial tension between
continuous and dispersed phases was around 20 mN m−1.
The dispersed and continuous phases were supplied by
the inlets 1 and 2 (Fig. 1) at flow rates 0.6–1.4 μL min−1

and 3–7 μL min−1 respectively using syringe pumps Al-
4000 (World Precision Instruments, dispensing accuracy ±
1%). The ratio of flow rates of the dispersed and
continuous phase (per channel) was always kept to 1 : 5.
Drops of dispersed phase were formed in two symmetrical
flow-focusing cross-junctions 4 and were then transferred
by continuous phase to chamber 5 where they meet and
then either coalesce or not, and exit the chamber through
the symmetrical output channel 3. The parameters
affecting coalescence are the total flow rate, the viscosities
of the continuous and dispersed phase, the interfacial
tension, the presence of surfactant in the continuous or
dispersed phase and surfactant properties. The drop size
depends on all other parameters and time-lag between the
drops arrival to the chamber. In this study, only flow
rates and drop lag time were varied whereas all other
parameters were kept constant. Drop size was varied
slightly (within 5%) due to changes in the flow rate.

The behavior of the drops from the moment the first
of the pair entered the coalescence chamber till the
drops were coalesced or separated was recorded using a
high-speed video camera (Photron SA-5) connected to an
inverted microscope (Nikon Eclipse Ti2-U) at 1000 fps
with an exposure of 40 μs using 20× lens which
provided a spatial resolution of 1 μm per pixel. The
recording was saved as a sequence of TIFF images for
further analysis. In total, 49 grey-scale videos were
recorded, and each video contains 550 to 600 frames.
The observation images were provided to the data-driven
surrogate model to perform a correction and to estimate
if coalescence will occur in subsequent frames. A frame
is periodically extracted (every 60 frames) from the video
as the observation yt of time-step t ∈ Tobs where Tobs
denotes the time where the observation frame is
extracted.

4 Ensemble latent assimilation with
deep learning surrogate model

This section presents a data-driven approach that we
developed in this paper based on the grey-scale videos
recorded from experiments. We first compressed the image
data into a low dimensional latent space where two different
ROM, namely proper orthogonal decomposition (POD) and
convolutional autoencoder, are implemented and analyzed. A
recurrent neural network (RNN)-based surrogate model is
then trained for predicting drop interactions in the latent
space. Finally, we made use of ensemble-based latent
assimilation (LA) techniques to perform corrections on the
predicted latent variables via synthetic real-time observations.

4.1 Reduced-order-modelling

4.1.1 Proper orthogonal decomposition. Consider an
arbitrary video dataset obtained following the experiments
described in section 3, which contains a set of m images with
10242 pixels; for instance, an image at time step t is denoted
as xt ∈ 1024×1024. The video (image dataset) can then be
denoted as a matrix X = [xt1,⋯xtm] ∈ 1024×1024×m. For
applying the vectorwise POD algorithm, state vectors xt will
be flattened into (1D) vectors in the rest of sec. 4.1.1, where
the new dimensions are xtM ∈ 10242, X = ∈ 10242×m. The
image set matrix can be projected to a low-dimensional latent
space via (SVD):

X ¼ UΣVT ¼
Xr

j¼1

σjujvTj ; (1)

where r is the rank of X, U = [u1 u2⋯ur] ∈ 10242×r, Σ ∈ r×r is
a diagonal matrix with positive entries, σ1, σ2, ⋯, σr, and V =
[v1 v2⋯vr] ∈ m×r. The columns of U and V are orthonormal
such that

UUT = VVT = Ir×r, (2)

where Ir×r denotes the identity matrix of dimension r. The
modes uj are the sub-representation of dynamics, while the
corresponding diagonal values σj quantify the significance of
these modes in the dataset. Denoting the truncation
parameter as d, the new truncated modes matrix Ud = [u1
u2⋯ud] aims to optimally represent the data with a minimum
loss of the variance. The POD encoded image set, X̃ = [x̃t1,
⋯x̃tm] ∈ d×m can be calculated from:

X̃ = UT
dX, and x̃t = UT

dx
t (3)

From the orthonormal property, the reconstructed image set
can be calculated as:

Z = UdX̃, and z
t = UT

dx̃
t (4)

where Z, zt denote the decoded image set and the decoded
image at time t, respectively. The loss function is computed
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by the MSE of the image set and the decoded image set, the
reconstructed values are capped between 0 and 1 to restrict
spurious error caused by reconstruction. The number of
modes in Ud has a negative correlation with the calculated
MSE, and the total energy proportion contained in the
truncated modes matrix Ud can be expressed as

E ¼

Pd
j¼1

σj

Pr
j¼1

σj

: (5)

Ideally, E will have a value approximate to 1 for high
precision data compression. The POD method serves as a
benchmark in this work and we compute another data
compression strategy based on CAE with the same dimension
of the latent space in section 4.1.2.

4.1.2 Convolutional autoencoder. A typical AE structure is
formed with an encoder and decoder, the encoder maps the
input data xt to latent variables, x̃t. The fully connected
(dense) layers in AE work well with small-scale problems
(∼103 degrees of freedom,65,66) but has trouble handling
problems characterised by higher degrees of freedom (e.g.
106–109).67 CAE is adopted in this work to exploit the spatial
neighbouring correlations.

Similar to the encoding-decoding structure of AE, CAE
contains upsampling, downsampling, convolutional, and dense
layers. The convolutional layers in CAE convolve the input xt ∈
1024×1024 with filters (kernels) to generate feature maps by
trainable weights. For Nk kernel in a convolutional layer with
filter KNk ∈ a×b and filter size (a × b), an element located at (i,
j) in the corresponding generated feature map (x * KNk) can be
expressed as:

x * KNk
� �

i;j ¼
Xa−1
p¼0

Xb−1
q¼0

KNk
a−p;b−qx

t
s i−1ð Þþ1−p;s j−1ð Þþ1−q (6)

where the * denotes the convolution operation. A stride size of
s = 1 is employed here which denotes the number of elements
that the filters shifted, from left to right and from top to
bottom. The neurons in a convolutional layer can share the
same filter: this parameter sharing approach reduces the
trainable weight parameters compared to dense layer. The

encoder in the CAE is built with a series of convolution max-
pooling blocks while the decoder is constructed with a series of
convolution-up sampling blocks. The constructed CAE is
illustrated in Fig. 2; the max-pooling and up-sampling are
techniques to down-sample and to up-sample feature maps by
taking the maximum value and repeating the value,
respectively. The input image xt will be compressed by the
encoder, and the encoded image in the latent space is denoted
as x̃t.

The encoding and the decoding process can be expressed
as:

x̃t = (xt,ΘE), zt = (x̃t,ΘD) (7)

where : 1024×1024 → NLS, : NLS → 1024×1024 denote the
encoder and the decoder, which are parameterized by ΘE and
ΘD, respectively, and NLS denotes the dimension of the latent
space.

The performance of the CAE is evaluated using the MSE of
regarding the true and the decoded image set, and the
optimal parameters, ΘE* and ΘD* are determined from the
binary cross-entropy loss function

ΘE*;ΘD* ¼ arg min
ΘE;ΘD

X
t∈T train

xt⊙ log zt þ 1 − xtð Þ·log 1 − ztð Þð Þ

(8)

where ⊙ represents the Hadamard product, 1 ∈ 1024×1024

denotes the matrix of ones. In this work, cross-entropy is
employed as loss function instead of MSE or MAE because
of the data imbalance, that is, the drop interface only
represents a small number of pixels in each image. Using
MSE or MAE as loss function will lead to predictions of
blank images. The values of the reconstructed matrix are
normalized between 0 and 1 to bound the predicted
values. Using the optimal hyperparameters determined
from the parameter tuning dataset, the CAE is
implemented in Keras and a detailed structure of the
selected hyperparameters of the CAE is shown in Table 1,
where ReLU denotes rectified linear unit. The CAE is
trained with the gradient-based optimizer, Adam,68 with a
learning rate of 5 × 10−5, 5000 epochs, and the loss is

Fig. 2 Encoding-decoding layout of the constructed CAE.
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computed using binary cross-entropy due to the imbalance
in grey-scale pixels. The hyperparamter tuning concerning
the structure of the CAE is latter displayed in section 5.
The dimension of the latent space, 16, is selected based
on the optimal latent space dimension to image matrix
size ratio (5.2 × 10−5) proposed in ref. 30, and the
structure of the coalescence chamber, where only around
half of the space in images is occupied by the actual
chamber.

Each frame of the recorded video has 1024 × 1024
pixels with a single channel normalized to values between
0 and 1, differences in brightness of each video are
addressed by sampling at the corners of videos and
scaling linearly, a sample of the processed image is shown
in Fig. 1. Different velocities can be reflected from the
distances that the drops moved between each frame, thus
enabling a purely data-driven approach. A video is
randomly selected as the parameter tuning dataset and it
is assumed the set can reflect the characteristic of other
videos. As for the test dataset, 8 videos are picked
randomly from combinations of velocities, coalescence and
non-coalescence. Additionally, not all images in the
training dataset are used for training CAE, as utilizing the
full train dataset will exceed the GPU's memory limit. The
training dataset is firstly partitioned, where 66.7% of
images are kept for training, the images are deselected
following a regular pattern, where an image is removed
from the CAE's training dataset for every 3 images in a
row. The remaining images are then divided to CAE's
training and validation datasets, where validation consists
of 20% of the images and they are selected in a similar
way as before. Same measures are applied for determining
the parameters of POD.

4.2 LSTM-based surrogate model

Once the ROM is implemented, we aim to construct a
reduced-order surrogate model for predicting the dynamics
in the latent space. The LSTM surrogate model is used to
evolve the latent space variable without decoding to alleviate
the computational burden. In particular, a S2S LSTM
structure is used to perform the prediction. Compared to
classical many-to-one LSTM modelling, the S2S LSTM aims to
reduce error propagation in the predictive model and to
improve computational efficiency. The training dataset of the
LSTM is encoded by the selected reduced-order method. The
validation set consists of 20% of the training dataset, and the
sequences are selected with equal distance, i.e., an image
sequence is selected for every five sequences in a row. Given
an input of a latent space vector x̃ ∈ NLS, the output vector h
∈ NLS of a single layer in feed-forward network can be
computed as

h = Sigmoid(Wx̃ + b) (9)

where W ∈ Nh×NLS denotes the weight matrix, and b ∈ Nh

denotes the bias term, and the Sigmoid is the element-wise
activation function. Using hl to denote layer l's output of the
low-dimensional representation, a deep neural networks can
be reformulated from eqn (9),

hl = Sigmoid(Wl−1hl−1 + bl−1). (10)

For a sequence-to-sequence LSTM model, the encoded
images in the input sequence share the same trainable
parameters, and a typical LSTM unit consists of four gates:

Forget gate: f m = Sigmoid(Wforgeth
m−1 + bforget);

Input gate: im = Sigmoid(Winputh
m−1 + binput);

Output gate: om = Sigmoid(Woutputh
m−1 + boutput);

Cell gate: cm = im ⊙ cm−1 + im ⊙ tanh(Wcellh
m−1 + bcell);

Update: hm = om ⊙ tanh(cm).

The activation and hyperbolic function control what
information of the current state gets ‘memorized’ and
‘forgotten’ in the cell state cm (long-term memory). The output
of a LSTM unit computed by the outputs of the four gates and
the hidden state h (short-term memory) is passed to the next
unit. The evolving of the hidden state by the LSTM surrogate
model fLSTM: Nh

l

→ Nh
l+1

can be described as

hl+1 = fLSTM(h
l) (11)

Table 1 CAE structure used for data compression

Layer (filter size) Kernel size Output shape Act.

Encoder

Input (1024, 1024, 1)
Conv 2D (8) (16, 16) (1024, 1024, 8) ReLU
MaxPooling 2D (8,8) (128, 128, 8)
Conv 2D (16) (8, 8) (128, 128, 16) ReLU
MaxPooling 2D (8, 8) (16, 16, 16)
Conv 2D (32) (4, 4) (16, 16, 32) ReLU
MaxPooling 2D (4, 4) (4, 4, 32)
Flatten 512
Dense 16

Decoder

Input 16
Dense 512
Reshape 4, 4, 32
Conv 2D (32) (4, 4) (16, 16, 32) ReLU
Upsampling 2D (4, 4) (16, 16, 32)
Conv 2D (16) (8, 8) (16, 16, 16) ReLU
Upsampling 2D (8, 8) (128, 128, 16)
Conv 2D (8) (16, 16) (128, 128, 8) ReLU
Upsampling 2D (8, 8) (1024, 1024, 8)
Conv 2D (1) (16, 16) (1024, 1024, 1) Sigmoid
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The encoded past image sequence, i.e., hl is referred to
the input sequence of the LSTM, and the input and output
sequences are of the same length in this study. By iterating
the prediction process (eqn (11)), long-term forecasting of a
dynamical system can be performed when the initial
sequence is provided.28,30

The LSTM surrogate model is implemented in Keras and
the layout of the model is shown in Table 2. Two LSTM layers
are utilized and three dense layers are added to align the
LSTM output's dimension with that of the encoded variable
in latent space. The surrogate model is trained by the Adam
optimizer with a learning rate of 5 × 10−5, 1500 epochs. As
illustrated in Fig. 3, the surrogate model aims to predict the
drop dynamics in the latent space with encoded initial
observations.

Let Npred denotes the number of predictions made by
LSTM within a video dataset, and Tpred denotes the set of
steps that contains the first frame of these predicted
sequences. For simplicity, we shorten the annotation of a
predicted latent sequence, [x̃tpred,…, x̃tpred+Nseq−1]tpred∈Tpred

, to
[x̃tpred]. An iterative prediction process is illustrated in Fig. 3,
and the combined latent surrogate function fsurrogate: Nseq×NLS

→ Nseq×NLS can be described as

[x̃tpred+Nseq] = fsurrogate([x
tpred]) (12)

4.3 Ensemble latent assimilation

In this paper, real-time observations (available every 60
frames = 0.06 s) are used to enhance surrogate model
predictions. We develop a novel algorithm scheme that
combines the LA and ensemble-type approaches for the
specification of error covariance matrices. The latter, which
determines the weight of model and observation information,
impacts crucially the performance of DA algorithms.54,56

4.3.1 Principle of data assimilation. Instead of performing
DA on the original image, in this study the assimilation is
performed in the latent space to avoid the costly
reconstruction of performing the assimilation on the full
image. For frames in the image dataset, observation frames
yt, t ∈ Tobs, from the image set X, and encoder is used to
convert the observed image to latent vector ỹt. The
assimilation of the encoded image sequence can then be
formulated as

j ∈ 1, 2,…, Nseq:

K = B̃tH̃T(R̃t + H̃B̃tH̃T)−1 (13)

x ̃
tj
a ¼ x ̃

tj
b þ K y ̃tj − H̃x ̃

tj
b Þ

�
(14)

where B̃t, R̃t ∈ NLS×NLS represent the error covariance

matrices of the background (original prediction) x ̃
tj
b and

observations ỹtj, respectively, and K is often referred as the
Kalman gain matrix, and H̃ ∈ NLS×NLS is the observation

matrix of x ̃tjb . Since all information of the observed image is
known, H̃ is set to the identity matrix INLS×NLS

. Both state and

Table 2 LSTM surrogate model structure

Layer Output shapea Activation

Input (Nseq, NLS)
LSTM (128) ReLU
Dropout (10%) (128)
Repeat vector (Nseq, 128)
LSTM (Nseq, 128) ReLU
Dropout (10%) (Nseq, 128)
Time distributed (dense) (Nseq, 128)
Dropout (10%) (Nseq, 128)
Time distributed (dense) (Nseq, 64)
Time distributed (dense) (Nseq, NLS)

a Nseq: number of latent variables in encoded image sequence.

Fig. 3 Schematic of iterative LSTM estimation procedure.

Lab on a Chip Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

5 
Ju

ly
 2

02
2.

 D
ow

nl
oa

de
d 

on
 1

/2
4/

20
26

 8
:1

3:
22

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d2lc00303a


3194 | Lab Chip, 2022, 22, 3187–3202 This journal is © The Royal Society of Chemistry 2022

observation prior errors are often assumed to be Gaussian in
DA.25 B̃t, R̃t are defined as the covariances of (x̃tb − x̃ttrue) and
(H̃x̃ttrue − ỹt), i.e.,

(x̃tb − x̃ttrue) ∼ (0, B̃t), (H̃x̃ttrue − ỹt) ∼ (0, R̃t) (15)

where 0 denotes the vector of zeros with the same dimension
of x̃t and x̃ttrue are the true values of the latent variables at
time t. The latter is out of reach in real data assimilation
problems. In LA, equal weights are often assigned to latent
predictions and observations, i.e. assigning B̃t and R̃t equal to
identity matrix INLS×NLS

.30,53 In this study, performing DA with
identity matrices is set as the benchmark, and more
sophisticated methods (e.g. NMC, ensemble) of estimating B̃t

are employed.
4.3.2 Background error covariance matrix estimation. To

leverage the information embedded in x̃tb and ỹt observations,
error covariances specification is a pivotal point in DA. When
using ensemble and NMC to compute B̃t, the matrix is firstly
set to identity at the start of the iterative prediction process,
and the value of B̃t is updated in the evolution of the latent
variables. The correction interval is selected to be 60 frames
in this study, and the background error covariance matrix is
updated every 60 frames.

4.3.2.1 NMC method. The idea of the NMC approach is to
estimate the background error covariance matrix from
trajectories that starts from a different initial encoded image
sequence. The NMC approach assumes the background
errors can be approximated by averaged prediction
differences at the same time step, such that

Cov x ̃tb − x ̃ttrue
� �

≈ Cov x ̃′tt−T − x ̃ttrue þ x ̃ttrue − x ̃′tt−2T
� �

≈ Cov x ̃′tt −T − x ̃′tt − 2T
� �

=2
(16)

where T represents an arbitrary time interval, and x ̃′tt−T , x ̃′
t
t−2T

denote two latent variables in trajectories' predictions at time
step t with the starting points at t − T and t − 2T, respectively.
The derivation of the two latent variables can be formulated
as

x ̃′tt−T
� �

← f surrogate x ̃t−T
� �� �

x ̃′tt−2T
� �

← f ð2Þsurrogate x ̃t−2T½ �ð Þ
⋮

x ̃′tt−mT

� �
← f ðmÞ

surrogate x ̃t−mT½ �ð Þ

(17)

The sequence starting at t − 2T will not be corrected at t − T,
and the two trajectories will have different estimations at
time step t as shown in Fig. 4. For m trajectories starting
from m different starting points, the mean of latent variables
in trajectories x̃′t is defined as:

x ̄′t ¼ 1
m

Xm
j¼1

x ̃′tt−jT (18)

The updated background error covariance matrix for each
assimilation step can be estimated from

B̃t
NMC ≈ 1

m − 1
Xm
j¼1

x ̃′tt− jT − x ̄′t
� �

x ̃′tt−jT − x ̄′t
� �T

(19)

4.3.2.2 Ensemble method. We have also developed the
ensemble LA in the latent space where the background error
covariance matrix is estimated from a collection of normally
disturbed trajectories. These trajectories are initialized from
the beginning of the encoded image sequence, and they are
evolved by the surrogate model in parallel with the original
undisturbed one, i.e., the actual model prediction. Similar to
eqn (16), the ensemble approach is based on the assumption
that background error can be approximated by the
differences between disturbed trajectories,

Cov x ̃tb − x ̃ttrue
� �

≈ Cov x ̃′ti − x ̃ttrue þ x ̃ttrue − x ̃′tj
� �

≈ Cov x ̃′ti − x ̃′tj
� �

=2
(20)

where x ̃′ti , x ̃′
t
j denote two different disturbed latent variables

in trajectories. More precisely, Gaussian noises are added to
the background states in the first sequence. For each element

Fig. 4 Derivation of B̃ t
NMC and B̃ t

ensemble.
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in the latent space x̃q, the unbiased Gaussian noises are
scaled based on the empirical variance against time, i.e.,

x ̃′0q ¼ x ̃′0q þ 0; σx·Cov x ̃0q; x ̃
1
q;…; x ̃Nseq−1

q

� �� �

with q ¼ 0;…;NLS − 1
(21)

where  denotes the normal distribution. The noise
coefficient is fixed as σx = 800 in this study after a parameter
tuning. Similar to eqn (18), the mean of an ensemble of m
disturbed latent trajectories, x̄′t, is defined as:

x ̄′t ¼ 1
m

Xm
j¼1

x ̃′tj : (22)

The updated background error covariance matrix can be
estimated from

B̃t
ensemble≈

1
m − 1

Xm
j¼1

x ̃′tj − x ̄′t
� �

x ̃′tj − x ̄′t
� �T

: (23)

The trajectories in the ensemble are re-initialized after each
correction, the corrected sequence is copied to each trajectory
and disturbances are introduced following eqn (21).

For both NMC and ensemble methods, the estimated B̃t is
further processed by the following Gaspari–Cohn covariance
localized function69 to mitigate the appearance of spurious
error correlations,25

∀B̃t
i;j∈ B̃t

; B̃t
i;j← B̃t

i;j·G ρð Þ; ρ ¼ i − jj j
L

with

G ρð Þ ¼

if 0≤ ρ < 1: 1 − 5
3
ρ2 þ 5

8
ρ3 þ 1

2
ρ4 − 1

4
ρ5

4 − 5r þ 5
3
ρ2 þ 5

8
ρ3 −

if 1≤ ρ < 2:
1
2
ρ4 þ 1

12
ρ5 − 2

3ρ
if ρ≥ 2: 0

8>>>>>>>><
>>>>>>>>:

(24)

where i, j denote the position of elements B̃t
i, j, ρ is the

distance, L is the correlation length, and L is fixed as 2 in this
study.

4.3.3 Correction frequency determination. To determine
the necessity of correction, the alert feature is implemented
in the normally disturbed ensemble method, via monitoring
the Gaussianity of the trajectories. When applying Kalman-
type DA approaches, the Gaussianity of prior errors is
important since approximating non-Gaussian error
distributions as Gaussian can lead to erroneous assimilation
results.70 To track the Gaussianity of the ensemble, skewness
and Kurtosis tests are firstly performed71,72 to measure to
what extent the skewness and the outliers of samples in the
ensemble differs from the normal distribution. The returned
squares of standard scores are summed together, and the

Pearson's chi-squared test (χ2, the goodness of fit)73 is
performed. The null hypothesis of the test is that the sample
follows a normal distribution, and the degree of Gaussianity
is quantified by the p-value. Typically, the p-value positively
correlates to the confidence of accepting the null hypothesis.
Alert is raised once the p-value of trajectories drops below
0.75 of the previous peak p-value, and trajectories will be
corrected with the linear interpolated latent sequence. The
approach is outlined in Algorithm 1. To the best of our
knowledge, no previous implementations which combine
machine learning-based reduced-order surrogate models and
ensemble-type DA are available in the literature.

To estimate the occurrence of coalescence at the end of
S2S prediction, the LA will only be performed on the pre-
coalescence stage, and the limit on the number of frames
between LA and coalescence/drifting apart image is set to 10.
To perform LA, the missing latent space vectors between
observations are filled by linear interpolating the latent space
elements of two consecutive observations. The element-wise
linear interpolation between observations ỹtobs1 and ỹtobs2 is
performed as

y ̃t ¼ tobs2 − t
tobs2 − tobs1

y ̃tobs1 þ t − tobs1
tobs2 − tobs1

y ̃tobs2 ; t∈ tobs1; tobs2½ � (25)

In this study the observation matrix R̃t is assumed as
time-independent (i.e., R̃t ≡ R̃), which is a common practice
in DA38,36 and LA.30 R̃ is computed by calculating the
differences between linear interpolated latent observation
and the encoded original image in the training set (where
x̃ttrue is available),

R̃ = Cov( ỹt − H̃(x̃ttrue)). (26)

Once determined, R̃ is fixed throughout the correction
process. The schematic of applying the NMC and the
ensemble methods on drop coalescence is shown in Fig. 4.

5 Results and analysis

In the following section, the performance of reduced-order
methods and surrogate models are evaluated by the MSE and
L2 norm per element (pixels/latent dimension). The CAE is
trained on 8 RTX6000 GPUs using the single-host, multi-
device synchronous training strategy implemented in Keras.
The LSTM-based surrogate model and LA are trained and
computed on a laptop, with an RTX3080 laptop and an Intel
11800H processor.

5.1 Reduced-order methods

The two reduced-order methods (i.e., POD and CAE) are
evaluated on the hyperparameter tuning dataset, which
consists of 363 frames. Using the training parameters and
the evaluating procedure outlined in sec. 4.1.2, the results of
different configuration of the CAE is shown in Table 3. The
number of layers in the table denotes the depth of the
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encoder, and configuration 5 has the best overall
performance, followed by configuration 1. Considering the
time delay caused by encoding observations when performing
DA, configuration 1 is selected to minimise the observation
error and to reduce the computational cost.

Fig. 5 shows the results of POD and CAE under 16 modes
and latent variables, respectively. The diagram demonstrates
that POD fails to reconstruct the input image with 16 modes
while the CAE can reconstruct sharp images and the average
deviation is in a few pixels. Fig. 5b compares the
performances of POD and CAE, and the MSE shows the CAE

outperforms POD by 77% and 49% on the training and
testing datasets, respectively. The spikes shown in Fig. 5b in
CAE's training dataset are caused by the further partitioning
of the training dataset, i.e. 7/15 of images in the training
dataset are equivalent to validation images. The
reconstruction quality of the CAE drops as it approaches the
coalescence stage, it could be caused by the imbalance of the
pre-coalescence stage and (post-)coalescence stage images.
The two related factors are the selection of CAE's training
dataset, and the lack of post-coalescence images, as the
camera stops recording once the coalescence happens, thus,

Table 3 CAE configuration grid search

Label Layers Filters' size Filters Max pooling MSE L2 norm per pixel

1 3 162–82–42 8–16–32 82–82–42 5.12 × 10−3 6.97 × 10−5

2 3 82–82–82 8–16–32 82–82–42 6.78 × 10−3 8.04 × 10−5

3 3 162–82–42 16–16–16 82–82–42 6.74 × 10−3 7.99 × 10−5

4 3 82–82–82 16–16–16 82–82–42 6.46 × 10−3 7.84 × 10−5

5 4 162–82–82–42 8–16–16–32 42–42–42–42 3.87 × 10−3 6.05 × 10−5

6 4 82–82–82–82 8–16–16–32 42–42–42–42 4.76 × 10−3 7.00 × 10−5

7 4 162–82–82–42 16–16–16–16 42–42–42–42 5.39 × 10−3 7.10 × 10−5

8 4 82–82–82–82 16–16–16–16 42–42–42–42 4.06 × 10−3 6.20 × 10−5

Fig. 5 Figurative and numerical comparison of the two reduced-order methods. POD: MSE: 1.23 × 10−2 (train), 1.33 × 10−2 (test); L2 norm per pixel:
1.08 × 10−4 (train), 1.12 × 10−4 (test). CAE: MSE: 2.86 × 10−3 (train), 6.74 × 10−3 (test); L2 norm per pixel: 5.16 × 10−5 (train), 7.77 × 10−5 (test).
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few coalesced images are included in the CAE's training
dataset. The 3-layer CAE is selected for the encoding and
decoding process as it outperforms the POD.

5.2 LSTM performance

The trained CAE is used to encode all the images in the
training and test datasets. To evaluate the performance of the
trained LSTM, the MAE is computed by comparing the latent
estimation to the corresponding encoding image, and the
estimations of the widest span latent variable are illustrated
in Fig. 6. Following the notation in eqn (17), the symbol m in
f (m)
surrogate denotes the number of iterative estimations
performed. The predictions of the data-driven surrogate
model on the first following sequence can align well with the
original encoded images, and the MAE of the following
sequences on the test dataset is about twice the error of the
training dataset. However, the deviation of estimated values
develops quickly on the test dataset, indicating that
correction is critical to the accuracy of the S2S predictions.
The deviations accumulate on the two datasets, and they are
likely caused by the randomness of the dynamics, where two
images of similar drops' positions can have different
movements.

5.3 Latent assimilation performances

The numerical comparison of different DA methods on the
latent variables in the test dataset is outlined in Table 4, and
errors are computed by comparing decoded latent variables
to reference images. It should be noted that only the initial
sequence and a series of observations before the coalescence/
drifting apart are provided to the surrogate model. The AE-
Identity% indicates the improvement (in terms of L2 error) of
each method compared to the standard LA approach using
identity covariance matrices. As observed in Table 4, the
ensemble (5) exhibits the best score of AE-Identity% with
+9%, followed by the NMC (5) with +5.8%. Furthermore, the
ensemble (25) with the alert feature has a similar numerical
performance to the identity approach, with a lower correction
frequency. The CAE reconstructed image and the decoded
observation have the same magnitude of errors, and it shows
that the variation in latent variables' value can be well
approximated by the linear interpolation. The computation
cost of the surrogate model can be reflected by the
computation time, which includes the time taken to evolve
trajectories. The trajectories in the NMC and ensemble
methods are computed in serial, and the computation time
of the two methods can be reduced once they are

Fig. 6 Results of iterative S2S estimations on the widest span latent variable, MAE is computed by comparing the differences between the
estimated and the true latent variables.
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parallelized. Generally, there exists a trade-off between the
accuracy of estimations and the computation time, due to
the positive correlation between the number of tracked
trajectories and the computed background covariance matrix.
The last image in the test datasets and the predicted
trajectory is used to evaluate if the surrogate model
successfully predicts the coalescence. The original image
transferred by the encoding-decoding process is referred to
the CAE reconstructed image, and it is treated as the “ground
truth” for the surrogate model because it indicates the best
result that the S2S surrogate model can achieve.

A set of the final images of different DA methods are
presented in Fig. 8(a), their MSE/MAE are calculated from

comparing decoded estimations and decoded images. Among
the eight test videos, the surrogate model without correction
(LSTM) fails to predict any coalescence, and the predicted
drops have large deviations in shape. The identity, NMC (5)
and ensemble (5) methods have smaller errors, and the
predicted shapes of the drops are similar. The three methods
estimated five out of eight outcomes correctly including one
of the coalesced drops are shown in Fig. 8(a). Without the
alert feature, the ensemble (25) can estimate six out of eight
outcomes correctly with a correction interval of 60 frames.
On average, the ensemble (25) with the alert feature can
estimate five outcomes correctly with an average correction
interval of 85 frames, and the average number of corrections
performed on each test dataset is 6.5. By comparing the MSE
of decoded latent variables of the LSTM and the ensemble

(25) with alerts, the similarity in errors and differences in
shape demonstrate the alert feature works effectively. The
alert method achieves comparable performance in predicting
the outcomes of the two drops, and its MSE and L2 error are
close to the identity matrix approach with a shorter
correction interval. Fig. 8(b) compares the absolute deviation
of the three LA techniques at the time step where a
correction is about to perform, i.e., 60 frames after the
previous correction. NMC and ensemble methods generally
perform better than the identity matrix approach, when the
deviations from the reference state are not too large, and it
implies the ensemble and the NMC can estimate the
background covariance matrix robustly.

Fig. 7 illustrates the evolving of latent variables' MSE in
the previously shown coalesced test dataset, and two
corrections are skipped near the end of the sequence. The
MSE of S2S LSTM shows a trend of fluctuation. The reduction
of MSE occurs when the upper drop enters the chamber and
the two drops approach each other, then the error develops
quickly when the two drops are about to make contact, as the
interactions between drops increase at this stage. The alert is
raised at 480th image (i.e., 0.48 s) and the S2S LSTM
successfully estimates the coalescence at the end of the test
dataset. The alert feature also serves as an indication of
process uncertainty. In the case of Fig. 7, the tip of the upper
drop starts to enter the chamber around the 200th image.
Correction is constantly requested at this stage because the
CAE-LSTM has not yet fully captured the shape of the drops,
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and it is reflected by the divergence of disturbed trajectories
within the ensemble.

6 Conclusion and future work

In this study, an image-based data-driven model is built to
predict the dynamics of drop interactions in a microfludic
device based on experimental data. Ordered sequences are
constructed from encoded videos and a S2S LSTM is trained
for predictions in the reduced-order latent space. Observation
(images extracted from unseen experiment data) is
introduced to monitor the real-time prediction of drop
dynamics thanks to LA algorithms. We developed a novel
algorithm scheme that combines the LSTM-based surrogate
modelling and Ensemble-type LA algorithms in reduced-
order latent spaces. As a first attempt at an efficient ROM-
and DL-based surrogate model for microfluidics drop
dynamics, the results obtained in this work highlight the
potential of data-driven models for predicting the
coalescence probability and guiding the choice of experiment
parameters.

The performances of LSTM with different LA techniques
show the NMC and ensemble methods outperform the

identity approach, as both methods show positive
improvements on the MSE and the L2 error of the adjusted
predictions. It indicates that having a good estimation of
the background covariance matrix is beneficial to the
overall assimilated result. Although the sample size is
relatively small, the data-driven surrogate model estimates
five out of eight outcomes correctly for a correction interval
of 60 frames (a correction frequency of two seconds). A
robust correction determination method is proposed and
implemented based on the ensemble method, and the
implemented alert feature can predict at most six outcomes
correctly.

In terms of future work, the quality of datasets can be
improved by recording more frames after the coalescence/
drifting apart to reduce the imbalance between pre-
coalescence and coalescence's images. Various RNN
structures can be tested, for instance, gated recurrent unit
(GRU)74 and attention-based RNN,75 to further increase the
performance of the surrogate model. To improve the
generalizability of the proposed approach, more
combinations of phase velocities can be included in the
LSTM's training set to investigate the correlation between the
variety of datasets and model performance, as the current

Fig. 7 Comparison of the MSE of the latent vector on the coalesced test dataset and its enlarged version. The three snapshots extracted from
frames 1, 200, and 400 of the original video. Each time step is equivalent to ×10−3 seconds.

Table 4 Errors of surrogate model on test dataset

Nseq Reconstruction Correction interval.(frames) MSE L2 error per pixel MSEa (AE-Id%) Computation time (s)

AE reconstruction 6.74 × 10−3 7.77 × 10−5 100%
Linear interpolated observation 60 7.46 × 10−3 8.22 × 10−5 94.1%

Methods

5 LSTM, no correction 2.54 × 10−2 1.54 × 10−4 −53.5% 3.3
5 Identity 60 1.89 × 10−2 1.32 × 10−4 0% 3.4
5 NMC (5)b 60 1.82 × 10−2 1.29 × 10−4 5.8% 9.0
5 Ensemble (5) 60 1.78 × 10−2 1.27 × 10−4 9.0% 18.6
5 Ensemble (25), with alert 85c 1.92 × 10−2 1.32 × 10−4 2.5% 83.1

a (MSEidentity − MSE)/(MSEidentity − MSEAE).
b Numbers in brackets denote the number of trajectories. c Average of images within correction

interval.
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dataset only covers two combinations of velocities. The
datasets could be extended further to various device
geometries, for example, various sizes of coalescence
chamber. Such extension of training datasets will enable
optimisation of geometry and flow rates resulting in close to
100% coalescence rate. Securing the high coalescence rate is
crucial for microfluidic reactions and screening. Examples

are drug screening where some acting ingredients can be
added dropwise and close to 100% coalescence rate will
guarantee similar environment in each screening unit or
synthesis of hydrogels where non-coalesced drops can lead to
device clogging. In addition, a CFD simulator of drop
dynamics is under development and future ML approaches
can learn from these high-fidelity simulations to enhance the

Fig. 8 Figurative and numerical comparison of different methods on test datasets.
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performance of the current approach. Furthermore, using the
current surrogate model these CFD data can be used as
observations in DA to prevent non-realistic predictions. When
more experimental/CFD data with different initial conditions
are available, further work can be investigated to develop an
operational algorithm to predict the probability of
coalescence via initial observations. In addition, the LA
methods proposed in this study are applicable for studying
dynamics other than coalescence, and the LA combined
LSTM-based surrogate model shows promising results on
estimating complex dynamics.

Acronyms

NN Neural networks
ML Machine learning
LA Latent assimilation
DA Data assimilation
AE Autoencoder
CAE Convolutional autoencoder
RNN Recurrent neural network
CNN Convolutional neural network
LSTM Long short-term memory
POD Proper orthogonal decomposition
SVD Singular value decomposition
ROM Reduced-order modelling
CFD Computational fluid mechanics
1D One-dimensional
MSE Mean square error
MAE Mean absolute error
S2S Sequence-to-sequence
DL Deep learning

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

This research is funded by the EP/T000414/1 PREdictive
Modelling with QuantIfication of UncERtainty for MultiphasE
Systems (PREMIERE). This work is partially supported by the
Leverhulme Centre for Wildfires, Environment and Society
through the Leverhulme Trust, grant number RC-2018-023.
The authors are grateful to two anonymous reviewers for the
useful suggestions on the manuscript.

Notes and references

1 G. M. Whitesides, Nature, 2006, 442, 368–373.
2 M. Joanicot and A. Ajdari, Science, 2005, 309, 887–888.
3 A. S. Utada, E. Lorenceau, D. R. Link, P. D. Kaplan,

H. A. Stone and D. A. Weitz, Science, 2005, 308,
537–541.

4 T. Krebs, K. Schroen and R. Boom, Lab Chip, 2012, 12,
1060–1070.

5 K. Schroen, C. Berton-Carabin, D. Renard, M. Marquis, A.
Boire, R. Cochereau, C. Amine and S. Marze, Micromachines,
2021, 12, 863.

6 H. Shi, K. Nie, B. Dong, M. Long, H. Xu and Z. Liu, Chem.
Eng. J., 2019, 361, 635–650.

7 A. Stucki, J. Vallapurackal, T. R. Ward and P. S. Dittrich,
Angew. Chem., Int. Ed., 2021, 60, 24368–24387.

8 S. Sarkar, N. Cohen, P. Sabhachandani and T. Konry, Lab
Chip, 2015, 15, 4441–4450.

9 S. Sarkar, P. Sabhachandani, D. Stroopinsky, K. Palmer, N.
Cohen, J. Rosenblatt, D. Avigan and T. Konry,
Biomicrofluidics, 2016, 10, 054115.

10 M. Solsona, J. C. Vollenbroek, C. B. M. Tregouet, A.-E.
Nieuwelink, W. Olthuis, A. van den Berg, B. M. Weckhuysen
and M. Odijk, Lab Chip, 2019, 19, 3575–3601.

11 V. P. Galván-Chacón, L. Costa, D. Barata and P. Habibovic,
Acta Biomater., 2021, 128, 486–501.

12 A. Moreira, J. Carneiro, J. B. L. M. Campos and J. M.
Miranda, Microfluid. Nanofluid., 2021, 25, 10.

13 S. Kubendhiran, Z. Bao, K. Dave and R.-S. Liu, ACS Appl.
Nano Mater., 2019, 2, 1773–1790.

14 K. Nathanael, P. Pico, N. M. Kovalchuk, A. D. Lavino, M. J.
Simmons and O. K. Matar, Chem. Eng. J., 2022, 135178.

15 C. Hirt and B. Nichols, J. Comput. Phys., 1981, 39, 201–225.
16 G. Tryggvason, B. Bunner, A. Esmaeeli, D. Juric, N. Al-

Rawahi, W. Tauber, J. Han, S. Nas and Y.-J. Jan, J. Comput.
Phys., 2001, 169, 708–759.

17 S. Osher and J. A. Sethian, J. Comput. Phys., 1988, 79, 12–49.
18 T. Glatzel, C. Litterst, C. Cupelli, T. Lindemann, C.

Moosmann, R. Niekrawietz, W. Streule, R. Zengerle and P.
Koltay, Comput. Fluids, 2008, 37, 218–235.

19 K. Sambath, V. Garg, S. S. Thete, H. J. Subramani and O. A.
Basaran, J. Fluid Mech., 2019, 876, 449–480.

20 A. R. Guzman, H. S. Kim, P. de Figueiredo and A. Han,
Biomed. Microdevices, 2015, 17, 35.

21 A. Shenoy, C. V. Rao and C. M. Schroeder, Proc. Natl. Acad.
Sci. U. S. A., 2016, 113, 3976–3981.

22 S. Narayan, I. Makhnenko, D. B. Moravec, B. G. Hauser, A. J.
Dallas and C. S. Dutcher, Langmuir, 2020, 36, 9827–9842.

23 G. I. Taylor, Proc. R. Soc. London, Ser. A, 1934, 146, 501–523.
24 H. Yi, T. Fu, C. Zhu and Y. Ma, Chem. Eng. J., 2022, 430,

133087.
25 A. Carrassi, M. Bocquet, L. Bertino and G. Evensen, Wiley

Interdiscip. Rev. Clim. Change, 2018, 9, e535.
26 W. H. Schilders, H. A. Van der Vorst and J. Rommes, Model

order reduction: theory, research aspects and applications,
Springer, 2008, vol. 13.

27 T. Nakamura, K. Fukami, K. Hasegawa, Y. Nabae and K.
Fukagata, Phys. Fluids, 2021, 33, 025116.

28 K. Fukami, K. Fukagata and K. Taira, Theor. Comput. Fluid
Dyn., 2020, 34, 497–519.

29 C. Q. Casas, R. Arcucci, P. Wu, C. Pain and Y.-K. Guo, Phys.
D, 2020, 412, 132615.

30 M. Amendola, R. Arcucci, L. Mottet, C. Q. Casas, S. Fan, C.
Pain, P. Linden and Y.-K. Guo, Data Assimilation in the Latent
Space of a Neural Network, 2020.

Lab on a Chip Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

5 
Ju

ly
 2

02
2.

 D
ow

nl
oa

de
d 

on
 1

/2
4/

20
26

 8
:1

3:
22

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d2lc00303a


3202 | Lab Chip, 2022, 22, 3187–3202 This journal is © The Royal Society of Chemistry 2022

31 S. Cheng, I. C. Prentice, Y. Huang, Y. Jin, Y.-K. Guo and R.
Arcucci, J. Comput. Phys., 2022, 111302.

32 J. Lumley, Atmospheric turbulence and radio wave propagation,
1967.

33 B. Moore, IEEE Trans. Autom. Control, 1981, 26, 17–32.
34 C. W. Rowley, I. Mezic, S. Bagheri, P. Schlatter and D. S.

Henningson, J. Fluid Mech., 2009, 641, 115–127.
35 P. J. Schmid, J. Fluid Mech., 2010, 656, 5–28.
36 R. Arcucci, L. Mottet, C. Pain and Y.-K. Guo, J. Comput. Phys.,

2019, 379, 51–69.
37 C. W. Rowley, Int. J. Bifurcation Chaos Appl. Sci. Eng.,

2005, 15, 997–1013.
38 S. Cheng, D. Lucor and J.-P. Argaud, J. Comput. Sci.,

2021, 101405.
39 R. Maulik, K. Fukami, N. Ramachandra, K. Fukagata and K.

Taira, Phys. Rev. Fluids, 2020, 5, 104401.
40 Y. Fan, G. Wen, D. Li, S. Qiu, M. D. Levine and F. Xiao,

Comput. Vis. Image Underst., 2020, 195, 102920.
41 K. Simonyan and A. Zisserman, Two-Stream Convolutional

Networks for Action Recognition in Videos, 2014.
42 T. R. Phillips, C. E. Heaney, P. N. Smith and C. C. Pain, Int.

J. Numer. Methods Eng., 2021, 122, 3780–3811.
43 Y. Zhou, C. Wu, Z. Li, C. Cao, Y. Ye, J. Saragih, H. Li and Y.

Sheikh, 2020, arXiv preprint arXiv:2006.04325.
44 G. E. Hinton and R. R. Salakhutdinov, Science, 2006, 313,

504–507.
45 L. Fulton, V. Modi, D. Duvenaud, D. I. W. Levin and A.

Jacobson, Computer Graphics Forum, 2019.
46 C. Liu, R. Fu, D. Xiao, R. Stefanescu, P. Sharma, C. Zhu, S.

Sun and C. Wang, Eng. Anal. Bound. Elem., 2022, 139, 46–55.
47 D. E. Rumelhart, G. E. Hinton and R. J. Williams, Nature,

1986, 323, 533–536.
48 Y. Bengio, P. Simard and P. Frasconi, IEEE Trans. Neural

Netw., 1994, 5, 157–166.
49 K. Greff, R. K. Srivastava, J. Koutnik, B. R. Steunebrink and J.

Schmidhuber, IEEE Trans. Neural Netw. Learn. Syst., 2017, 28,
2222–2232.

50 S. Hochreiter and J. Schmidhuber, Neural Comput., 1997, 9,
1735–1780.

51 J. N. Kani and A. H. Elsheikh, DR-RNN: A deep residual
recurrent neural network for model reduction, 2017.

52 Z. Wang, D. Xiao, F. Fang, R. Govindan, C. C. Pain and Y.
Guo, Int. J. Numer. Methods Fluids, 2018, 86, 255–268.

53 M. Peyron, A. Fillion, S. Gürol, V. Marchais, S. Gratton, P.
Boudier and G. Goret, 2021, arXiv preprint
arXiv:2104.00430.

54 S. Cheng, J.-P. Argaud, B. Iooss, D. Lucor and A. Ponçot,
Stochastic Environ. Res. Risk Assess., 2019, 33, 2033–2051.

55 M. Fisher, Seminar on Recent developments in data
assimilation for atmosphere and ocean (Shinfield Park, Reading,
8–12 September), 2003.

56 G. Desroziers, L. Berre, B. Chapnik and P. Poli, Q. J. R.
Meteorol. Soc., 2005, 131, 3385–3396.

57 S. Cheng and M. Qiu, Neural. Comput. Appl., 2021, 1–19.
58 J. R. Eyre and F. I. Hilton, Q. J. R. Meteorol. Soc., 2013, 139,

524–533.
59 E. Lin, Y. Yang, X. Qiu, Q. Xie, R. Gan, B. Zhang and X. Liu,

Atmos. Res., 2021, 257, 105590.
60 H. He, L. Lei, J. S. Whitaker and Z.-M. Tan, J. Adv. Model.

Earth Syst., 2020, 12, e2020MS002187.
61 D. F. Parrish and J. C. Derber, Mon. Weather Rev., 1992, 120,

1747–1763.
62 G. Evensen, J. Geophys. Res.: Oceans, 1994, 99, 10143–10162.
63 M. Bocquet and A. Carrassi, Tellus B, 2017, 69, 1304504.
64 P. Kim, K. W. Kwon, M. C. Park, S. H. Lee, S. M. Kim and

K. Y. Suh, BioChip J., 2008, 2, 1–11.
65 Y. Wang, H. Yao and S. Zhao, Neurocomputing, 2016, 184,

232–242.
66 S. E. Otto and C. W. Rowley, Linearly-Recurrent Autoencoder

Networks for Learning Dynamics, 2019.
67 F. J. Gonzalez and M. Balajewicz, Deep convolutional recurrent

autoencoders for learning low-dimensional feature dynamics of
fluid systems, 2018.

68 D. P. Kingma and J. Ba, Adam: A Method for Stochastic
Optimization, 2017.

69 G. Gaspari and S. E. Cohn, Q. J. R. Meteorol. Soc., 1999, 125,
723–757.

70 A. Fowler and P. Jan Van Leeuwen, Tellus B, 2013, 65, 20035.
71 R. D'Agostino and E. S. Pearson, Biometrika, 1973, 60,

613–622.
72 R. B. D'Agostino, Biometrika, 1971, 58, 341–348.
73 K. Pearson, Philos. Mag., 1900, 50, 157–175.
74 J. Chung, C. Gulcehre, K. Cho and Y. Bengio, 2014, arXiv

preprint arXiv:1412.3555.
75 M. E. Basiri, S. Nemati, M. Abdar, E. Cambria and U. R.

Acharya, Future Gener. Comput. Syst., 2021, 115, 279–294.

Lab on a ChipPaper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

5 
Ju

ly
 2

02
2.

 D
ow

nl
oa

de
d 

on
 1

/2
4/

20
26

 8
:1

3:
22

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d2lc00303a

	crossmark: 


