
Green Chemistry

CORRECTION

View Article Online
View Journal | View Issue

Cite this: *Green Chem.*, 2022, **24**, 3042

Correction: Mo-Doped/Ni-supported ZnIn₂S₄-wrapped NiMoO₄ S-scheme heterojunction photocatalytic reforming of lignin into hydrogen

Hang Su,^a Cheng Rao,^a Lan Zhou,^a Yuxia Pang,^a Hongming Lou,*^{a,b} Dongjie Yang^a and Xueqing Qiu^c

DOI: 10.1039/d2gc90023h rsc.li/greenchem

Correction for 'Mo-Doped/Ni-supported $ZnIn_2S_4$ -wrapped NiMoO₄ S-scheme heterojunction photocatalytic reforming of lignin into hydrogen' by Hang Su *et al.*, *Green Chem.*, 2022, DOI: 10.1039/d1gc04397h.

The authors regret that some of the photocatalyst names were reported incorrectly in Fig. 4 of the original article. The corrected Fig. 4 is shown below.

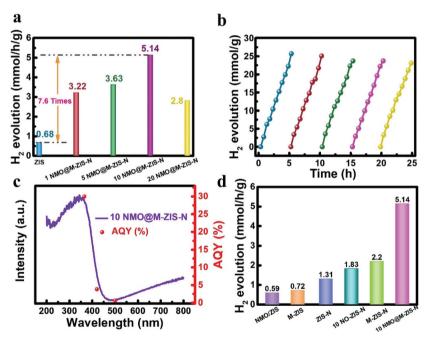


Fig. 4 With TEOA as a sacrificial agent: (a) the photocatalytic HER rate of ZIS and NMO@M-ZIS-N with different NMO loading, (b) cyclic experiments of 10 NMO@M-ZIS-N, (c) UV-vis absorption spectrum (blue curve) over the 10 NMO@M-ZIS-N sample together with its wavelength-dependent AQY (red dots), (d) photocatalysis HER rate of various photocatalysts.

The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.

^aSchool of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou, China. E-mail: cehmlou@scut.edu.cn

^bState Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, China

^cSchool of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China