

Cite this: *Green Chem.*, 2022, **24**, 958

DOI: 10.1039/d1gc90138a
rsc.li/greenchem

Correction: Sustainable advances in SLA/DLP 3D printing materials and processes

Erin M. Maines,^a Mayuri K. Porwal,^a Christopher J. Ellison^{*a} and Theresa M. Reineke^{*b}

Correction for 'Sustainable advances in SLA/DLP 3D printing materials and processes' by Erin M. Maines *et al.*, *Green Chem.*, 2021, **23**, 6863–6897, DOI: 10.1039/D1GC01489G.

The reference citations in Table 1 of the published manuscript are incorrect. The corrected Table 1 is below. Please refer to the published manuscript for details of the references.

^aDepartment of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, USA. E-mail: maine030@umn.edu, porwa001@umn.edu, cellison@umn.edu

^bDepartment of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA. E-mail: treineke@umn.edu

Table 1 Overview of research and topics covered in this review

Base feedstock	Key polymerizable groups	Type of 3D printing	Additional notable aspects of sustainability	Sources
Renewable feedstock				
Lignin	Acrylate, methacrylate, coumarin	SLA/DLP	Solvent free synthesis; ^{20–22} elimination of harmful reagents (photoinitiator); ²⁵ competitive material properties with commercial resins; ^{21,23} photopolymerizable groups from renewable sources (coumarin) ²⁵	20–23, 25
Cellulose	Methacrylate	SLA	Degradation (hydrolytic)	29
Sucrose	Methacrylate, acrylate	SLA	Solvent free synthesis; competitive material properties with commercial resins	30
CL	Methacrylate, acrylate	SLA/DLP	Degradation (hydrolytic and enzymatic) ^{31,34,35}	31, 32, 34–36
LA	Methacrylate, fumarate	SLA	Photopolymerizable groups from renewable sources (fumaric acid, non-toxic) ³⁸	37, 38, 84
Terpenes	Thiol + vinyl, thiol + allyl, thiol + cyclohexene	DLP	Photopolymerizable groups from renewable sources (terpene double bonds)	43, 44
Diacids	Methacrylate, alkenes	DLP/μSTL	Solvent free synthesis ⁴⁶	45, 46
Linseed oil	Epoxy	DLP/SLA	—	50, 51
Soybean oil	Acrylate, methacrylate	SLA/DLP/ DLW	Solvent free synthesis; ⁵⁵ competitive material properties with commercial resins ⁵⁵	53–56
Biogenic amines	Methacrylate, thiol + allyl	DLP	Elimination of harmful reagents (isocyanates); ^{66, 67} solvent free synthesis; bioderived light absorber (Dopamine) ⁶⁹	66, 67, 69
Silk fibroin	Methacrylate	DLP	Replacement of harmful solvents	62
Globular proteins	Methacrylate	SLA	Degradation (enzymatic); replacement of harmful solvents	71
Hyaluronic acid		DLP	—	72
Alginate	Ionic associations	SLA	Degradation; Replacement of harmful solvents	73
Keratin		DLP	Replacement of harmful solvents and reagents (inhibitor, catalyst, and initiator)	74
Waste feedstock				
Waste cooking oil	Acrylate	DLP	Biodegradation by soil burial; solvent free synthesis; recovery and reuse of monomers, catalyst, and solvent used in purification	75
Carbon dioxide	Methacrylate	DLP	Solvent free synthesis; elimination of harmful reagents (isocyanates); competitive material properties with commercial resins	76
Reprocessable materials				
Hexane di-thiol and di-allyl terephthalate	Thiol + allyl	DLP	Thermoplastic	77
Acryloylmorpholine	Acryloyl	DLP	Thermoplastic	78
bisphenol A glycerolate di-(meth)acrylate	Acrylate	DLP/SLA	Dynamic covalent network (transesterification); elimination of catalyst ⁸⁰	79, 80
Hydroxyethyl acrylate	Acrylate	DLP	Dynamic covalent network (Diels–Alder)	81
Degradable feedstock				
Propylene oxide and maleic anhydride	Fumaric double bond	SLA	Degradation (hydrolytic); degradation products (nontoxic)	86, 87
CL and TMC	Acrylate	DLP	Renewable feedstock; degradation (hydrolytic)	33
CL and LA	Methacrylate	TPP	Renewable feedstock; degradation (hydrolytic)	39
Adipic acid and triethylene glycol	Methacrylate	SLA	Renewable feedstock; degradation (hydrolytic)	88
1,4-butanediol, 1,1,1-tris (hydroxy methyl)propane	Thiol + propargyl, thiol + butyne-1-yl	DLP	Degradation (hydrolytic); degradation products (low molecular weight fragments)	89
Gelatin	Methacrylate	TPP	Renewable feedstock; degradation (enzymatic)	90

The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.

