Issue 21, 2022

Consumption of barley flour increases gut fermentation and improves glucose intolerance via the short-chain fatty acid receptor GPR43 in obese male mice

Abstract

Barley consumption is expected to increase insulin sensitivity by increasing the level of short-chain fatty acids (SCFAs) and promoting the secretion of GLP-1. However, the involvement of GPR43, a receptor for SCFAs, has not been investigated. Therefore, we evaluated whether the inhibitory effect of β-glucan-rich barley intake on blood glucose rise is mediated by GPR43 signalling via an increase of SCFAs. C57BL/6J mice and GPR43-knockout mice were fed high-fat diets with either cellulose (HC) or β-glucan-rich barley flour (HB) for 12 weeks. The level of SCFAs in cecum contents was measured and the concentration of GLP-1 in the portal vein was determined. The supernatant of the cecum contents of C57BL/6J mice was added to GLUTag cells, and then the changes to GLP-1 and intracellular Ca2+ concentrations determined. The same parameters were measured using cells in which GPR43 was knocked down by siRNA. C57BL/6J mice fed HB diets showed a suppressed glucose rise compared to those on the HC diet. Cecum SCFAs and GLP-1 concentration in the portal vein were also increased by the HB diet. When an aqueous solution from the cecum content of mice fed a HB diet was added to GLUTag cells, GLP-1 secretion and intracellular Ca2+ concentration were increased. These phenomena were not observed in cells with knockdown of GPR43. In GPR43 knockout mice an increase of GLP-1 in the portal vein and suppression of blood glucose elevation was attenuated, despite increased SCFAs brought on by the HB diet. In conclusion, GPR43 activation in the intestinal tract via increased SCFAs is required for the glucose intolerance-improving effect of barley consumption.

Graphical abstract: Consumption of barley flour increases gut fermentation and improves glucose intolerance via the short-chain fatty acid receptor GPR43 in obese male mice

Supplementary files

Article information

Article type
Paper
Submitted
05 Sep 2022
Accepted
11 Oct 2022
First published
12 Oct 2022

Food Funct., 2022,13, 10970-10980

Consumption of barley flour increases gut fermentation and improves glucose intolerance via the short-chain fatty acid receptor GPR43 in obese male mice

K. Mio, N. Iida-Tanaka, C. Yamanaka, I. Kimura and S. Aoe, Food Funct., 2022, 13, 10970 DOI: 10.1039/D2FO02622H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements